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AUTOMORPHISMS OF CONGRUENCE
FUNCTION FIELDS

M. RZEDOWSKI-CALDERON AND G. VILLA-SALVADOR

Let k be a finite field. For a function field K over k and m > 3 ,
it is proven that there are infinitely many non-isomorphic function
fields L such that L/K is a separable extension of degree m and
Aut£ L - { Id} . It is also shown that for a finite group G, there
are infinitely many non-isomorphic function fields L/k such that
Aut* L = G. Finally, given any finite nilpotent group G such that
|G| > 1 and (|<7|, \k\ - 1) = 1 and any function field K over k9

there are infinitely many non-isomorphic function fields L over k
with Gal(L/K) = Aut* L £* G.

1. Introduction. Let k be any field and K be an algebraic function
field over k. Given a finite group G, does there exist a finite extension
L/K, where the exact field of constants of L is k and whose full
automorphism group, Aut^ L, is isomorphic to G?

If k is an algebraically closed field, Madden and Valentini [9],
proved that any finite group can be realized as the full group of auto-
morphisms of an algebraic function field over k.

In [13] Stichtenoth, still under the assumption that k is algebraically
closed, proved that if E/k(x) is a finite separable extension with
[E : k(x)] > 1, then, for any function field K/k of genus larger than
one, there exist infinitely many separable extensions L/K such that
[L : K] = [E : k(x)] and Aut^ L = Aut# L = Au t^ ) E. In particular,
if the non-trivial finite group G is realizable as Galois group of an
extension of the rational function field k(x), then, for any function
field K/k of genus larger than one, G is realizable as Galois group
of an extension L/K and as the full group of automorphisms of L
over k.

A congruence function field is a field of algebraic functions of one
variable over a finite field of constants.

The main purpose of this paper is to prove that, under one ram-
ification condition, Stichtenoth's result still holds when k is finite
(Theorem 3). In this case, we have no restriction on the genus of
K. We also prove the analogue, in congruence function fields, to the
result of Madden and Valentini (Theorem 5). In §3 we obtain, as a
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consequence of the results in §2, that if G is a finite nilpotent group
such that |G| > 1 and (|G|, \k\ - 1) = 1 and K is a function field
over k, then there are infinitely many non-isomorphic Galois exten-
sions L/K such that Aut^ L = Aut# L = G.

Our approach is as follows: Given a congruence function field K
over k and m > 3, infinitely many non-isomorphic function fields L
of degree m over K are constructed whose exact field of constants is
k and such that Aut^ L = {Id} . Theorem 2 achieves this.

From now on, k is a finite field of characteristic p and with q
elements. If L is a field extension of K, Aut^ L denotes the group
of automorphisms of L that fix K pointwise. In particular, if L/K
is Galois, Aut# L = Gal(L/K). x,y9z denote transcendental ele-
ments over k;K,E9F9T,L9... are various function fields whose
exact field of constants is k. For x e E, (x)E is the principal divi-
sor of x in E. If JE/A: is a function field, L/J? denotes a separable
finite extension where the exact field of constants of L and E is k
and £>L/£ stands for the different of the extension. For a place P in
a function field, deg(P) denotes the degree of the place. Finally, we
write gL for the genus of L.

2. Automorphism groups. As in the papers of Madden-Valentini [9]
and Stichtenoth [13], here Castelnuovo's Inequality plays an important
role:

THEOREM 1. Let L, K, E be function fields with field of constants
k and such that L = KE. Then

gL < [L : K]gκ + [L : E]gE + ([L : K] - 1)([L : E] - 1).

Theorem 1 is an easy consequence of the Riemann-Hurwitz for-
mula in the case that K and E contain a common transcendental
element over k. In the case that K and E do not contain common
nonconstants, the proof is not so easy (see [12]).

The following lemma is a direct consequence of Theorem 1 with
E = σ(K) ([9], [13]):

LEMMA 1. If L/K is a finite extension of function fields with field of
constants k and such that for any intermediate field M, K £ M c 4 ,
it holds that gM > [M : K]2 + 2(gκ - \)[M : K] + 1, then for any
σ G Autfc L we have σ(K) = K.

Given a congruence function field K and a positive integer m,
we will construct extensions L/K such that the constant field of L
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is k, [L : K] = m and all the intermediate fields different from K
have suitably large genus. Then, by Lemma 1, it will follow that any
σ G AutfcL satisfies σ(K) = K. Also, we obtain these extensions
satisfying one extra ramification condition that forces any σ e Aut^ L
to fix K pointwise.

DEFINITION. Let Eo/k(x) be an extension of function fields and C
be a real number. If an extension E\/k{y) satisfies:

(i) [Eι:k(y)] = [E0:k(x)],
(ii) Autfc^) Eι = Aut*(jc) £ 0 ,

(iii) if Aίi is any intermediate field, k(y) ^ M\ c E\, then

we say that E\/k(y) is a C-improvement of E0/k(x).
First we prove the analogue of Lemma 2 in [13].

LEMMA 2. Let Eo/k(x) be a function field extension. Then, for any
real number C, there exists a C-improvement of Eo/k(x).

Proof. (See [9], [13].) Let EQ be the normal closure of Eo/k(x)
and n = [Eo : k(x)].

Let us assume first that if Af is any intermediate field, k(x) £
Af c EQ , we have gM > 1. Choose any positive integer m such
that (m,pn) = 1 and m > C. Let y = xχlm. Then k{y)/k(x)
is a separable extension of degree m where the only ramified places
are the zero and the pole divisors of x and are fully ramified. Let
Ex = E0(y). Eχ/k(y) is separable, [Ex : λ (j )] = [£ 0 : k(x)], the field
of constants of E\ is k ([7]) and A u t ^ E\ = A u t ^ ) £Ό. If Af!
is any intermediate field, k(y) ξ Afi c E\ and Af = Afi n EQ , then
Mi = Af(y). We have k(x) ^ Af c EQ . Let p be any place of M
that lies above the zero or pole divisors of x. Since (m, ή) = 1, p
is fully ramified in M\/M. Thus, de$(DMjM) > 2(m - 1) and by the
Hurwitz Genus Formula,

gM{ = \+[M : Λ/i](ίii/-l)+ί deg(Z)^/^) > l + ί ( 2 ( w - l ) ) = m>C.

It remains to prove that there exists a 1-improvement of Eo/k(x).
Let m denote a natural number larger than one such that (m, pn) =

1 and again let y = xχlm. Define £ 2 = E0(y). As before, E2/k(y)
satisfies (i) and (ii) of a 1-improvement of Eo/k(x).

Let M2 be such that k(y) ^M2cE2. Then Af = M2Γ)E0 satisfies
k(x) ^ Af c EQ . Let po and poo be the zero and the pole divisors
of x in k(x).
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(a) Assume that at least one of po and poo is not fully ramified
in M/k(x). Say that po is not fully ramified. We have that in M,
p0 = p*ι -'Pe

h

h. Then, either h > 2 or deg(Λ) > 2. Thus, at least
three places ramify fully in M\/M(P\, P2 and a place of M that lies
above poo) or at least two places ramify fully and one of them is of
degree > 2. By the Genus Formula, gM > 1/2. Therefore gM2 > 1.

(b) Observe that if gM > 1, then gMi > 1.
(c) In the case that there exists M such that k(x) ^ M c EQ ,

gM = 0 and both po and p^ ramify fully in M/k(x), we will
require a further construction.

The extension E2/k(y) just obtained does satisfy that if k(y) ^
M2 C E2 and gMl = 0, then M 2 = k(yχls) where .s = [M2 : fc(y)].

Therefore, the extension E2/k(y) is such that if k(y) ^ M2 c E2

and gM2 = 0, then the zero and pole divisors of y in k(y) are fully
ramified in M2/k(y).

Let d be any integer such that d > 19 (d, np) = 1 and large
enough so we can choose two different places B\ and B2 in k{x) of
degree d.

£3 £4

M4

k(z) k{x)
d

Let z G fc( c) be such that (z)k^ = BγB^1. We construct an exten-
sion E$lk{z) satisfying (i) and (ii) of a 1-improvement of Eo/k(x)
and if Λ/3 is such that k{z) ^ M?> c E$ and gM3 = 0, then the zero
and pole divisors, Qo a n d βoo > of z are fully ramified in M^/k(z).

We have [fc( c) : fc(z)] = d, QQ and βcx) are inert in k(x)/k(z).
We define E4 = E$(x). __

The extension E^/k(x) satisfies (i) and (ii) of a 1-improvement ctf
Eo/k(x). Let M4 be any intermediate field k(x) ^ M 4 c £4. Then
Af3 = M4 Π £3 satisfies k(z) ^ M 3 c £ 3 . If ^ > 1, then gM4 >
1. If gM3 = 0, then β 0 and βoo ramify fully in M3/k(z). Thus,
J?i, B2 ramify fully in M4/k(x). Again, by the Genus Formula,
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gM4 > ([Af4 : k(x)] - \){d - 1) > 1. The extension E4/k(x) is a
1-improvement of Eo/k(x).

This completes the proof of Lemma 2.

REMARK. It follows from the proof of Lemma 2 that if po ram-
ifies and poo does not ramify in Eo/k(x), then the same occurs in
Eχlk{y).

Next we have

LEMMA 3. Let m be any integer, m > 3 and let x be any tran-
scendental element over k. Then, there exists an extension E/k(x) of
degree m such that Aut^) E = {Id}, the zero divisor of x ramifies
in E/k(x) and the pole divisor of x does not ramify in E/k{x).

Proof. (See [13].) Let E = k(y), where ym-\y - 1) = x. Then
E/k(x) is separable of degree m. Since any automorphism of E
over k(x) fixes three places of degree one of E, AutkME = {Id}.
We observe that the zero and pole divisors of x ramify in E. It
follows from gβ = 0 and the Hurwitz Genus Formula that there
exists at most one place (which must be of degree one), besides the
zero and pole divisors of x, that ramifies in E/k(x). If k φ F 2 , F 2

the finite field with two elements, there is at least one place of degree
one which is not ramified. If k = F 2 , there is wild ramification, thus
the third place of degree one is not ramified. In any case, there is at
least one place of degree one that ramifies and at least one place of
degree one that does not ramify in E/k(x). We may assume that the
zero divisor of x is the one that ramifies and the pole divisor of x is
the one that does not ramify.

This completes the proof of Lemma 3.

Now, we prove the analogue in congruence function fields to Satz 3
in [13].

THEOREM 2. Let K be any function field over k and m be any
integer, m > 3. Then there exist infinitely many non-isomorphίc fields
L such that L/K is separable of degree m, and Aut^ L = {Id}.

Proof. Let H = Aut^ K. We have that H is a finite group ([2],
[11]) say of order n. Let F denote the subfield of K fixed by H.

Let A be a place of K of degree <z, where (a, mnp) = 1. As a
consequence of the Riemann Hypothesis, we have that the number of
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places of degree t of K is \qι + O(q^2) (see [3], page 41). We also
have that the number of places of degree t of K that restrict to lower
degree places of F is bounded by

n

7f\n

7 ' (Number of places of degree -γ of F j
J /

Therefore, there exists a positive integer ίo such that for any t>to,

there are places of degree t of K that restrict to places of F, also of

degree t. Any of these places in F decomposes fully in K.

E L

m

k(x) K

H

Choose a positive integer t such that t > to, t > gK + I and
(t, mnp) = 1. Let Q be a place of i 7 of degree ta that is fully
decomposed in K/F and denote by B\, ... 9 Bn the places of K
that lie above Q.

Consider first the case n > 2. By the Riemann-Roch Theorem there
exist x eK such that (x)κ = BxA

rCB^sB^x --B~l where C is an
integral divisor, s > 2 is such that (raw/?, rc + s - 2) = 1 and r =
(Λ+s-4)ί+l. Since deg(C) = (t-l)a <ta = deg(£/), C is relatively
prime to Bf, i = 1, ... , n. We have [i£ : k{x)] = ία(π + 5-2) and
(ta(n + s - 2), n) = 1. Hence # = F(JC) .

Let po and poo denote the zero and pole divisors of x in k(x).
Using Lemmas 3 and 2 we can construct an extension E/k(x) such
that [E : /c(x)] = m, Aut^*) £ = {Id}, for any intermediate field M^_
k(x) ^ M c £ , w e have gM > m2 + 2(g# - l)m + 1, ρ 0 ramifies iir
E/k(x) and p ^ does not ramify in E/k(x).

Define L = KE. L/AΓ is an extension of degree m. Let σ e
AutfcL. From Lemma 1 it follows that σ(K) = K. Now, since po
ramifies in E/k(x) and B\ is not ramified in K/k(x), it follows
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that B\ ramifies in L/K. Since poo does not ramify in E/k{x)9

B2, ... , Bn , do not ramify in L/K. Hence 2?f = B\. Thus, neces-
sarily σ = Id. Therefore Aut̂  L = {Id}.

If n = 1, we have Aut̂  K = {Id} and the extension L is obtained
as above.

Finally, we observe that since g£ can be chosen arbitrarily large,
gL can be arbitrarily large so there are infinitely many fields L with
[L:K] = m and Aut̂  L = {Id}.

The proof of Theorem 2 is complete.
Partial analogues to Satz 1 and Satz 2 in [13] follow immediately

from Lemma 2 and the proof of Theorem 2.

THEOREM 3. Let Eo/k(x) be an extension of function fields with
[Eo : k(x)] > 1. Let po and p^ denote the zero and pole divisors of
x in k(x), respectively. Then, if ρ0 ramifies and p^ does not ramify
in Eo/k(x), we have that for any function field K over k there exist
infinitely many non-isomorphic extensions L/K such that [L : K] =
[Eo : k(x)] and kvAk L = K\x\κ L = Aut^) Eo.

THEOREM 4. If G is a non-trivial finite group realizable as Galois
group of an extension E0/k(x) with the ramification prescribed in The-
orem 3, then for any function field K over k there exist infinitely many
Galois extensions L/K such that Aut̂  L = Aut# L = G.

We finish this section by proving the congruence function fields
analogue to the result of Madden and Valentini [9].

THEOREM 5. Let G be any finite group. Then, there exist infinitely
many non-isomorphic function fields L/k such that Aut^L = G.

Proof. Let / be a prime number such that G c Si. Then, there
is an extension E0/k(x) such that G&l(E0/k(x)) = Si ([4], [6], [8]).
Let T denote the subfield of Eo fixed by G. Then Eo/T is a Galois
extension with Galois group isomorphic to G. Let d, d\, di be
positive integers such that d is a prime number, d φp, d\+d2 = d,
d\ > d2 > max{3, 2gτ - 2} and large enough so we can choose two
places Bx, B2 in T that decompose fully in Eo, of degrees d\,
d2 respectively. By the Riemann-Roch Theorem, there exists y € T
whose pole divisor is B\B2. Then, the extension Eo/k(y) is not
normal (see [9]). By Theorem 2, we can obtain an extension K/k(y)
of degree relatively prime to [Eo : k(y)] and Aut̂  K = {Id}.
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Eι L

k{y) K

Using Lemma 2, we can construct a C-improvement E\/k(y) of
Eo/k(y) such that there is an intermediate field T\, k(y) cTγC Eγ
with Gal^i/ΓO s G9 where C = [Ex : fc(}>)]2+2(^-1)[^ : k{y)]+
2. Since the genus of K is smaller than the genus of any intermediate
field of Eι/k(y) other than k(y), it follows that KnEγ= k(y).

Let L = EiK and F = TλK. Then L/F is a Galois extension
such that Gal(L/F) = G and by Lemma 1, Aut^L = Aut^L. Since
L/K is not normal and [F : K] = e/, a prime number, we must have
f is the field fixed by Aut̂  L. Thus Aut̂  L = AutF L = G.

The existence of infinitely many non-isomorphic such fields L fol-
lows from the fact that we can choose g£γ arbitrarily large.

3. Nilpotent groups. We use the results obtained in §2 to prove the
following theorem.

THEOREM 6. Let G be a finite nilpotent group, \G\ > 1 and (|G|,
q-1) = 1. Then, for any function field K over ky there exist infinitely
many non-isomorphic Galois extensions L/K such that Aut^L =

Proof. We first prove the theorem for the case G is an /-group,
where / is a prime number such that (/, q - 1) = 1. Let \G\ = lv,
v > 1. We will make the proof by induction on v .

For v = 1 we consider two cases:

(i) / = p: Let x e K be such that ([K : k(x)],p) = 1. Let
E = k(x9 y) 9 where



AUTOMORPHISMS OF FUNCTION FIELDS 175

Then, E/k(x) is a cyclic extension of degree p where po, the zero
divisor of x in A:(JC) , is the only ramified place. By Theorem 4 we
obtain infinitely many cyclic extensions L/K of degree p such that

(ϋ ) lφp\ Let H,n9F9A,a,to,t9Q9Bu...9Bn,x,C,s9r
as in the proof of Theorem 2, with m = / in this case, (x)κ =
BxA

rCB-$B-χ "B~ι. We have K = F{x). We consider first the
case n > 2.

Let d > 1 be such that

(a) (</,/) = 1;
(b) i ( / - l ) ( < / - 2 ) > / 2 + 2 / ( ^ - l ) + l ;

(c) / | f f*-l .

Such d exists. It suffices to take d = u(l - 1), (w, /) = 1 and w
large enough.

Let a be a generator of the multiplicative group of the finite field of
qd elements. Then, the order of a is qd -1. Let P be the irreducible
polynomial of a over k. P is of degree d .

Let Δ = k(x)(Ap) be the cyclotomic extension determined by P
(see Hayes [5]). We have that P is fully ramified and p^, the pole
divisor of x in k{x), is ramified with ramification index q - 1 and
decomposes in (qd — l)/(q—l) places in Δ. No other place is ramified
in A/k(x). Let E be the unique subfield of Δ such that [E : k(x)] =
/. Since (/, q - 1) = 1, P is the only ramified place in E/k(x) and
poo decomposes into / factors. We have gE = £(/ - l)(d - 2). Let
po be the zero divisor of x in fc( c). It follows from the election of
P that xf = 1 modP if and only if qd - 1 |/. Therefore the minimal
such / is / = ^" - 1. By Carlitz [1], Theorem 12, it follows that the
degree of inertia of po in Δ/k(x) is qd - 1. Therefore, the degree
of inertia of po in E/k(x) is /. Let L =

E L = KE

i i

k(x) K

H

F
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is a cyclic extension of degree /. Let σ e Aut^ L. Since gL >

gE = \(l _ \){d - 2) > I2 + 2l(gκ - 1) + 1, it follows from Lemma
1 that σ{K) = K. Now, Bf = Bt, for some / = 1, 2, . . . , n. Since
poo decomposes in E/k{x), it follows that B( decomposes in L/K,
/ = 2, . . . , n. Finally, since ρ0 is inert in E/k(x) and the degree
of inertia of B\ over ρ0 is ta, and (ta, /) = 1, we have that i?! is
inert in L/K. Therefore, B\ = Bx and σ|^ = Id. Thus Aut^L =

Finally, we observe that we have infinitely many such L because d
can be chosen arbitrarily large.

If n = 1, we have Aut^ K = {Id} and the extension L is obtained
as above.

This finishes the case v = 1.
For \G\ = lυ, let T be a subgroup of G of order / contained in

the center of G. Let G = G/T. We have \G\ = lv~ι. As induction
hypothesis we have that there exist

E L = EK

LQ = EQK

k{x) K

x e K and an extension E0/k(x) such that ([K : k(x)]91) = 1,
Eo/k(x) and Lo = E0K/K are Galois extensions with Galois group
G and Aut^L0 = Aut#L 0 = G.

In [10], an extension E/Eo is obtained such that E/k(x) is a Galois
extension with Galois group G and such that the number of ramified
places in E/EQ is arbitrarily large. We have EπK = k(x). We choose
the number of ramified places in E/Eo so that gE > l2+2l(gLo-l)+l^
Let L = KE. We have that L/K is a Galois extension with Galois'
group G. Now, let σ e Aut^ L. Since gL> gE> l2+2l{gLo-1)+1, it
follows from Lemma 1 that σ(Lo) = £o Therefore, σ|L0 E Aut^ LQ =
Aut^:LQ . Hence, σ e Aut/^L. L satisfies Aut^L = Aut#L = G.

This finishes the case G is an /-group.
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For the general case, let G be a nilpotent group with \G\ > 1,
(\G\, q - 1) = 1. We express G as the direct sum of its Sylow sub-
groups, G = φ J U G i , IGί| = /?', /i, . . . , /A the different primes
dividing |(?|. For Λ = 1, the theorem has been proved. For h > 1,
we obtain, by induction, an extension L\/K such that Aut^Li =
AutK L\ = G/Gfr. It follows from the case where G is an /-group and
from [10], Lemma 1, that there exists a

L

K L2

Galois extension L2/K with Galois group G^ such that Aut^ L2 =

A\xXκLι = Gh and such that any intermediate field K ^ M c L2

satisfies gM > l2

h^+2Q{gLr\)+\ > [M : K]2+2[M : ΛΓ]( f o i - l )+l .
We have L\ Γ) L2 = K. Let L — L\L2, L/K is a Galois extension

with Galois group G. Let σ G Aut^ L. Since any intermediate field
U % Mx c L satisfies ^ > [Afi : L{]

2 + 2[MX : Lx]{gLχ - 1) + 1,
we have σ(L\) = L\. Thus σl^ £ Aut^I^ = Aut^Li. Hence σ G
Aut^ L = K\xXκ L = G.

Finally, the existence of infinitely many such extensions L/K, fol-
lows from the fact that the genus of L can be chosen arbitrarily large.
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