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DIHEDRAL GROUP ACTIONS ON HOMOTOPY
COMPLEX PROJECTIVE THREE SPACES

MARK HUGHES

Let Ό2m be the dihedral group of order 2m . Given an odd prime
m such that the projective class group of D 2 m has 2- rank = 0,
we construct smooth D2m-actions on an infinite number of pairwise
non-diffeomorphic (distinguished by Pontryagin class) manifolds each
of which is homotopy equivalent to CP3. This is accomplished by
applying equivariant surgery theory to normal maps created by an
equivariant transversality argument.

1. Introduction. The question which we deal with here is: "Which fi-
nite groups can act on differentiably non-standard homotopy CP3 's?"
We use equivariant surgery theory to construct dihedral group ac-
tions on an infinite number of differentiably distinct smooth manifolds
which are homotopy equivalent to C P 3 .

According to [MY], there is a one-to-one correspondence between
the integers and the set (actually, it is a group) of diffeomorphism
classes of 6-dimensional, smooth, closed manifolds which are homo-
topy equivalent to CP3 (such manifolds shall hereafter be called ho-
motopy CP 3 ' s) . For every integer k, there is a unique homotopy
CP3, denoted Xk, with first Pontryagin class P\{Xk) = (4 + 24k)x2,
where x e H2{Xk) is a generator. Then, XQ is the standard CP3.
All actions shall be effective and smooth.

Some information is known about smooth finite group actions on
homotopy CP 3 ' s . For instance, infinitely many homotopy CP 3 ' s
admit a Zm-action for almost every prime number m. (For this,
and other interesting results, we refer the reader to [DM].) On the
other hand, in [Ml], it is shown that if Xk admits a smooth, ef-
fective Z m x Z m x Zm-action, for any odd prime m, then k = 0,
i.e., Xk = C P 3 . (There is a more restricted version of this result for
m = 2. For information about involutions on homotopy CP 3 's, we
refer the reader to [DMS].)

In this paper, we shall consider the case of dihedral group actions.
To my knowledge, these are the first examples of non-abelian group
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actions on non-standard C P 3 . Specifically, our main result is:

THEOREM A. Let D2m be the dihedral group of order 2m, where m
is an odd prime. If the projective class group Ko(Z[Ό2m]) has 2-rank =
0, then there are infinitely many integers k for which X^ admits a
Ό2m-action. In particular, this holds for m < 67.

The main tool used to prove the above theorems is equivariant
surgery theory (see [DP] and [PR]). The features of this theory which
are relevant to our work shall be outlined in the next section. The
third section provides the proof of Theorem A. At this point, I would
like to thank Professor Heiner Dovermann for his help and encour-
agement. Thanks also goes to the Florida State University Council for
Research and Creativity which provided financial support during the
time this work was undertaken. Finally, I thank the referee for many
helpful comments.

2. Background. Let G be a finite group. Equivariant (G-) surgery is
a process for constructing G-manifolds which are G-homotopy equiv-
alent to a given G-manifold Y. (A homotopy F: X x / -» Y is a
G-homotopy if JF( , t) is a G-map for all ί.) Two major steps are
involved in this process.

1. We build a G-normal map (X, / , b) with target manifold 7 .
This can be thought of as an approximation to a G-homotopy equiv-
alence.

2. We must determine whether or not the obstructions to perform-
ing G-surgery to a G-homotopy equivalence vanish. The process
of G-surgery converts X to a G-manifold Xf and / to a G-map
/ ' : X1 —• Y which is a G-homotopy equivalence.

Before we elaborate on this, we need some definitions.

DEFINITION 2.1. A G-manifold is said to satisfy the gap hypothesis
if given a nontrivial subgroup H C G and a component F of XH,
we have lάimF < dimX.

(Other definitions of the gap hypothesis are possible, however this
is the one which suits our needs.)

Recall that a smooth G-vector bundle is a triple (E, /?, B), where
p: E -+ B is an ordinary smooth vector bundle such that E and B
support smooth G-actions and the projection p is a G-map. We also
require that given g e G and b e B, the map restricted to fiber
g: Eb -+Eg{b) is linear.
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At this point, for simplicity, instead of defining G-normal maps,
we choose to define a special type of G-normal map, the notion of an
adjusted G-normal map. (See [Dl]. The notion of a G-normal map
can be found, for example, in [H] or [PR].)

DEFINITION 2.2. An adjusted G-normal map with target Y is a
triple (X, / , b), where

(1) X is a smooth, oriented, closed G-manifold which satisfies the
gap hypothesis and is of dimension > 5. Y is a smooth, oriented,
closed G-manifold which is simply connected and of the same dimen-
sion as X.

(2) / : X —• Y is a smooth, degree 1 G-map which induces a G-
homotopy equivalence between the singular sets Xs and Ys. (Recall
that Xs = {xeX: Gxφ 1}.)

(3) b is a stable G-vector bundle isomorphism between TX ©
f*(η~) and / * ( Γ 7 θ ^ + ) , for some pair of G-vector bundles
η±. That is, there exists a G-representation V such that b is a G-
vector bundle isomorphism between TX 0 /*(*/-) ® (X x V) and
f*(TY®η+)®(XxV).

We have a further important definition.

DEFINITION 2.3. Let >/+ and ;/_ be G-vector bundles over a G-
manifold 7 . Assume that given H c G and y G Γ ^ , we have
dim^+ly)^ = dim^-ly)^. Then ω: η+ —• τ/_ is a G-fiber homotopy
equivalence if it is a proper, fiber preserving G-map such that, given
H c G and y E Γ ^ , the map (ωjy)7*: (^z+ly)^ -»(^/-ly)^ has degree
1 when extended to one point compactifications.

Using ideas found in §11 of Chapter 3 in [PR], an adjusted G-
normal map can be constructed from a G-fiber homotopy equivalence
over Y provided that certain conditions are met. This shall be carried
out in §3 of this paper.

Once our adjusted G-normal map is constructed, we proceed to step
2, which is to determine whether surgery to a G-homotopy equivalence
is possible.

We first mention that an equivariant map / : X —• Y is a G-
homotopy equivalence if and only if fH: XH —• YH is an ordinary
homotopy equivalence for all H c G. (See [B].) Therefore, given
our adjusted G-normal map (X, / , b), we must convert X to a G-
manifold Xη and / to a G-map F: Xη ^ Y such that FH is a ho-
motopy equivalence for all H C G. There is a surgery obstruction to
achieving this as indicated in the following proposition. At this point,
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we make the assumption that the dimension of Y is even and that G
contains no elements g of order 2 with 2(άiva{Y^)g + 1) = dim Y**.
This will ensure that the following obstruction is well-defined. Our
constructions will fall within this constraint. For more on this point,
see [Mo] and §3 of [D].

PROPOSITION 2.4. Let (X, / , b) be an adjusted G-normal map with
target Y. There is an obstruction σ\(f,b) which vanishes if and only
if (X, / , b) is G-normally cobordant to an adjusted G-normal map
(Xη, F, B), where F: Xη —• Y is a G-homotopy equivalence.

That is, <7iCΛ b) vanishes if and only if G-surgery can be used to
convert X to Xη and / to a G-homotopy equivalence F: Xη —> Y.
The proof of this proposition may be found in [D]. (See Corollary
1.1 on p. 853.) Related results involving G-normal maps are well-
known and can be found in [PR] and [DR2]. Also, see [BQ]. We
note that this surgery is done relative to the singular set Xs. The
obstruction σ\(f, b) is an element of the Wall group L%(Z[G], w),
where n = dim Y and w: G —• Z 2 is the orientation homomorphism
of the G-action on Y.

It is often easier to deal with Ls

n(Z[G]9 w), the surgery obstruc-
tion group for simple homotopy equivalences instead of L%(Z[G], w).
These two groups are related by the Rothenberg exact sequence [Sh]:

• • • -* L s

n ( Z [ G ] , w ) - > Lh

n(Z[G], w ) aΛ H n ( Z 2 W h ( G ) ) - + . . . ,

where Wh(G) is the Whitehead group of G and α^ is the torsion
homomorphism to be considered shortly. The Tate cohomology group
Hn(Z2 Wh(G)) is defined as:

{δ e Wh(G): δ = (~l)nδ*}/{τ + (- l) Λ τ*: τ e Wh(G)},

where * denotes the conjugation involution based on the orientation
homomorphism w.

Let's suppose that our adjusted G-normal map (X, / , b) with tar-
get Y has been constructed from a G-fiber homotopy equivalence
ω: η+ —> η- over Y. In this situation, the work of Dovermann
([D]) and Dovermann-Rothenberg ([DRl]) can be applied to give us
information on aG(σx(f, b)) e Hn(Z2 Wh(G)). Given a G-fiber
homotopy equivalence α>, its generalized Whitehead torsion τ(ω)
can be defined as an element of the generalized Whitehead group
Wh(G) = 0 ( i y ) c G Wh(NG{H)/H), where (H) denotes the conjugacy
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class of H. Let T denote the conjugation on Wh(G) and [•] denote
the cohomology class as indicated above.

LEMMA 2.5. Let {X, /\ b) be an adjusted G-normal map construct-
ed as above such that fH is an NQ{H)/H-diffeomorphism for each
nontrivial subgroup H of G. Then aG{σ\{f, b)) = [Tτ(ω)].

Proof. A formula for aQ(σ\(f9 b)) can be given by combining The-
orems A and B along with Proposition 6.6 of Dovermann's paper [D].
Noting that our assumption on / implies that τ{fs) = 0, the for-
mula reduces to ao((Tι(f9 b)) = [Tτ(φ)], where φ is a certain G-
fiber homotopy equivalence associated with the adjusted G-normal
map (X, /', b). As can be seen from §6 of [D], φ is closely related
to our G-fiber homotopy equivalence ω. Indeed, by stabilizing with
an appropriate complex G-bundle, we can arrive at the same G-fiber
homotopy equivalence. Then, the addition formula of Dovermann-
Rothenberg (Corollary 8.15 of [DR1]) implies that τ(φ) = τ(ω) which
finishes our proof. (We mention that the results of [D] and [DR1] are
written in terms of sphere bundles. The Whitney sum corresponds to
fiberwise join. This is not a restriction for us. See §§1-13 of [PR].) •

LEMMA 2.6. Suppose that ω: η+ -• r\- is a G-fiber homotopy equiv-
alence over an even dimensional G-manifold Y. Let ώ = ω®ω: η+®
η+ -> η- θ η-. If the ordinary Whitehead group Wh(G) is tor-
sion free and if τ(ώ) has non-zero coordinate only in Wh((7), then
[Γτ(ώ)] = 0.

Proof. In [DR1], a formula for the generalized Whitehead torsion
of a G-fiber homotopy equivalence is given. From Corollary 8.15 of
that paper, it follows that with our set-up, τ(ώ) is twice an element
of Wh(G). Therefore, Tτ(ώ) is also a "multiple of 2". In general,
this is not enough to show that [Tτ(ώ)] vanishes in

Hn(Z2 Wh(G)) = {δ e Wh(G): δ = δ*}/{τ + τ*:τe Wh(G)}.

(Note that we are assuming n = dim Y is even.)
However, with our additional assumption that Wh(G) is torsion

free, the result follows.
Indeed, Tτ(ώ) lies in {δ e Wh(G): δ = δ*} and as explained

above, Tτ(ώ) = 2x, for some x € Wh(G). We claim that we must
have x e {δ e Wh(G): δ = δ*}. Suppose that a e Wh(G) = 0 Z and
let φ be any homomorphism from Wh(G) to itself (in particular, φ =
* ) . Since φ is a homomorphism and Wh(G) is torsion free, it follows
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easily that p(2α) = 2α =>> p(α) = α. Therefore, we have Tτ(ώ) =
2x = x + x = x + x* and hence [Γτ(ώ)] = 0 in i/"(Z 2 Wh(G)) as
desired. D

We note that we shall be working with the group D 2 w , where m
is an odd prime. (The conjugation involution on Wh(D2m) will be
defined in terms of the nontrivial orientation homomorphism w , i.e.,
elements of order 2 shall reverse orientation and be sent to -1.) It
is shown in [O] that SKι(Z[D2m]), the torsion part of Wh(D 2 m ),
vanishes for all odd primes m. (Also see [Ma].) We also note that
τ(ώ) will have non-zero coordinate only in Wh(G) in our geometric
set-up. (See Lemma 2.5.)

Our purpose for introducing the Rothenberg sequence is to show
that σ\(f, b) e L%(Z[G]9 w) comes from an element, 0f(/ ? b) £
Ls

n(Z[G], w), which will be shown to vanish, thereby guaranteeing
that σ\(f,b) = 0, and that surgery to a G-homotopy equivalence
is possible. Clearly, σ\(f,b) will come from some σf(f,b) if

3. Proof of Theorem A. In this section, we shall give the proof of:

THEOREM A. Let Ό2m denote the dihedral group of order 2m, where
m is an odd prime. If the projective class group Ko(Z[D2m]) has
2-rank = 0, then there are infinitely many k for which X^ admits a
Όim-action. More precisely, given p and q, relatively prime
integers each = l m o d m , X^ admits a Ό2m'actionf where k =

Let us first make some remarks about #o(Z[D2m]). It is known
that Ko(Z[Ό2m]) = Γ, the class group of the maximal real subfield of
Q(ξ), where ξ = e2πilm. (See [L].) As shall be indicated below, we
are interested in knowing for which m, Γ has 2 -rank = 0. This is
not known in general, however it is known that the class number A+,
which is the order of γ, vanishes for primes m < 67. (See p. 38 and
§3 of the appendix in [Wa].)

Our proof will depend upon an appropriate choice of a model Y
on which to base our surgery constructions. We will then construct
a D2m-fiber homotopy equivalence over Y, and from it, an adjusted?
D2 w-normal map. A key feature of our construction will be an addi-"
tional amount of symmetry built into the normal map. Finally, we will
show that our set-up is such that all obstructions to surgery vanish. By
varying the parameters of our construction, we will obtain infinitely
many X^ as claimed.
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Our model Y and Ό2m -fiber homotopy equivalence will be con-
structed so as to satisfy an important technical condition stated below
as Definition 3.1 which will allow us to build from them an adjusted
D2m-normal map.

First, we set up some notation. Let G be finite. Given any ir-
reducible, real G-representation ψ, we define mψ: RO{G) -> Z by
setting mψ(Y) equal to the multiplicity of ψ in the virtual repre-
sentation V. (RO(G) denotes the real representation ring of G.)
Let dψ denote the dimension of the real division algebra of R-linear
G-endomorphisms of ψ, H o r n ^ , ψ).

DEFINITION 3.1 (Transversality Condition). Let ω: η+ -• r\- be a
G-fiber homotopy equivalence over the smooth G-manifold Y. For
each H e Iso(Γ) = {Gy: y eY} and each component Yg c YH the
following holds. Let yeY*1. For each real //-representation ψ with
mψ{η-\y) Φ 0 we have

dim Y? = mιR(TY\y) < dψmψ(TY + η+- η-\y) + dψ-\.

If the transversality condition is met, there are no obstructions to
moving ω by a proper G-homotopy to a smooth G-map h which is
transverse to 7 , the zero-section of η- . We then set X = h~~ι{Y),
/ = h\χ, and b is constructed using the G-vector bundles η± . More
precisely, for H c G, we set XH = (fH)~ι(YH). Note that if a path
component X% lies in (fH)~ι(Y^), for some component Y? c YH,
then dimJΓ^ = dim Y^. Since ω is a G-fiber homotopy equivalence,
we can choose the orientation of X so that the G-map / will be of
degree 1.

At this point, provided that a few other conditions are met, the
triple (X, / , b) will be a G-normal map (adjusted or otherwise).
However, we shall see that in our case a little additional work will
render (X, / , b) into an adjusted D2m-normal map.

There is an interesting S^-map due to Ted Petrie (see [MeP], p.
74) which will be used in our constructions. Given a pair of relatively
prime integers p and q, take integers a and b such that -ap+bq = 1
and let ί1' denote the 1-dimensional complex S ̂ representation where
t e Sι acts on C by t z = t*z (complex multiplication). Define
/ : Γ1? + Γ2« = V+ - r 2 + r 2 ^ = F_ by / ( z 0 , zx) = (z%z\,
z\ + zp

χ). It can be shown that / is a proper S^-map such that
deg/ + = 1, where /+ is the extension of / to 1 point compactifica-
tions.
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In our proof, knowledge of the structure of Ls

6(Z[D2m], ώ), where
Ό2m = (g, h\gm = h2=l,gh = hg~ι), w(g) = 1, and w(h) = - 1 ,

will be essential.

LEMMA 3.2. Assume that m is such that K0(Z[D2m]) has no
2-torsion. Then, Ls

6(Z[D2m], w) decomposes into a direct sum
LS

6(Z[Z2], ID)@L(Ό2m), where L(D2m) is torsion free and ID:Z2-+
Z2 denotes the identity map. In particular, as indicated above, this re-
sult holds for primes m < 67.

Proof. First, note that the retraction and inclusion D 2 m -^ Z2 Λ
Ό2m are compatible with the respective orientation homomorphisms;
that is,

D 2 m -^ Z 2 -+ D 2 m

I iϋ I ID I w
rj ID ^ ID ~
iu2 —• £J2 —> JL2

is a commutative diagram, where r(glh£) = hε (ε = 0, 1). Using the
functorial properties of Ls{ ) (see [W2]), it follows that LS

6(Z[Z2], ID)
is a direct summand of Ls

6(Z[D2m], ω). (Note that ID: Z 2 —• Z 2 is
different from the trivial map 1: Z 2 -> Z 2 .) Therefore, LS

6(Z[Z2], ID)
is obtained by restriction. Now, according to [W3], L(Ό2m) will be
torsion free whenever the projective class group Ko(Z[D2m]) has no
2-torsion. (Also see [Wl], p. 71-74. Beware of the mistakes in [W3].
They are corrected in [Wl]. In these references, the computations are
of !/(•)> the surgery obstruction group for weakly simple homotopy
equivalences. However, since Wh(Z[Z2]) = 0 and Wh(Z[D2m]) is
torsion free, it turns out that for these groups and our orientation
homomorphisms, L'(-) = Ls(-). This is discussed on pp. 77-78 of
[Wl].) D

Lemma 3.2 shall be very useful to us in determining whether or
not an obstruction in L£(Z[D 2 m], w) vanishes because nontrivial el-
ements of Z(D 2 m ) can be detected by the multisignature (since it's
torsion free), whereas those of LS

6(Z[Z2], ID) are detected by the
Kervaire-Arf invariant. Indeed, according to Theorem 4.14 of [W4],
L£(Z[Z2], ID) is isomorphic to Z 2 via the Kervaire-Arf invariant. (Ii
[W4], f is Lh. However, since Wh(Z2) = 0, we have Lg(Z[Z2], ID)
= L£(Z[Z2], ID).) Now, suppose the obstruction in question is as-
sociated to a normal map constructed from twice a fiber homotopy
equivalence. Then since the projection from Z^(Z[D 2 m], ω) o n t o
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Z/6(Z[Z2], ID) is obtained by restricting the group action it follows
that the Kervaire-Arf invariant of the obstruction vanishes. This fol-
lows from the fact that the Kervaire-Arf invariant can be given in
terms of the Kervaire-Sullivan classes via Sullivan's characteristic va-
riety formula (as found, for instance, on p. 152 of [BM]). The primi-
tivity of these classes implies that a normal map obtained from twice
a fiber homotopy equivalence will have vanishing Kervaire-Arf invari-
ant.

We are now ready to handle the proof of Theorem A.

Proof of Theorem A. Let Ό2m be the dihedral group of order 2m,
for m an odd prime such that ^0(Z[D2m]) = 0 has no 2-torsion. We
choose our model Y to be CP 3 with the following Ό2m -action. If g
is a chosen generator of Z m c Ό2m, and z = [ZQ : z\: z2: z3] e CP 3 =
P(C4), then g z = [ξz0: ξzx: ξ~ιz2: ξ~ιz3], where ξ = elπi'm . Also,
we set h- z = [—T[: zό: - z j : zj]. There are several things to notice
about this action. First of all, we actually do have a D2m-action as
gm z = z, h2'Z = [-zQ: -z{: - z2: - z 3 ] = [z 0 : zx\ z 2 : z3] = z,
and gh'Z = g [--zϊ:Ίo: - z j : z^] = [-ξzj: ξzoi -ξ'1^: ξ~ι^ϊ] =
[ - ί - 1 ^ : ξ-*z0: -ξz3: ξz2] = h[ξ-'z0: ξ-ιzι:ξz2: ξz3] = hg~ι-z.
It follows from an easy computation that h is a free, orientation
reversing involution of Y = C P 3 . We also have that g*h is free on
Y for i = 1 , . . . , m - 1 and therefore that Iso(7) = {1, Z m = (g)}.
Notice that Yzm = Yoι Π Y23, where rOi = {[zo zι 0: 0]: z 0 , z\ e
C} = C P 1 , and Y23 is similarly defined. Now we can proceed to the
construction of an appropriate D2m-fiber homotopy equivalence.

Let Σ denote the sphere S1 = S(C4) with the lifted maps g and
h acting on it. Notice that these maps do not quite induce a D 2 m -
action on Σ because h2(ao, d\, a2, a3) = (—αo, —fli, -a2, —a3), for
(ao, d\, a2, a3) G Σ. However, we do get a D2m-action on the V±-
bundles associated to the S ̂ principal bundle Σ —• 7 , that is, on
Σ xsι V± = η±, where F+ = Γ2? + Γ2(* and K_ = Γ2 + Γ2™
as above. (Recall that if X and Y are G-spaces, then the twisted
product X XQ Y is the orbit space (X x Y)/G, where g(x, y) =
(xg~ι, gy) for all (JC, y) e X x Y and all geG.) The D2m-action
on Σ x5i F± is given by g[a, v] = [gα, τ;], where [a, v] is the point
in the orbit space corresponding to (α, υ) e Σ x V±. In particular,
h2[a,υ] = [h2a,v] = [-α,^] = [ α , ( - l ) v] = [ α , ^ ] . (Indeed,
say t; = (vx, ι;2) € F + . Then, (-1) v = ((-l)~2;7?;i, ( - l ) " 2 ^ ) =
(v\ ,v2) = υ.) In this way, η± become D2m-vector bundles. We
construct ω: η+ -• η- by taking I d x / , where / : F+ -• F_ is
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Petrie's map introduced previously, and passing to S1 -orbit spaces.
Since deg/ + = 1, we need only check the degree condition on ω for
isotropy groups H Φ 1. Now, the only non-trivial element of Iso(Γ)
is Z m . So, we must show that, for all y € YQ\ U I23 > (ω\y)Zm has
degree 1 when extended to 1 point compactifications.

At this point, we make the assumption that the relatively prime inte-
gers p and q are each = 1 mod m. Let p denote the 1-dimensional
complex Zm -representation which sends a generator to multiplication
by elπιlm. Then, restricting the D2W-action on Y to Z m , we see
that reszm Y = P(2ρ + 2/?"1), where P(V) denotes the space of
complex lines in the representation V. From this, it follows that
for y G Γ01 > *l+\y ~ P~2q Indeed, suppose a e Σ lies above y.
Then g[a, v] = [ga, v] = [p(g)a, v] = [a, ρ(g)v]. Since p and
q are each = 1 mod m, we can see that, as a Zm-representation,
η+\y = 2p~2. Similarly, we can compute that η-\y = 2/?~2, for any
y e You and that ι/±|̂  = 2p2, for any j ; e Y23. This implies that
(η±)zm = ΓOi U Γ23 (as subsets of the zero section) and the required
degree property easily follows. Therefore, ω is a \iim -fiber homotopy
equivalence.

It will be useful to build a D2m-equivariant, free, orientation re-
versing involution into our fiber homotopy equivalence (and hence
our normal map) to help with the signature obstruction which
will arise later. Let ψ\ Y —• Y be defined by <P[ZQ: Z\\ Z^\ zι\ =
[-Z2*. - z j : ZQ: Ύ\\ and note that φ commutes with U2 m . Notice that
?̂ lifts to η± in such a way that ω becomes a D2mxZ2-fiber homotopy

equivalence. To see this, define φ1: Σ -> Σ to be the obvious D2W-map
covering φ . Then ^ ± : η± —• /̂± defined by ^±[α, t;] = [^'(α), t>] are
involutions which cover φ and make η± into D2^ x Z2-vector bun-
dles. It is easy to check that ωo φ^_ = φl o ω and therefore, that φ
lifts to η± in such a way that ω becomes a T>2m χ Z2-map. To see
that ω is actually a U2m x Z2-fiber homotopy equivalence requires
that the degree property be considered once again.

Things become a bit more complicated at this point since the addi-
tion of the involution φ into our action introduces new elements into
Iso(Γ). Let Hi be the group of order two generated by φgjh , for j =
0 , . . . , m - l . Then Iso(7) = {1, Z m , Ho, . . . , Hm-X} and YH,-=
CPι II CP 1 for all j . To see this note that φgjh[z0: z\\ z 2 : z3] =
gjφh[z0: zx: z2: z{[ = [ξJz3: - ξjz2: ξ~jz{: - ξ~jzQ] and hence

YH> = {[zo' iξjzι zι i ^ z o ] } Π { [ z o : -i#zx\ zx: -iξ-jz0]}, where

/ = y/^Λ . Notice that YH> n YHJ = 0 , for all /, j distinct. (One way
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to see this is: z e YH> Π YHJ => φgιhz = φgjhz => gιhz = gJhz =>
^ " ' z = z => z € Ybi II ^23 But these points are not fixed by /// for
any /.)

Now, take y eY with isotropy group equal to {Dim x Z2)y = /// =
Z2, for some z ' G { 0 , . . . , m - l } . When the action on Y is restricted
to Hj, it is Z2-diffeomoφhic to P(l +1 +h+h), where A denotes the
non-trivial 1-dimensional complex Z2-representation. (Just write the
linear action of /// in terms of irreducible Z2-representations.) There-
fore, as ///-representations, η±\y will be equivalent to 2 1^, where
1# denotes the 1-dimensional complex trivial ///-representation.
(Note that, for instance, if y G P(h + h), η+\y = 2h2p + 2h~2q =
2 Ijy .) Using the fact that deg/+ = 1, it is not hard to check
that ω is indeed a Dιm

 χ Z2-fiber homotopy equivalence.

The U2m x Z2-fiber homotopy equivalence which we shall work with
is ώ = ω Θ Θ: η+ = η+ Θ η+ —• ηl = ^_ 0 r\- . We first verify that the
transversality condition holds.

We need to show that given y eY and an irreducible (D2m x
representation ^ with mψ(ηl\y) Φ 0, we have

< dψmψ{TY + r&- ηl\y) + dψ-\.

First, take j^ G Γ with {Dim χ ^2)y = -H/ = ^2 ? fo r some / G
{ l , . . . , m - l } . Previous considerations show us that (rfc - rjl)\y =
4 - 1 ^ - 4 - 1 ^ = 0 in RO(Z2). Also, for such y, TY\y = \H + 2h .
Since dh = 1,'we have mιR(TY\y) = 2 < m ^ ( r y + i/ i-^ | j ; ) = 4, as
desired. (Recall that mψ counts multiplicity as real representations.)
Similarly, the desired result holds for ψ = 1^ .

Next, take y G Y with Gy = Zm. The restricted Zm-action on
y is equivalent to P(2p + 2p~ι), where /? is the standard Z m -
representation as above. If y G ΓΌi ? then TY\y = 1 + 2/?~2, while
rfc - ηl\y = 4p~2 - 4p~2, by choice of p and q. If y G Y23 > then
Γ7 |^ = 2p2 + 1 and ί/̂  - ηl\y = 4/?2 - 4p2. In either case, it is quite
easy to verify the transversality condition. Of course, the stability
condition holds when y has trivial isotropy group.

Now that the transversality condition has been verified, we can con-
struct the smooth G-manifold X, the G-map f:X->Y of degree 1,
and the stable G-vector bundle isomorphism b as indicated above.

Notice that Iso(ί/ΐ) c Iso(F). Indeed, due to the nature of our
action, if H is not in Iso(7), then it acts without fixed points on
Y and hence cannot be in Iso(ί/ΐ). This guarantees that Iso(Jf) =
Iso(y). We also note that X satisfies the gap hypothesis since Y
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clearly does. Finally, we mention that Y and all of its fixed point set
components under the G-action are simply connected.

It follows from our construction that Xz™ is D2m/Zm-diffeomorphic
to Yzm . This is a result of the fact that lz is not a sub-representation

m

of η±\y for any y e Yzm. Now, given Hj e Iso(Γ), write YHJ as
TT TT

Yo

 j II Yχ

 j. At this point, we do 0 and 1-dimensional equivariant
surgeries on X, X*J = (fHj)-χ(Y"j), and x"J = (fH>)~ι{Y?'). This
makes X a connected and simply connected Ό2m x Z2-manifold and
provides Λfo mxz2(Hj)IHj = (gJ'h) χ Z2-homotoρy equivalences be-

TT m TT TT

tween X. J and Y J

 9 for i = 0, 1. (Indeed, since the X. J 's are
simply connected, closed surfaces, they are 2-spheres i.e., CPι 's. The
map / | Hj is a map degree 1 between spheres and is hence a homo-

topy equivalence. It is actually a (gjh) x Z2-homotopy equivalence
since the action of this group is free.) At this stage, we forget about the
Z 2 = {1, #?}-action, except to state that we now have an adjusted D 2 m -
normalmap (X, f,b) with target Y such that the D2m-manifold X
admits a Ό2m -equivariant, orientation reversing involution.

We now consider the surgery obstruction a\ (f9b) eL%(Z[Ό2m] ,w).
Since (X, /', b) is an adjusted D2m-normal map with fs an equi-

variant diffeomorphism, we see that according to Lemmas 2.5 and
2.6, aG(σ\(f, b)) = 0. Therefore, σ\(f9 b) comes from an element
σs

{(f,b)eLs

6(Z[Ό2m],w).
According to the paragraph after Lemma 3.2, the Kervaire-Arf in-

variant of σ[(/, b) vanishes as the D2m-fiber homotopy equivalence
ώ is twice a fiber homotopy equivalence by construction. Therefore,
σf (/, b) must lie in the free part of L£(Z|T>2m] 9w). (Also relevant
is the formula due to Masuda [M2], which considers the Kervaire-Arf
invariant for obstructions in L(Z[1], 1) obtained from certain fiber
homotopy equivalences which are related to ours. We note that the in-
clusion 1 —• Z2 induces an isomorphism L(Z[1], 1) -> L(Z[Z2], ID).
Seep. 164of[W2].)

Now, let Γ = {all cyclic subgroups of U2 m }. According to the Dress
Induction Theorem found in [Dr], Ls(-) ® Q is Γ-computable which
implies that

Ls

6(Z[Ό2m], w) 0 Q ^ s [ J LS

6(Z[H] ,w\H)<g>Q
Her

is an injection, where Res gives coordinate-wise restriction. Now, if H
is of order 1 or 2, then Res#(σf(/, b) ® Q) = 0 because L£(Z[1], 1)
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and L£(Z[Z2], ID) are each isomorphic to Z2 as mentioned above.
That leaves us only with ResZ m(σf(/, b) ® Q) e Ls

6(Z[Zm], 1) <g> Q
and this term can be shown to vanish. Indeed, let Resz (ofί/, b)) e
L£(Z[Zm], 1) denote the obstruction obtained by restricting the Him"
action to Zm . Since the restricted orientation homomorphism is triv-
ial, Petrie's formula ([PI]) applies and tells us that

S i g n ( R e s z > ί ( / , b))) = Sign(Zm, X) - Sign(Zm, Y).

Now, by construction, X admits a Zm-equivariant, orientation re-
versing involution and this guarantees that Sign(Zm, X) = 0. (In-
deed, whenever a G-manifold M admits G-equivariant, orientation
reversing diffeomorphism, we have that Sign(G,M) = 0.) Since
Sign(Zm, Y) is obviously 0, we have that Sign(ResZw(σf (/, b))) = 0.
But this implies that Res z (σfCΛ ^)®Q) vanishes because the torsion
free part of Ls

6(Z[Zm], 1) "is detected by the multisignature. Hence, by
the injectivity of Res, we have that σ[(/, &)®Q = 0. This means that
σ[(/, b) lies in the torsion part of Ls

6(Z[D2m], w) and as we saw this
implies that σf(/, b) = 0. Thus, σχ(f9 b) = 0 in Lj(Z[D 2 w ] , ty)
and we can use U2m-surgery to construct the triple (Xή, F, B), where
F: Λ^ -• Y = CP 3 is a D2m-homotopy equivalence.

The stable G-vector bundle isomorphism B between TXή and
F*(TY + ηϊ-ηl) allows us to compute the Pontryagin class of the
smooth manifold Xή. In particular, the first Pontryagin class is given
by Pι(Xή) = (4 + S(p2 - l)(q2 - ί))x2, where x € H2(Xή) is a gen-
erator. (See [H] §§6 and 7 for more details on this calculation.) So,
Xή = χk 9 where k = (p2 - \){q2 - l)/3 and by varying p and q
(within the constraints that p and q are relatively prime and each
= 1 mod m) we can build D2m-actions for infinitely many k. D
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