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A MATRIX VOLTERRA INTEGRODIFFERENTIAL
EQUATION OCCURRING IN POLYMER RHEOLOGY

HANS ENGLER

In this paper we study a class of Volterra integrodifferential equa-
tions that arise in the description of elastic liquids, such as polymer
melts and dilute or concentrated polymer solutions. The deformation
of a small cube-shaped sample of such a liquid can be approximately
described by a symmetric 3 x 3-matrix: If the material undergoes
some prescribed deformation for times t < 0 and then is allowed to
recover without constraints for t > 0 (stress-free recoil), and if in-
ertial effects are ignored, these matrices obey an ordinary first order
Volterra integrodifferential equation. Incompressibility of the ma-
terial imposes the nonlinear constraint that the determinant of the
matrices remain constant. In addition, there is a natural small pa-
rameter η > 0 , proportional to Newtonian viscosity, which multiplies
the derivative. In the case η = 0 , which is also of physical interest,
the problem reduces to an implicit Volterra integral equation.

1. Introduction. The problem under study thus can be classified as
a singularly perturbed Volterra integrodifferential equation on a man-
ifold. In this paper we present an existence and uniqueness theory,
asymptotic results (as t —> oo) for the cases η > 0 and η = 0, and a
study of the behavior of the solutions as η I 0. Thus, we follow the
program of the influential paper [11], in which these questions were
studied for the case of elongational flows.

In the remainder of this section, the physical background of the
problem is described, the equations to be studied are derived, and
some special classes of deformations are listed for later reference. Sec-
tion 2 reviews known results for the important class of elongational
deformations. In §3, we develop some useful facts concerning the dif-
ferential geometry of the manifold on which the equation holds. In §4,
we show that the problem under study has a natural gradient structure
and give a basic local existence and uniqueness theorem for the case
η > 0. Section 5 deals with global existence and with the existence
of asymptotic limits of solutions as t -* oo, still for η > 0. In §6,
we develop a variational framework in which local and global exis-
tence and uniqueness and the existence of asymptotic limits can also
be proved for the reduced implicit equation that results from setting
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η = 0. In §7, we study the behavior of solutions as η j 0, in an initial
layer near t = 0. Section 8 is concerned with this question for large
t. The results of these two sections give a description up to terms of
order ηa for some a > 0, uniformly in 0 < ί < oo. In §9, some
general qualitative properties of asymptotic limits are presented, and
these results are used in §10 to give a unified explanation for various
free recoil phenomena such as non-recovery of the initial shape after a
stretching history and lateral expansion after a previous simple shear.

If the material under consideration occupies a reference region Ω c
R3 at time t = -oo, its deformation can be described by a family of
diίfeomorphisms

(1) y( , 0 : Ω - > R 3 (ίgR).

Let

denote the deformation gradient, and let

Π( , ί) :Ω-+R 3 > 3 ( ί 6 R )

denote the body stress tensor (see [10]). Then isochoric motions of
the material are governed by the partial differential equations

(2) p ( 9 y j f ; ° - f(ξ, θ ) = V< (F({, t)Π(ζ,

where p is the mass density, assumed to be constant, f denotes the
body force per unit mass, and the divergence is formed with respect to
the second component (cf. [5], [10], [17]). Here Π(£, t) depends on
the deformation gradient (and its history up to time t) at the particle
ξ through a suitable constitutive relation. For isochoric motions, we
have to add the incompressibility condition

(3) detF(ί,ί) = l forall(ί,ί).

This paper is concerned with homogeneous flows, i.e. flows for which
F does not depend on ξ. Thus y( , t) should be an affine mapping
for all ί G R , and the equations of motion (2) will only hold for
very special body forces. Heuristically, the "interior" behavior of the
material (away from any boundary effects) might be described in this
way. The class of experiments to be described here consists in sub-
jecting the material to a homogeneous deformation up to time t = 0
and then allowing its stress-free recovery for t > 0 with vanishing
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body forces. The analysis below is based on the additional simplify-
ing assumption that the inertial forces can be neglected for t > 0
thus the equations of motion will no longer be satisfied. Nevertheless,
such simplifications can be used to test the applicability of constitu-
tive relations by comparing mathematical predictions to experimental
observations; see [9].

The mathematical problem thus consists in solving the implicit
equation for F( ) (the dependence on ζ can now be omitted)

(4) Π(ί) = 0 (ί > 0)

for a given history (F(ί))*<o A relation between Π(ί) and the values
of (¥(s))s<t then is needed to close the system of equations; a general
class of such relations will now be introduced.

Let γ(t) = Fτ(t)F(t) denote Green's deformation tensor. The K-
BKZ-model for incompressible elastic liquids (proposed in [2] and [8])
postulates a relation of the form

(5)Π(ί)= - ^

f
J—
f

—oo

-W2(t-s9λι(t9s)9λ2(t,s))γ-1(t)γ(s)γ-ι(t))dt,

where /?(•) is a reactive scalar pressure, η > 0 is Newtonian viscos-
ity, λx(t, s) = tτ(γ(t)γ"ι(s)) and γ2{t, s) = tr(γ~ι(ήγ(s)) are relative
strain invariants, and

for a suitable scalar function W\ (0, oo) x [3, oo) x [3, oo) —• R. The
constitutive relation (5) contains the case of a Newtonian liquid (for
W = 0) and is analogous to the well-known formula for incompress-
ible isotropic homogeneous hyperelastic materials ([5], [19]). It can be
specialized to many other constitutive laws of integral type (see §10
below).

The problem of free elastic recoil for homogeneous flows therefore
consists in finding a solution (y( ) ,p( )) of (4), (5), together with the
incompressibility condition

(6) dety( ) = l ,

for prescribed γ(-) on (-oo, 0] that satisfies also (6).
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The components of γ and of its inverse y~ι describe the defor-
mation of an embedded material sample that is a parallelopiped of
unit volume, in the following way. Let e\, eι, e?> denote the vectors
describing the edges of the parallelopiped. The lengths of these edges
at time t are obviously given by yfγΐl, and cosines of angles between
edges are given by Vij/y/γϊϊ7jj, if iφ j Let Ey, E\} denote the two
faces of the parallelopiped that are parallel to et and ej (/ Φ j), let
γ~ι = (γιJ)ij, and set k = 6 - / - j . Then the separation between
Ejj and E\} at time t is equal to (γkk(t))~ι/2, and the cosine of the
angle between isy and iŝ y is given by γ k / ψ ^

Certain deformations are of special interest, such as shear-free de-
formations, where

(a 0 (Γ
(7) y = 0 ft 0

VO 0
Here and below all quantities depend on t. Examples of such defor-
mations are filament stretching, where a = y > 1, & = c = y~χl2

 9

sheet stretching, which is of the same form with y < 1, and a defor-
mation called pure shear (rather inappropriately), where a = x, & =
x " 1 , c = 1 and which describes e.g. a deformation between two rolls.
In the case of filament stretching, the quantity y is called the elonga-
tion ratio. Another important class consists in shear flows in which

(\ a b
(8) γ = j a \+a2 ab + c

\b ab + c 1 + b2 + c2

with a, b, c G R. In particular, flows in which α( ) = Λ( ) and
b(-) = c( ) = 0 are called simple shear flows, and in this case θ(t) =
arctans(i) is known as the angle of shear. It will be shown in §10 that
flow histories of the form (7) will give deformations of the same form
under free recovery and that in general flow histories of the form (8)
will not result in deformations of the same form under free recovery.

For later reference we define the set

(9) M = {A e R 3 ' 3 M = AΊ\ dεtA = 1, A > 0}.

The unit matrix will be denoted by I e M, and the notation for
contractions

A : B = \r{AB) = tr(BA)

for A, B E M will be used. For the euclidean matrix norm, we write
= (A : A)112. Analytic functions such as square roots, logarithms
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and exponentials of matrices from M can be defined by the usual
diagonalization construction. Note that tr(log^4) = 0 for all A e M.
Positive constants whose values may change from line to line will be
denoted by the same letter K, L,... constants that have a specific
meaning and are referred to in other parts of the paper have indices.

2. Results for elongational deformations. The problem to be studied
here has received much attention for flow histories of the form (7) with
b = c, since it is then possible to find a solution of the same form
for t > 0. Here we give a brief overview of these results. In this case
the system obtained from (5) and the incompressibility condition (6)
reduces to only two equations for the two unknown functions y(-) =
#(•) and /?(•). One can then eliminate the pressure p (see §4 for this
procedure in the general case) and reduce the problem further to a
single equation of the form

(10) = ηy'(ή+ f F{t-s,y{t),y{s))ds
J — oo

for the elongation ratio y. For the separable case F(s, ζ,ξ) =
a(s)F0(ζ, ζ) this equation was studied in [11], For a wide class of
physically reasonable kernels a(-) and material functions Fo( ) , the
authors of this paper proved

(i) results on global existence, uniqueness, and comparison of so-
lutions for the case η > 0,

(ii) the existence of asymptotic limits in this case,
(iii) similar results for the implicit Volterra integrodifferential equa-

tion that results from setting η = 0,
(iv) the existence of an initial layer for the solutions as ^ j 0,

where the solution is governed by an ordinary differential equation on
a fast time scale, and the uniform convergence of the solutions for
large times, as η j 0,

(v) and some qualitative statements on the asymptotic behavior,
including convergence rates and the result that for an important class
of kernels and stretch histories the limit y (oo) of the elongation ratio
will always be different from y(-oo) = 1.

In [12] and [14], (10) and another related scalar equation were stud-
ied numerically, and [12] contains also results for the case that a force
is acting on the material sample for t > 0. In [7], a nonconvolution
version of this equation was studied, and alternative proofs for some
of the same results were given. In [1], a formal asymptotic expansion
scheme for solutions of (10) (as η j 0) was described, and more pre-
cise estimates for the solutions were given in a special case. In [16] a
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refined model for filament stretching was discussed that incorporates
inertial and boundary effects and leads to a scalar partial differential
equation. For further results on elongational flows, we refer to [15].

3 Differential geometry of M. In this section we equip the set
M, defined in (9), with the structure of a Riemannian manifold and
derive the formulae for covariant differentiation and for geodesies on
M . The reader is referred to [6] for background material. One easily
verifies that M is a smooth five-dimensional submanifold of the linear
space of symmetric 3 x 3-matrices; in fact, M is an unbounded closed
strictly convex hypersurface, due to the concavity of the function A -»
(det^) 1 / 3 on the cone of positive definite symmetric 3 x 3-matrices.
For A e M, the tangent space at A is given by

TAM = {BeR33\Bτ = B,B:A~ι =0},

where A~ι = ad,4 agrees with the adjoint of A and therefore is
a quadratic expression in the elements of A. Then the matrix ex-
ponential exp: TiM —• M is a global diffeomorphism with inverse
log: M-+ TjM.

Let ΓM be the tangent bundle of M . Introduce a Riemannian
structure on TM by defining the scalar products

(11) (B, C)A :=tr(A-ιBA-χC) = (A-^2BA~1/2) : {A~ιl2CA-χl2)

for A e M and B, C e TAM. Let || \\A be the corresponding norm
(and thus || ||i = || | | ) . The second formula shows that the mapping

(12) Φ^: TAM-+TιM9 ΦA(B) = A'll2BA-ll2

is an isometry, and this suggests to define a covariant differentiation
on M as follows: Let / be an interval, A: / -* M be smooth, and
B: J —• ΓM be a vectorfield along A, then set

= B'{t) - \{A!{t)A-\t)B(t) + B(t)A-\t)A'(t)).

One checks that this is indeed the unique covariant differentiation
(Levi-Civita connection) that is induced by the Riemannian structure.
(It is sufficient to note that the product rule holds

lL(X(t), X{t))m = 2(VA.{t)X(t), X{t))A{t)
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and to compute that the torsion vanishes.) The fact that ΦA is
an isometry implies that parallel transport from TAM to TjM is
given by Φ ^ o φ ^ and thus path-independent, implying that also the
curvature of this connection vanishes, i.e. that M is flat. Further,
VA'(t)A'(t) = A"(t)-A'(t)A~l(t)A'(t)9 and geodesies in M are char-
acterized by the second order equation C"(ί) = C(t)C-ι(t)C(t) and
explicitly given by

C(ί) = Aι/2ap(t ΦA(B))A1'2 (AeM,Be TAM),

where exp denotes the usual matrix exponential. The induced geode-
sic distance on M can thus be computed as

d(A9B) =

Finally we note that the function (A, B) -* A : B~ι on M x M has
the properties

(13) A:B~ι>3

with equality if and only if A = B,

(14) λ \\A - 5 | | 2 < A : B~ι - 3 < Λ \\A - J5||2

for any ^ , 5 G K C M compact, with λ, Λ depending on K, and

(15) A : B'1 -+ oo & HAT"1!! -> oo.

The proofs of these statements are left to the reader.

4. Gradient structure and local existence. Returning to problem (5),
we show in this section that the problem has a natural "gradient struc-
ture", and we give conditions for a basic local existence and uniqueness
result, if η > 0. To simplify the notation, we shall write from now
on C(ή = γ~ι(t). Then (5) together with (4) takes the form

(16) p(t)C(t) + ηC'(t)

= f (Wι(t-s,λι(t,s),λ2(t,s))C(s)
J-oo

- W2(t-s, λi(ί, s), λ2(t, s))C(t)C~ι(s)C(t))dt

on M, where W\, W2,λ\,λ2 have the same meaning as above. Equa-
tions (16) and (17) below will be referred to as (16,,), (17^) resp. as
(16o), (170), depending on whether η > 0 or η = 0 in (5). Similarly,
we shall refer to solutions of these equations as Cη( ) resp. as C°( ).
Let F M x M - ^ R b e a smooth function of the form
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and define as usual the gradient of F with respect to its first argument
as the element of TAM satisfying

(gmdAF(A, B), C)A = ^F(A(t),B)\t=o

for all C e TAM, where A is continued as a curve in M with A(0) =
A, Af(0) = C. A simple calculation then shows that

gmdAF(A ,B) = λA-ψι B + ψ2- AB'ιA

with λ e R given by

A-χ :B-ψ2A:B-1).

Here, ^, = (d/dλi)ψ(λχ, A2). This argument shows that (16,,) can
also be written in the form

(17) ηC'{t) = - f f>mdAH(t-s, C(ί), C(s))ds

= - f h(t-s,C(t),C(s))ds
J — 00

as an equation that holds in TC(ήM, with

H(s,A,B) = W(s, A'1 :B,A: B ~ ι ) ,

h(s,A,B)= gmdAH(s,A,B)e TAM.

Here and below %radAH denotes the gradient of H with respect to
its second argument. This "abstract" form of (16^) shows that the
equation has a gradient structure, if the Riemannian metric on TM
is chosen as above.

Moreover, this observation shows how to eliminate the pressure
p( ) from (16,,): Taking the contraction with C~ι{t) and noting that
C*(ί): C~ι(t) = 0, we obtain

3/?(ί)= f (Wι(t-s,λι(t,s),λ2(t,s))λι(t,s)
J — 00

- W2(t-s, Ai(ί, s)9λ2(t, s))λ2(t, s))ds.

Inserting this back into (16,,), we obtain an equation for C alone; for
the case η > 0, it is easy to see that det C{t) remains constant along
any solution of this equation. We next list a set of basic assumptions
which will always be used in the sequel.
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(HO) The partial derivatives

w ' w w ^ " i "

are measurable and bounded; for any R > 0, there exists YΠR e
Lι(0, oo R) such that for all s > 0, 3 < A, < R and all /, j

(18) \Wt(s9λι, A2)|, |FFV(5, Ai, A2)| < mR(s),

(19) | ^ ( 5 , Ai, A2)|, | ^ ( 5 , λj, A2)| < mΛ(j).

The function Q : (-oo, 0) -• M is measurable and bounded, and
Coo e M is a given matrix. For all s > 0, W(s, 3, 3) = 0.

Under these assumptions the (covariant) derivative

9 A , B ) = Vh(s 9 A , B )

(with respect to the second argument) exists as a linear self-map of
7^M for all s, A, B and satisfies an estimate of the form

\\VffadAH(s9A9B)\\<mR(s),

with R = \\A\\ +1|2?||. As usual, we shall write V c grad^(^ 9 A 9 B) for
the image of an element C e TAM under this map. We shall compute
this derivative in §6 below.

Local existence and uniqueness of solutions for (16^) now follow
by eliminating the pressure as shown above, converting the integro-
differential equation into an integral equation, and applying a standard
contraction argument (see e.g. [13]).

PROPOSITION 4.1. Let η > 0. Then there exists α unique solution
Cη( ) of (I6η) on some maximal interval [0, to) that satisfies Cη(0) =
Coo <md is continued as Co( ) on (-00, 0). If to < oo, then

limsup||C*(ί)|| = oo.

For the proof of this proposition the gradient structure (17) need
not be assumed; also, assumption (19) in (HO) is not necessary.

5. Global properties for η > 0. According to the previous proposi-
tion, it suffices to give an a priori estimate for a solution of (16,,) to
guarantee its global existence. Such an estimate will be derived in this
section by an energy argument that will also allow us to deduce the
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existence of an asymptotic limit, using the gradient structure
We assume throughout this section that η > 0 and write C( ) for
Cη( ) . The following additional hypotheses will be used:

(HI) For some K0>0, m( )eLι(0, oo R) and for all (s9λ\9λ2)9

(20) W(s9λΪ9λ2) + rn(s)>09

(21) W'(s, λι, A2) < #o( W(s, λi, A2) + m(s)).

(H2) There exists some δ > 0 such that for all ($, λ\, A2)

(22)

(23) W'(s,λx, λ2) + W ( 5 , A!, λ2) < 0 5

(24) inf eδt ί°° W{s, Ai, A2) ^ -• 00 as λ{, A2 -> 00.

To illustrate these assumptions, consider the separable case

(25)

with α( ) G Lι(09 oo R). Then (HO) holds if 0 is locally abso-
lutely continuous with \a'(-)\ G Lι(0, 00; R) and if WQ is sufficiently
smooth; (2) holds if JV0 is bounded from below, and (21) is true if
additionally a1 < Koa on (0, 00). Further, (22) holds if Wo and a
are non-negative, (23) follows if additionally a1 + δa < 0, and (24) is
implied by the assumption that ^o(Ai, A2) -» 00 as λ\, A2 —> 00 and

a(s) ds > ce'δt

for some c > 0, for all t > 0. In particular, (23) and (24) certainly
follow if a is the Laplace-Stieltjes transform of a non-negative finite
Borel-measure μ with support on [δ, 00) such that μ({δ}) > 0. Such
kernels occur frequently in applications, where the support of μ is a
discrete set of reciprocals of relaxation times (see [9] and [15] for more
details).

THEOREM 5.1. Assume that (HO) holds.
(a) If (HI) holds, then the unique solution of (\6η) exists for all

t>0.
(b) //(H2) (22) and (23) hold, then there exist C^eM and K =

K(η, Col), Coo) > 0 such that

(26)
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(c) J/(H2) (24) holds, then for some K = JSΓ(sup/<0||C0(f)||, Coo)
that is independent of η

(27)
ί>0

To prove these results, we use a suitable energy identity.

LEMMA 5.2. Let ί ί : ( 0 , o o ) x M x M - > R be defined as in §4,
and set H'(s ,A,B) = d/ds H(s ,A,B). Let C ( ) be any solution of
(16,,) on (0, ί0), then for all t € (0, t0)

(28) η • \\C'(t)\\2

C(ή + ̂  (J*^H(t-s, C(t), C(s))ds}

H'(t-s,C(t),C(s))ds.

Proof of Lemma 5.2. The identity follows by differentiating

H(t-s,C(t),C(s))dsLf — 0 0

with respect to t and using (17,,) and the definition of the Rieman-
nian structure on TM.

Proof of Theorem 5.1. Using (21) in (28) and integrating from 0
to t < to, where to is the length of the maximal existence interval,
implies the identity

Ά f \\C'(s)\\2

c{s)ds + f H(t-s, C(t), C(s))ds
JO J-oo

< J c ( l + Γ Γ H(s-τ,C(s),C(τ))dτds).
\ Jo J-oo )

Since H is uniformly bounded from below, this implies that

f\cm2

mds
remains bounded as t T ίo Therefore the solution can be continued
past ίo > unless to = oo. Part (a) is proved.

To prove parts (b) and (c), we multiply (28) with eδt and note that
the result can be written as

(29) eδtη\\C(t)\\2

C{ή + f (eδt f H(t-s, C(t), C(s))ds)
Ml \ J— oo /

δH(t-s,C(t),C(s)))ds.
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Here the right hand side is nonpositive by (HI) (23). Integrating this
estimate gives

(30) η feδs\\C{s)\\2

c{s)ds + eδt f H{t-s, C{t), C(s))ds <L
JO J —oo

where L depends only on sup,<0 ||Q(OII and on ||Coo|| Dropping
the second term and recalling the definition of the scalar product on
the left hand side implies that

(31) t-

is uniformly bounded in L2(0, oo R 3 ' 3 ) . A standard Gronwall argu-
ment implies first that

= oC l k
\\C(t)\\ = O ί exp

for some K > 0 uniformly in t. Thus (31) implies also that

I|C(O-

for all 0 < t < s, and (26) follows.
To prove part (c), we drop the first term in (30) and derive the

estimate

st ί° W{t-S, c~\t): C0(s)9C(t):
J -oo

for all /. By (H2) (24), C~ι(ή : C0(s) + C(t): CQ{(S) cannot exceed
a certain bound, if s varies in a suitable subset of (-oo, 0) with
positive measure. Then a uniform bound for the C(ί) follows from
(15) and the essential boundedness of Cb( ) on (-oo, 0).

The ZΛestimate (30) can be viewed as a bound on the "logarithmic
derivative" of C( ). In [11], pointwise estimates of the derivative of
C( ) itself (in the scalar version (10)) were obtained by means of
comparison arguments.

6. Solutions for η = 0. If the viscosity η vanishes, then the reduced
equation (160) and its abstract version (170) are implicit Volterra in
tegral equations for C(t), and in general it is not possible to isolate
C{t) from them (cf. [1] for some exceptions in the case of elongational
flows). In this section we use the gradient structure of (170) to iden-
tify conditions under which local and global existence and uniqueness
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results hold, and we also deduce the existence of asymptotic limits of
solutions as t —• oo.

From {11 o) it follows that C( ) is a solution on [0, to) if and only
if for any 0 < t < to the matrix C{t) is a stationary point of the
functional defined by

(32) A -> Γ° W{s,A~ι \C{t-s),A\ C'ι{t-s))ds
Jo

*H(s9A9 C(t-s))ds (AeM).
Jo10

Some important properties of functionals of this type can be deduced
from the following lemma.

LEMMA 6.1. Let F : M x M - ^ R be given by

where ψ is a smooth function.
(a) Then for any CGTAM the covariant derivative of grad^F with

respect to its argument satisfies

(33)

= ψι • A~ιCA-χCA-χ :B+ψ2- CA~XC : B~x

+ ψn • (A-ιCA~ι : B)2 + ψ22 • (C : B~λ)2

- 2ψn (A~ιCA-1 : B)(C : B~ι).

Here ψt and ψij are the partial derivatives of ψ, and their arguments
are A'1 : B and A : B~ι.

(b) If the function

(34) (ξ,ζ)-+ψ(et,et)

is convex for ξ, ζ > log 3, and if ψ\ (3, 3), ψ2(3, 3) > 0, then for any
CeTAM

(35)

In particular, if ψ\{$, 3) + ψ2{2>, 3) > 0, then the right hand side of
(35) is bounded below by c\\C\\A with c = c(A,B)>0.

Proof. To prove part (a), let A{t) = Aι/2exp(tΦA(C))A1/2 be the
geodesic through A with initial velocity A'(0) = C. Then

^F(A(t),B)\t=Q = (Vcgrad^Fμ, B), C)A,
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since VA>^Af(t) = 0. A direct computation of the left hand side of
this identity then proves (33).

For the proof of part (b), we set D = A~1I2BA-XI2 and C* =
ΦA{C) . The left hand side of (33) can then be written as

(36) ψn(C*: D)2 - 2ψn{C*: D)(C*: D~ι) + ψ22(C*: Z)" 1 ) 2

+ ψ{tr(C*DCη + ψ2ti(C*D-ιC*).

Now

(C*: D)2 = (tτ((Dι/2C*)τD1/2))2 < tr(C*Z)C*) tvD

by Cauchy-Schwarz. Since trC* = 0, we can replace D with the
positive definite matrix D\ = D - etvDl, e = ( t r D t r D " 1 ) " 1 =
\{A~X : B)(A : 5 " 1 ) ) " 1 , without changing the left hand side. The
right hand side now becomes

(1 - 3ε)tr2)(tr(C*DC*) - ε t r £ | | C * | | 2 ) .

Rearranging the resulting inequality implies

tr(C*Z)C*) > (tr D-ι)-ι\\C*f + (tτD)~ι(C*: D)2.

A similar estimate holds if D is replaced with D~ι. Thus the expres-
sion in (36) is bounded below by

(37) (Ψn + ψι(trD)-ι)(C*: D)2 - 2 ^ 1 2 ( C * : D)(C*:

+ (A:B-ι

Ψι+A-ι:Bψ2)\\C*\\2.

Recall now that the arguments of ψ are trD = A~ι : B and t r D " 1 =
A: B~ι. One then checks easily that the quadratic form in (C* : D,
C*: D~ι) in this expression is positive semidefinite if and only if (34)
holds. In particular, if ψ\(3, 3) + ψ2(3, 3) > 0, then ψ\(λχ, λ2) +
Ψi{λ\, λ2) > SR > 0 whenever 3 < λ\ 5 λ2 < R, and the last assertion
of part (b) follows.

The reduced problem (160) will be (locally) uniquely solvable if
some of the assumptions in the above Lemma hold for the functional^
appearing in (32). Set p(s) = Wι(s,3,3) + W2(s,3,3), then the key
hypothesis is

(H3) (ξ,ζ)-> W(s9 e*9et) is convex on [3, oo) x [3, oc) for all

9 3, 3 ) > 0 (/= 1,2; J > 0 ) , f™p(s)ds>0.
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LEMMA 6.2. Let W satisfy (HO) and (H3). Let B e L°°(-oo, 0; M)
and define the functional

(38) G(A *(•)) = ΓH(S9A, B(-S))ds
Jo

•I
J—

0

W(-s, A~ι : B(s),A : B^^ds
— 0 0

for AeM.
(a) Then for any A e M there exists ε = ε(A, ||2*( )||<x>) > 0 such

that for all CeTAM

(39) (Vcgrad^G^, £(•)), C)A > β||C|β.

(b) ΓΛere e cwίs exactly one stationary point A of G( , B{ ))
on M, αnaf the mapping B{ ) -> A is bounded on bounded sets of
L°°(0,oo;M).

(c) Let R > 0, then there exists ntR e L^-oo, 0; R) such that
for any Bl9B2e L°°(-oo, 0; M) with ||5/( )||oo < R the stationary
points Ai of G( , /?/(•)) satisfy

(40) \\ΛX - A2\\ < f° mΛ(j)||Si(j) - ^(j)ll ds.

Proof. Part (a) follows directly from (H3) by integrating and using
Lemma 6.1(b). To prove part (b), we first note that (H3) also implies
that

(41) W(s, Ai, λ2) > Wx(s9 3, 3 ) l o g ^ + W2(s, 3, 3 ) l o g ^

and therefore G(A9 B(-)) ->oo as ||^4|| -• oo, uniformly for B( ) in
bounded sets in L°°(-oo, 0; M). Thus G( , B(-)) has at least one
stationary point (a global minimum). However, since (a) is equivalent
to the strict convexity of any function t -» G(A(t), B(-)), if t -+ A(t)
is any geodesic in M, no other stationary points can exist, proving
(b).

To prove part (c), let Bu B2 e L°°(0, oo; M), A e M and C e
T^M. Then by a direct estimation, using (HO)

f° kR(s)\\Bl(s)-B2(s)\\ds
J—oo

for a suitable kR e Lι (-00, 0 R), R > ||-S/( )||oo Moreover, the map
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mapping TAM into itself is nonsingular by part (a). By the implicit
function theorem and standard results on the dependence of parame-
ters (see [18]), the assertion follows.

A basic existence result for solutions of the reduced equation (16o)
can now be deduced.

THEOREM 6.3. Let W satisfy hypotheses (HO) and (H3). Then
there exist to > 0 and a unique continuously differentiable function
C°: [0, ί0) -• M such that (160) holds for all 0 < t < ί0, wftΛ C°
continued as Q on ( - 0 0 , 0 ) . Moreover, if the maximal existence in-
terval [ 0 , t*) of the solution is bounded, then | |C°(ί) | | -+°o as t]t*.

Proof. The proof uses a standard contraction mapping argument.
By Lemma 6.2, there exists exactly one stationary point C 0 0 of the
function G( , Q ( )). For R, t > 0, let XRit be the complete metric
space

XRJ = {Be C([0, f], M)|*(0) = C 0 0 , ||J5(j) - Co o | | < R (0 < s < t)}

equipped with the supremum metric d(-, •). For any element B €
XRJ, 0 < s < t, -oo < τ < 0, set j?,(τ) = C0(5 + τ), if 5 + τ <
0, 55(τ) = B{s + τ), if 0 < s + τ < t, and define F(5( )) := -4(0 by
requiring that A(s) e M is the stationary point of G( , Bs(-)). Then
F: XRit -+ L°°(0, ί M) is well-defined.

We next note that images of F are continuous functions: Let A(Si)
= F(B( ))(Si) (/ = 0, 1). Then by Lemma 6.2(c)

\\A{so) - A(sx)\\ < f° mR(-τ)\\BSo(τ)-BSι(τ)\\dτ

with some fixed mR e L2(0, oc; R). The right hand side of this
inequality will go to zero as \s0 - S\ | -• 0, as a standard argument
shows (approximate mR by a bounded function with compact support
and use Egorov's theorem). This estimate, with SQ = 0, ^ o ) = C00,
also shows that F will map X^^ into itself, if t is sufficiently small.
Finally, if Bt 6 XR % and At = F(5/) for i = 0, 1, then by Lemma
6.2(c)

< ί
JoJo

and F will be a contraction, if t is reduced further. By Banach's
Fixed Point Theorem, this implies the existence and uniqueness of a
local continuous solution C°( ).
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We next note that solutions can only cease to exist if they become
unbounded: If | |C°(Λ )| | is bounded on some interval [0, to], then
C° must have a limit as /1 to, by the same argument that proved the
continuity of images of F above. Then the solution can be continued
past t0.

Finally, the continuous differentiability of the solution C°( ) for
t > 0 follows by noting that C°(t) is the unique point on M at
which the vector field

rt
A-> gmdAH(t-s,A, C°(s))ds e TAM

J—oo

has a zero. Here C°(s) = Co(s) for s < 0. If C° is continuous for
t > 0, this family of vector fields on ΓM is continuously differen-
t i a t e in t by (HO). The implicit function theorem implies that C°
is continuously differentiate.

The final result of this section gives global existence of solutions
and the existence of asymptotic limits under essentially the same con-
ditions as in the case η > 0. We drop the superscript and write C
for C° in the rest of this section.

THEOREM 6.4. Let W satisfy hypotheses (HO), (H2) with some δ >
0,αm/(H3). Then there exist a unique Cι-solution C( ) o/(16o) on
[0, oo), some C^ G M and some ε > 0 such that \\C{t) - CΌoll =
O(e~εt) as ί->oo.

Proof. Let C( ) be the unique local solution of (16o) with maximal
existence interval [0, t*). Define the energy

(42) E{t) = Γ H(s, C(t), C(ί - s)) ds
Jo

= f W{t - s, C~l(t): C(s), C{t): C~l{s))ds.
J—oo

We claim that for all t e [0, t*)

(43)

where δ is as in (H2). This estimate can be proved in the same way as
Theorem 5.1(b) and (c), i.e. by showing the energy identity (28) and
deriving (30) from it, since C( ) is differentiate. We want to give a
slightly different argument for (43) that does not require the solution
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to be differentiable. Let 0 < t < t + τ < t*. Since C(t + τ) minimizes
a functional of the form (38), we have

rt+τ

<eδτ I
J-oo

t+τ

~\t): C(s)C(t): C~ιτ-s, C~\t): C(s), C(t): C~ι(s))ds.

Now (H2) implies that W(σ + τ, λ{, λ2) < e^δτW(σ, λ{, λ2) for all
a > 0, λ\, λ2 > 3. Applying this to the part of the integral in (44)
that extends from -oo to t and noting that the remaining integral

eδτ Γ W(s, C~l(t): C(t + τ -s)9 C(t): C~ι(t + τ-s))ds
Jo

is uniformly of the order O(τ) and in fact o(τ) if t is a Lebesgue
point of C( ), we deduce (43). From (43), a global uniform a priori
bound for the solution follows just as in the proof of Theorem 5.1(c).
Therefore, the solution exists for all times and is uniformly bounded.
Moreover, for some small σ > 0, sufficiently large K > 0, and a
suitable S\ > σ, by (41) and (43)

Γ ||C(ί) - C(s)\\ds <κf (w^ , 3,

<K [ W(sι,C-ι{t): C(s), C(t): C~ι(s))ds
Jt-σ

< KE(t) < Ke-δtE(0).

Thus,

Q O - σ - 1 / C{s)ds = O(e-δt).
Jt-σ

Then well-known results on linear Volterra equations (see [13]) imply
that C( ) must tend to some limit CΌo at an exponential rate.

7. The initial layer. In this section, we investigate the behavior of
solutions of (16^) as η tends to 0, for small t. It is shown that the
solution behavior is approximately governed by an ordinary differen-
tial equation on a fast time scale, whose solutions tend to the limit
C 0 0 = C°(0), the natural initial value of the solution of the reduced
equation (16o). These are natural extensions of the results given in



VOLTERRA EQUATION IN RHEOLOGY 43

We define the mapping ψ: M —> ΓM by

- 1

Λ"1 : C°(-s) ,A:C°~ (s)) ds

•L
/

Jo0

°° h(s,A,C°(-s))dseTAM,
0

w h e r e h{s9A9 B) = gnιdAW(s, A ~ ι :B,A: B~ι) is as defined in §4.
Then ψ is the gradient of the functional

ψ(A) = ί°°H(s,A, C°(-s))ds.
Jo

Let Cη be a solution of (16,,) for some η > 0. Then in Tcn^M for
0

^ — 0

Γ
Jo

Γ A(ί - j ,
^ 0

Now set C(τ) = Cη(ητ) (we drop the superscript, since it will always
be clear from the context which value of η is used), then in the new
time variable τ

(49) C(τ) + ψ(C(τ)) =

with

(50) P{σ) = Γh(σ-s, C\σ), C"(s))ds
Jo

Π
Jo

-h(s9C"(σ)9C0(-s)))ds.

We assume now that (HO), (H2) and (H3) hold, and first investigate
the solution behavior of the ordinary differential equation

(51) Df(τ) + ψ(D(τ)) = 0 in TD{τ)M (τ > 0)

that results from setting fη(-) = 0 in (49).

LEMMA 7.1. For any D(0) € M, equation (51) has a unique solution
on [0, oo), and there exist constants K, ε > 0 such that

(52) \\D(τ) - C o o | | < Ke~ετ (τ > 0),
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where C 0 0 is the unique minimum ofψ on M, i.e. the initial value
of C°(.).

Proof. Local existence and uniqueness follow from the smoothness
assumptions made in (HO). Moreover,

(53) -~-Ψ(D(τ)) = -| | vCD(τ))|||)(τ),

implying that the Lyapunov function Ψ(D(τ)) must decrease as long
as the solution is not stationary. Thus the solution must exist for all
times, and its ω-limit set must be contained in the set of stationary
points of Ψ. By Lemma 6.2, Ψ has the unique minimum C 0 0 and no
other stationary points. Thus the solution D( ) must tend to the limit
C 0 0 . The estimate (52) can be obtained by forming the covariant
derivative of (51) (which exists due to (HO)) and multiplying with
D'(τ). Using (39), this gives

l^Hχy(τ) | fe ( T ) + β||zy(τ)ife(τ) < o,

and (52) follows.

THEOREM 7.2. Let ψ be defined as above, and assume that (HO)-
(Ά3)hold. Let C*( ) be the solution of (17η) and D( ) be the solution
of (51). Then there exist constants K, L > 0, depending on the data,
but not on η, such that for 0 < t < 1 and all small positive η the
following estimates hold:

(54)

(55) | | ^

where ε is as in (52).

Proof. The equations (49) and (51) can also be interpreted as or-
dinary differential equations in the linear space of symmetric 3 x 3 -
matrices, if the pressure term contained in ψ is eliminated as in §4.
We now recall that by Theorem 5.1 (c) the Cη are uniformly bounded,
independent of η. Therefore

(56) \\ψ(C(τ)) - ψ(D(τ))\\ < L\\C(τ) -D(τ) | |



VOLTERRA EQUATION IN RHEOLOGY 45

for all τ and η, with a uniform Lipschitz constant L > 0. Also,
inspection of (50) together with (HO) and the uniform bound for the
Cη shows that for some K that does not depend on η

(57) \\f*(ητ)\\ < ηKτ

for 0 < τ < l/η. Thus by (49) and (51)

||C(τ) - D(τ)\\ < Γ \\C'(σ) - D'(σ)\\ dσ
Jo

< Γ{L\\C{σ)-D{σ)\\ + ηKσ)dσ.
Jo

Solving this integral inequality gives

(58) \\C(τ)-D(τ)\\<Kητ2eLτ

for 0 < τ < l/η and for some K2 > 0. Replacing τ with t/η in (58)
results in (54).

To prove (55), we estimate

d

< LK-e*4'* +Kt

which is (55).

Theorem 7.2 implies that for small η and for times t < O(\η\o%η\)
the material sample behaves approximately like a viscoelastic solid.
We note that (54) and (55) imply in particular estimates of the form

(59.a)

(59.b)

||C(O - D ( ί ) I <Ktf

\\C(t) - C°(0)|| < Kηa

(0 < t < to(η)),

(to(η) < t < 2tQ(η))

where to(η) = cη\logη\, the small constant c is fixed, α > 0, and
K > 0 is independent of a and η. Also, by choosing c sufficiently
small, we can guarantee that

(60) | | ^ C * ( θ | < Kη-t (fofa) < / < 2to(η))9
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and β > 0 can be made as close to zero as we please. These estimates
are considerably weaker than those given in [11] for the scalar equa-
tion, where e.g. the right hand side of (54) is replaced by Kt + O(η),
leading to right hand sides Kη\\ogη\ in (59.a,b). With some addi-
tional effort, such estimates can probably also be proved for the prob-
lem under consideration; however, in the next section, only the weaker
results given here will be used.

8. Interior estimates. The purpose of this section is to show that
Cη(t) —• C°(t) as t —• oo, uniformly on any set that is bounded away
from 0, at an algebraic rate in η (see (61)). Together with (59), this
gives a complete description of the behavior of Cη(t) for 0 < t < oo,
as η i 0, up to terms of order rf. We introduce the additional
hypothesis

(H4) For any R > 0 there exist K = KR > 0 and m( ) = mR{ ) e
Lι(0, oo R) such that

-mR(s)<W'(s9λι9λ2)

< -KW'{s,λx, λ2) (0 < s < oo, 3 < λi < R).

We note that (H2) and (H4) together imply that

-KW(s, λx, λ2) < W{s, λx, λ2) < -δW(s, λι, λ2)

with K depending on the size of λ\, λ2.

THEOREM 8.1. Let (HO), (H2), (H3) and (H4) hold. Then for any
oO there exist a > 0, K > 0 such that

(61) sup ||C*(0-C°(ί)ll<*>Λ
t>cη\\o%η\

For the proof, we need some estimates for the norm of Cη'(t) on
the intervals on which (61) is claimed to hold. These are given in the
following lemma. In its statement and proof all norms HC7'^)!! are
understood to be evaluated at Cη(t).

LEMMA 8.2. With the assumptions and notation of Theorem 8.1 and
δ > 0 as in (H2), there exist constants ε, K > 0, independent of η,
such that for all 0 < ί0 < h < oo

(62) ηetΊ\\C^(h)\\2 + e Γe δ s\\σ\s)\\2ds <K + ^ o | | C ^ ( ί o ) | | 2 .

Proof. The right hand side of (16^) is absolutely continuous, hence
Cη" exists almost everywhere. We differentiate (16^) covariantly,
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form the inner product in TCn^M with Cη\t), and multiply the
result with eδt, where δ is as in (H2). This gives the identity

feδt f (Vc,- grad^(ί - s ,
oo

= eδt ( ^

^ ί - .s, Cη(t),

By Lemma 6.2, the last term on the left hand side of this identity can
be estimated from below by β 11^(5)11, where ε > 0 is some constant,
independent of η due to the uniform bound for the Cη( ) that was
established in Theorem 5.1. For the same reason we can apply (H4)
to estimate the right hand side of this identity from above by

H'it-s, C»(ή,

Now integrate the resulting inequality between to and t\ to obtain

(64) ηeδt>\\σ\t1)\\2-eδ

< f'1 έ" (ηδ\\Cf(t)\\2

-2K f H'{t-s, C(t), C(s))ds) dt.

By estimate (30), the right hand side is bounded uniformly in ί0 > h >
and η, and the lemma follows.

Proof of Theorem 8.1. For any t > 0, C°(ί) is the unique minimizer
of the functional

(65) A -> (f{t, A) = / H(t-s,A9 C°(s))ds,

while Cη(t) is a critical point of the functional

(66) A -> G\{t, A) = Gη(ί, A) + ί / C # ( t ) : A ,

H{t-siA>C1t{s))dst
-OO
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cf. (32) and Lemma 6.2. Let C^(t) be the unique minimizer of the
functional Gη(t, •); since the C?( ) are uniformly bounded, so are
the Cf( ). Then by Lemma 6.2(c)

(67) ||C°(ί) - Cf(OH < ftmΛ(t-s)\\C°(s)-C(snds
Jo

for all 0 < t < oo, with mR( ) e {L1 n L°°)(0, oo). Next, by Lemma
8.2 and (60),

(68) η\\θ'(t)\\ < η^2e

whenever t > to(η) = cη\logη\, where β > 0 can be made as small as
we please by choosing c> 0 small. Picking c so small that β < 1/2,
this estimate implies

for t > to(η), with K, K, δ > 0 independent of η. Consider now
the full functional G\(t, •). Lemma 6.2 implies that for all sufficiently
small η and for all t > to(η), an estimate of the form (39) holds for
this functional in a sufficiently large ball in M in which all solutions
live. Thus Cη{t) is the unique minimizer of Gj(t, •) in this ball, and
we can estimate with some p > 0

(69) Gl(t, C(0) = G«{t, C"(ή) + ηC'(t): C(t) = G"(t, C(t))

<G*(t,CUt))-p\\Cl(t)-Ci{t)\\2

-p\\q(t)-C(t)f +
G*(t,C(t)) + ηCi'(t

-2p\\q(t)-C>>(ή\\2

= Gjf(/, C ( 0 ) - 2p\\C?(t) - C»(t)\\2 + Kηκ

and thus

(70) ||C(o-cf(ί)||<i:ιr/2

for all t > to(η). Combining this estimate with (67) gives

(71) ||C°(ί) - C(ί)|| <Kηκ'2+ ftmR{,t-s)\\Co(s)-Ci(s)\\ds
Jo

for t>to{η). This integral inequality implies

(72) ||C°(ί) - C(ί) | | < Kηκ'2eLt



VOLTERRA EQUATION IN RHEOLOGY 49

for some fixed constants K, L, for all t > to(η). On the other hand,
by the ZΛestimate for ||C^( )II *n Lemma 8.2 and by the proof of
Lemma 6.4, we have

(73) \\Cη(t)-C^(s)\\<Ke'σs

for all t > s > to(η) and also for η = 0, t > s > 0, for some fixed
K, σ > 0. Combining (72) and (73) gives

2Ke'σs + Kηκ'2eLs

from which the theorem follows by choosing
κ n i Λ

 σ κ

s = 7Γ7T rlogw and a = ^

9. Qualitative behavior. In this section, some qualitative proper-
ties for the finite time and asymptotic behavior of solutions of (16^)
and (16o) will be derived. In particular, these results will be used in
the next section to show that under suitable assumptions a shear-free
deformation history always leads to a shear-free recovery and that a
simple shear or pure shear history can never lead to a recovery in the
same deformation class. Some qualitative results from [11] are also
recovered.

THEOREM 9.1. Let V c R 3 ' 3 be a linear space such that AB~ιA e
V whenever A, B e V n M. Let the assumptions (H0)-(H4) hold,
let η > 0, and assume that Cη{-) is a solution of (\6n) with data
Co( ), Coo €V. Then C*(t)eY ( 0 < ί < o o ) .

Proof. Let q(-) denote the seminorm given by q(A) = dist(^4, V)
for symmetric 3 x 3-matrices A. Then q{AB) < K(A)q(B) for some
constant K(A). Now let u(t) = q(C^(ή), and assume first that η > 0.
Integrating the integrodifferential equation (16^) once with respect to
/ and applying q( ) to the result gives an integral inequality of the
form

ηu(t) < I a(t,s)u(s)ds
Jo

with α( , •) depending on the solution itself, since #(Co( )) = 0,
q(Coo) = 0 by assumption. By GronwalΓs lemma, u(t) = 0, i.e.
C*(0 e V for all t > 0. If η = 0, then C°( ) can be approximated
uniformly by solutions Cη( ) that remain in V, by the results of §§7
and 8. Thus also C°( ) remains in V.
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COROLLARY 9.2. If W does not depend on its last argument, then
the solution Cη(-) will be in the linear space spanned by a.e. CQ( )
(if η = 0) resp. by a.e. Co( ) and Co o {if η > 0). If W does not
depend on its second argument, then the solutions Cη( ) will satisfy
(Cη( ))~ι e V\, where V\ is the linear space spanned by a.e. CQ1( )
(ifη = O) resp.bya.e. CQ1{-) and by Q 1 (ifη>0).

Proof. The first assertion can be proved in the same way as Theo-
rem 9.1. The second statement follows from the first since Dη( ) =

satisfies (16,) with W(s9λΪ9λ2) replaced by W(s9λ2,λι)
ι 1

and with data Co *(•), COQ

The second main result of this section will allow us to prove that for
certain deformation histories, the material sample will never recover
to its original shape or to any shape it has previously been in. These
surprising effects, which are discussed in more detail for a special
constitutive relation in [9], will be explained in the next section. An
abstract version of Theorem 9.3 below states that if K c R 3 ' 3 is the
closed convex hull of {C0(t)\t < 0} U {Coo} U {0}, then for 0 < t < oo
the solution Cn(t) will be in the interior of K (relative to the linear
space spanned by K). We prefer to state this property in the form of
inequalities for components of the solution.

The following hypothesis will be needed.

(H5)(i) W\ [0, oo) x [3, oo) x [3, oo) -• R does not depend on its last
argument.

(ii) Wn{s9λ)<KRWx{s9λ)9iS 3<λ<R.
(iii) Wχ(s9 3) > 0 for a.e. s > 0.

THEOREM 9.3. Let the assumptions (H0)-(H3) and (H5) hold. Let
C*( ) be the solution of (16,) for η>0. Let D e R3>3. // η > 0,
we assume that {t\Co(t) φ Qo} is not a null set and that \D : CΌ( )I +
\D : Cool is not identically zero. If η = 0, we assume that Q( ) is not
a.e. identically equal to a constant matrix and that \D : Co( )| is not
identically zero. Let αo < 0 < a\ be numbers such that

(74) a0 < C0(s) :D<ax (s<0), and

ao<Coo'.D<aι, ifη > 0.

Then

(75) α 0 < Cη(t): D < αi (t > 0)
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and

(76) ao< limCΊ(t):D<aι.
t—+oo

Note that the existence of the limit in (76) follows from previous
results. For the proof, we need some simple auxiliary estimates. If
(H5) (i) holds, then (16,,) has the quasilinear form

(77) ηCr>'(t)+p(t)Cη{t) = ί b(t,s)Cη(s)ds
J—oo

with

9s) = W1(t-s9λ"(t9s))9

rt

P(t)= / bo(t,s)ds,
J—oo

— and

We also abbreviate a(s) = Wι(s, 3) and ΰ{t) = ft°°a(s)ds.

LEMMA 9.4. With all assumptions and notations as above, the fol-
lowing estimates hold for 0<s,t,τ<oo,3<λ<R, with δ > 0 as
in (H2) and ε = ε{R) >0,K0 = K(R) > 0.

(78)
(79)

(80)

(81)

b{s,τ)>a{τ),
a(s)>Koe

κ°V-VW(s,λ),

a~{t) > εe~δt,

0<p(t)-a(0)<K0e-δt.

Proof. The first estimate follows directly from (H3). By (H5) (ii),

and therefore, since W(s, 3) = 0,

which is (79). Integrating with respect to s and using (H2) implies
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(80). Finally, by (H5) (ii) and (H2)

0<p(t)-a(Q)

= f_ (wx{t-s, λ'(t, s))^ψ^- -Wx{t-s,3)) ds

ft r

<K0 /

J-oo J3

J-o

3

/ Wι(t-s,ξ)dξds

which proves (81).

Proof of Theorem 9.3. We suppress the dependence on η and set
u(ή = Cr>(ή:D. Then

(82) ηu'(t) = f φ{t, s)u{s) - bo(t, s)u(ή) ds.
J — oo

We first prove (75) for the case η > 0 by means of a standard com-
parison argument. Assume, e.g., that u(t) = a\ for some t > 0 and
that u(s) < a\ for all s < t, u(-) not identically zero on (-oo, t].
If a\ = 0, then the right hand side equals f_oob{t,s)u{s)ds <
/!oo^(^ - s)u(s)ds < 0. Similarly, if αi > 0, then the right hand
side can be estimated by fί^H** s) ~ bo(t, s))ds α i . This quan-
tity must be negative, since Cη(s) is not identically equal to Cη{t)
for s < ί, therefore λη{t, s) is not identically equal to 3, therefore
b(t, s) < bo(t, s) for s in a set with positive measure. Thus in either
case u'(t) < 0 together with u(t) = a\, and this is only possible if
/ = 0. Therefore u(t) <a\ for all t > 0, and similarly w(ί) > αo for
all / > 0 .

Consider now the case η = 0. Then w satisfies the Volterra integral
equation

( 8 3 ) " w

for all ί > 0. Assume again that u(t) = a\ for some ί, 1/(5") < a\ for
j < ί. If αi = 0, then the right hand side of this equation must be
negative by assumption, a contradiction. If αi > 0, then, since Cη(-)
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is not identically constant on (-00, t], we have fl^ b(t, s)/p(t) ds <
1, and

αi = M(ί)= / - ^
J-00 P\ί)

again a contradiction. Thus u(t) <a\ for all t > 0, and by the same
argument u{t) > αo for all ί > 0. Estimate (75) has been proved.

We now turn to the estimate (76), which will be proved by means
of the same argument both for η > 0 and for η = 0. Assume, e.g.,
that lim,_>oo u{t) = a\. Set w{t) = u(t) - αi, then by assumption
w(t) < 0 for all t and w(ί) < 0 on some subset of (-00, 0) with
positive measure. Set c = ε /0°° e~δsw(-s)ds < 0, where ε and J
are as in (80). Since ot\ > 0,

(84) ηw'{t) +p(t)w(ή < ί b(t, s)w(s)ds.
J—00

We want to derive a contradiction to the assumption that lim^oo w{t)
= 0. For this purpose, let v: [Γ, 00) -+ R be the unique solution of
the problem
(*5)ηv'(t)+p(t)υ(t)

rt

b(t,s)v(s)ds (t>T), v(ή = w(ί) (t<T)-I
where T > 0 will be chosen below. A comparison argument, using
that b(t, s)>a(t-s)>Q9 shows that w(t) < v(t) < 0 for all t > T
and hence also υ(t) —• 0 as t —• ex). We integrate (85) from T to
T + s > T and obtain after rearranging terms and using the definition
of υ for t < T

ίs

(86) ηv(T + s)+ a(s-τ)v(T + τ)dτ
Jo

+ / (p(T + τ) -a(0))υ{T + τ) dτ
Jo
»τ

(a(T - τ) - a(T + s- τ))w(τ) dτ + ηw(T).
r-oo

We now choose T so large that for all t > T

-r
where δ and c are as above and KQ is as in (81). Then

f
Jo
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and thus the limes inferior (as s —> oo) of the left hand side of (86)
is bounded below by \e~δτ. On the other hand, the right hand side
of (86) can be estimated from above by

rT rT

\ εe-δ{τ-τ)w(τ) dτ - a{T + s- τ)w(τ) dτ
J—oo J—ooo

roo

ce~δT /
roo

- / a{s + τ)w{T - τ) dτ.
Jo

Taking the limes superior of this expression as s —• oo, we arrive at
the contradiction

le-δT < ce~δτ.

Therefore, w(>) cannot go to 0 as t -»• oc, and lim^oo u(t) must be
strictly less than α i . By the same argument, lim^oo u(t) > a0. The
theorem is completely proved.

10. Applications to rheological models.

Examples of K-BKZ-models. We first conisder the rubberlike liquid
model ([9]), for which

and the Ward-Jenkins-model ([20]), with

W{s, λι, λ2) = mx{s)λι + m2(s)λ2.

Here the kernels m, ( ) have the form

TV
mM = Σ aUe~s/XlJ' aU ^ °' τ a > τ/2 > > 0.

Obviously, hypotheses (H0)-(H4) hold for both models, and (H5)
holds for the rubberlike liquid model. Similarly, these hypotheses hold
for a number of phenomenological models of K-BKZ-type in which
W(s,λι, λ2) = Σ " = 1 mj{s)Uj{λι, λ2) with functions Uj that are of
polynomial or logarithmic type, such as Zapas' model ([21]).

Consider next the Doi-Edwards-model ([4]), for which in the nota-
tion of §4

H(s,A,B) = μ(s)U(B-ι'2AB-1/2) = μ(s)U(Aι'2B-{A1/2),

with

μ{s) =KJ2 e~sk2/T > U ( D ) = ί
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where K, T > 0 are some material constants, according to calcula-
tions given in [3]. Since the kernel //(•) has a singularity at 0, the
theory developed here can only be applied if the sum is extended over
finitely many terms. From the definition of U(D) = U(B~^2AB-^2),
it is clear that this function depends only on the spectrum of the matrix
D, and thus this is indeed a K-BKZ-model. Assumptions (H0)-(H2)
then are easy to check. Checking (H3), however, is quite awkward. It
is easier to show directly that the crucial property (39) holds for U, as
follows: Let A, B e M, let A(-) be a geodesic in M with A(0) = A
and A'(0) = CeTAM,i.e.

A(t) =

As before, let B'l/2A(0)B'lf2 = D. Then

J\υ\=!\v\=i

By Cauchy-Schwarz, the integrand is non-negative and zero if and
only if the vectors Aχl2B~χl2v and A~χl2CB~χl2v are linearly de-
pendent. This will only be true for all v from the unit sphere of R3

if the matrix A~χl2CA~ιl2 is a multiple of the unit matrix. But since
XτA-χl2CA~χl2 = 0, this means that C = 0. Thus the integral above
must be positive for all C Φ 0, and (39) holds. Since also (H4) holds
if only finitely many terms are used in the definition of the kernel
μ( ), all results in §§5-8 hold for this modified Doi-Edwards model.

Deformations with orthogonal imbedded planes or vectors. In the
remainder of this section, we use the notation for special deformations
that was introduced in §1. First, some classes of deformation histories
will be identified which will always lead to a recoil in the same class,
without assuming (H5). By Theorem 9.1, we have to identify linear
spaces V of 3 x 3-matrices such that AB~ιA e V whenever A, B e
VnM. One such space consists of all symmetric matrices of the form

/* * (T
A= * * 0

Vo o
where * stands for an arbitrary real number. Then Theorem 9.1 ap-
plies. By the interpretation of the deformation tensor γ given in §1,
this means that there exist a vector and a plane, embedded in the
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material, that remain orthogonal throughout the entire deformation
history. Then also the recoil will have this property. Thus a defor-
mation history consisting of shear-free deformations and simple shear
will lead to deformations of the form above during recoil. All diago-
nal matrices in R3>3 also form an admissible space V. Thus, if there
are three embedded vectors that formed an orthogonal system for the
entire deformation history, they will remain orthogonal during the re-
coil. Thus a shear-free history will always lead to a shear-free recoil.
An even smaller space V is obtained, if an additional linear relation is
to hold for the diagonal elements, as well as for their reciprocals. One
can show that essentially the only such relation is that two diagonal
elements be equal. This of course corresponds to sheet stretching and
filament stretching, the case that was studied in [11].

If W(s9 λ\, λι) does not depend on its last argument, then by
Corollary 9.2 also the space V of all symmetric matrices of the form

can be used. This means that any two embedded material planes
will remain orthogonal during the recoil, if they were so during the
deformation history.

Deformations with constant plane separation. In the remainder of
this section, hypothesis (H5) will be assumed, such that Theorem
9.3 can be applied. Consider now a deformation history, given by
(y(O)*<o = (C~ι(t))t<o, for which a diagonal component of C( ) is
constant (positive) on (-oo, 0], but for which y( ) itself is not con-
stant. This means that there are two parallel planes in the material
sample whose separation remained constant throughout the entire de-
formation history. We claim that for all t > 0 and also in the limit
as t -+ oo these planes will have a separation that is strictly larger.
To prove this, assume that the two parallel planes are spanned by the
vectors e\ and ei Then their separation is given by (y33( ))~1/2 =
\JCy&). By Theorem 9.3, if Cy&) is constant and positive on
(-oo, 0], it will be strictly less on (0, oo) and in the limit as t -• oo
which proves the claim. Both pure shear and simple shear have this
property. The result shows that after deformation histories in these
classes, "the liquid will 'recover' to a state which it has never previ-
ously been in" ([9]).
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Elongational flows. We now specifically consider the cases of fil-
ament stretching and sheet stretching, where y( ) is the elongation
ratio. Then y - 1( ) = C( ) has the same form as y( ) (with y~ι(t) in-
stead of y(ή), and after a history of this form, the recoil will always
lead to states of the same form, as was shown above. In the case of
filament stretching, assume that for -oo < t < 0

t<0

which corresponds to the case of filament stretching, and that y > 1.
Then an application of Theorem 9.3 shows that 1 < y{t) < y for all
t > 0 and that 1 < lim^ooj (ί) < y. Similarly, if for -oo < t < 0

y = infy(t)<y(t)<l

and y < 1 (the case of sheet stretching), then y < y(t) < 1 for all
t > 0 and y < \imt^ooy{t) < 1. These results were deduced in [11]
under much more general assumptions.

Pure shear. We next consider deformation histories of the form
(7) with a(ί) = x{t), b(t) = x~ι(t), c(t) = 1, and assume that for
-oo < t < 0

1 < x(t) < x = supx(t)

and that x > 0. By the same arguments as above, for t > 0

fa(t) 0 0 λ
γ(ή = 0 b{t) 0 ,

V o o c ( o ;
with the relation a(t)b(t)c(t) = 1 and

b{t)>x'\ \<c{t)<a{t)

and consequently also a(t) < x. These relations will also hold for the
limit as t —> oo.

Simple shear. We finally study the recoil of material samples fol-
lowing a deformation history of the form (8), with α( ) = s( ), b( ) =
c( ) = 0, and

0 < s ( t ) <s = sups(t) (t<0),s>0.
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Then for t < 0
(\+s2 -s (T

y~x = [ -s 1 0

V o o i
By Theorem 9.1, therefore

a -b Oλ (c2 be 0
-b e 0 , γ = I be c~ι + b2 0
0 0 ej \0 0 c~ι

since also c(ae - b2) = 1. By Theorem 9.3, the inequalities

0 < b <s, 0 < c < 1,

α = c-2 + έ 2c- 1 < l + s 2 ,

- J 2 < α - ( l + ? 2 ) c < 0 ,

fc ^ α < 0
1 + J 2

hold for all ί > 0 and in the limit as t -+ oc. One reads off that
the sample will expand in the ^-direction and by a smaller amount
also in the ^-direction, and that it will contract in the e\ -direction.
An upper bound for the expansion ratio in the ^-direction can be
obtained from the estimate

c~ι +b2 = ac < l+s2,

implying that c~ι + b2 < sec#, where θ = sup,<o0(O is the maxi-
mal shear angle and 0( ) is defined as in §1. Also, the material slice
between any two planes parallel to {e\ ,e{) or to {e\, ei) will expand
by the same amount c~ιl2 < \/sec θ. Similarly, since

s2 - - -
a = c~2 + b2c~2 < l+s2 + / = sec20 + sin θ tan Θ,

we have the universal lower bound (sec20 + sinθtanθ)~ ιl2 for the
separation ratio of two planes that are parallel to eι and e$ before
and after recovery. In experiments, some lateral expansion of ma-
terial samples has been observed; however, experimental data do not
confirm that the two expansion ratios will be the same for the (β\, em-
plane and for the (e{, e2)-plane, as predicted here (see [9]).

For the angle

n -l be i b
θ = cos ' —===== = cos L —=

/ 2 { ι b2
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between the vectors e\ and eι, the inequalities above imply the esti-
mate

θ > cos~! > cos""1

 / = inf θ(t).
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