ANY BLASCHKE MANIFOLD OF THE HOMOTOPY TYPE OF C P^{n} HAS THE RIGHT VOLUME

C. T. Yang
Dedicated to Professor S. S. Chern

The aim of this paper is to prove the result stated in the title.

By a Blaschke manifold [1, p. 135], we mean a connected closed Riemannian manifold which has the property that the cut locus of each of its points, when viewed in the tangent space, is a round sphere of a constant radius. It is well known that in any Blaschke manifold, all geodesics are smoothly simply closed and have the same length. The canonical examples of a Blaschke manifold are the unit n-sphere S^{n}, the real, complex, quaternionic projective n-spaces $\mathbf{R} P^{n}, \mathbf{C} P^{n}, \mathbf{H} P^{n}$ and the Cayley projective plane $\mathbf{C a} P^{2}$ with their standard Riemannian metric. These Blaschke manifolds will be referred to as the canonical Blaschke manifolds. For general informations on Blaschke manifolds, see [1].

The Blaschke conjecture says that any Blaschke manifold, up to a constant factor, is isometric to a canonical Blaschke manifold. This conjecture looks plausible, because it has been shown in [3, 7] that any Blaschke manifold either is diffeomorphic to S^{n} or $\mathbf{R} P^{n}$, or is of the homotopy type of $\mathbf{C} P^{n}$, or is a 1-connected closed manifold having the integral cohomology ring of $\mathbf{H} P^{n}$ or $\mathbf{C a} P^{2}$. However, so far it has been proved only for spheres and real projective spaces [2, $6,8,9]$.

One crucial step in the proof of the Blaschke conjecture for spheres is to show that any Blaschke manifold diffeomorphic to S^{n} has the right volume. Hence we formulate the weak Blaschke conjecture [10] which says that any Blaschke manifold has the right volume.

Let M be a d-dimensional Blaschke manifold, $U M$ the space of unit tangent vectors of M and $C M$ the space of oriented closed geodesics in M. Then $U M$ and $C M$ are oriented connected smooth manifolds and there is a natural oriented smooth circle bundle $\pi: U M$ $\rightarrow C M$. In [8], it is shown that, if e denotes the Euler class of this
circle bundle, then

$$
i(M)=\frac{1}{2}\left\langle e^{d-1},[C M]\right\rangle
$$

(i.e., one half of the value of e^{d-1} at the fundamental homology class [$C M$] of $C M$) is an integer, called the Weinstein integer of M, and that, if ℓ denotes the length of closed geodesics in M, then

$$
\operatorname{vol} M=\left(\frac{\ell}{2 \pi}\right)^{d} i(M) \operatorname{vol} S^{d}
$$

Because of these results, the weak Blaschke conjecture means that any Blaschke manifold has the right Weinstein integer. Since the Weinstein integer of a Blaschke manifold depends only on the ring structure of the integral cohomology ring of its geodesic space, the weak Blaschke conjecture is essentially a topological problem rather than a geometrical problem.

The purpose of this paper is to prove the weak Blaschke conjecture for complex projective spaces. In fact, we are going to prove the following

Theorem. If M is a Blaschke manifold of the homotopy type of the complex projective n-space $\mathbf{C} P^{n}, n \geq 1$, then the Weinstein integer of M is equal to that of $\mathbf{C} P^{n}$, i.e., $\binom{2 n-1}{n-1}$. In other words, if ℓ denotes the length of closed geodesics in M and $S^{2 n}$ denotes the unit $2 n$-sphere, then

$$
\operatorname{vol} M=\left(\frac{\ell}{2 \pi}\right)^{2 n}\binom{2 n-1}{n-1} \operatorname{vol} S^{2 n}
$$

In particular, if closed geodesics in M are of the same length as those in $\mathbf{C} P^{n}$, then

$$
\operatorname{vol} M=\operatorname{vol} C P^{n} .
$$

However, we are not able to prove results for complex projective spaces analogous to those for spheres as seen in [2, 6]. If one succeeds in doing so, then the Blaschke conjecture for complex projective spaces* follows.
Let \mathbf{R}^{k} be the euclidean k-space of coordinates x_{1}, \ldots, x_{k}, let D^{k} be the unit closed k-disk in \mathbf{R}^{k} given by $x_{1}^{2}+\cdots+x_{k}^{2} \leq 1$, and let S^{k-1} be the unit ($k-1$)-sphere in \mathbf{R}^{k} given by $x_{1}^{2}+\cdots+x_{k}^{2}=1$.

For the sake of convenience, we regard \mathbf{R}^{k} as a subspace of \mathbf{R}^{k+1} by identifying every $\left(x_{1}, \ldots, x_{k}\right) \in \mathbf{R}^{k}$ with $\left(x_{1}, \ldots, x_{k}, 0\right) \in \mathbf{R}^{k+1}$. Let \mathbf{R}^{k} be naturally oriented, let D^{k} have the same orientation as \mathbf{R}^{k} and let S^{k-1} be oriented so that $\partial D^{k}=S^{k-1}$.

If k is even, say $k=2 n+2$, we may regard $\mathbf{R}^{2 n+2}$ as the unitary $(n+1)$-space \mathbf{C}^{n+1} by identifying every $\left(x_{1}, x_{2}, \ldots, x_{2 n+1}, x_{2 n+2}\right) \in$ $\mathbf{R}^{2 n+2}$ with $\left(x_{1}+\sqrt{-1} x_{2}, \ldots, x_{2 n+1}+\sqrt{-1} x_{2 n+2}\right) \in \mathbf{C}^{n+1}$. Then there is a natural free orthogonal action of S^{1} on $S^{2 n+1}$. The orbit space $S^{2 n+1} / S^{1}$ is the complex projective n-space which we denote by $\mathbf{C} P^{n}$. Since the projection of $S^{2 n+1}$ into $\mathbf{C} P^{n}$ is an oriented S^{1} bundle, there is a natural orientation on $\mathbf{C} P^{n}$. Since $S^{2 n+1} \subset S^{2 n+3}$, $\mathbf{C} P^{n} \subset \mathbf{C} P^{n+1}$.

Throughout this paper, integers are used as coefficients in both homology and cohomology. For any oriented closed manifold $Y,[Y]$ denotes the fundamental homology class on Y. It is clear that, if g is the generator of $H^{2}\left(\mathbf{C} P^{1}\right)=H^{2}\left(\mathbf{C} P^{n}\right)$ with $g \cap\left[\mathbf{C} P^{1}\right]=1$, then $g^{n} \cap\left[\boldsymbol{C} P^{n}\right]=1$.

Hereafter, M always denotes a Blaschke manifold of the homotopy type of $\mathbf{C} P^{n}, n \geq 1$. Since the case $n=1$ has been determined [4], we assume below that $n>1$.

Let g be a generator of $H^{2}(M)$ and let M be so oriented that $g^{n} \cap[M]=1$. Let $U M$ be the closed smooth ($4 n-1$)-manifold consisting of all unit tangent vectors of M, and let $C M$ be the closed smooth ($4 n-2$)-manifold consisting of all oriented closed geodesics in M. Then
(1) $U M$ and $C M$ are 1-connected and there is a natural oriented smooth $S^{2 n-1}$ bundle $\tau: U M \rightarrow M$ and a natural oriented smooth S^{1} bundle $\pi: U M \rightarrow C M$ such that for any $u \in U M, u$ is the unit tangent vector of πu at τu.

Since M is oriented, it follows from (1) that there is a natural orientation on $U M$ and then a natural orientation on $C M$.

As a consequence of (1), we have
(2) The Gysin sequences of the oriented sphere bundles $\tau: U M \rightarrow$ M and $\pi: U M \rightarrow C M$, namely

$$
\begin{aligned}
& \cdots \rightarrow H^{k-2 n}(M) \xrightarrow{\smile e(\tau)} H^{k}(M) \xrightarrow{\tau_{*}^{*}} H^{k}(U M) \rightarrow H^{k-2 n+1}(M) \rightarrow \cdots, \\
& \cdots \rightarrow H^{k-2}(C M) \xrightarrow{\hookrightarrow} H^{k}(C M) \xrightarrow{\pi_{*}^{*}} H^{k}(U M) \rightarrow H^{k-1}(C M) \rightarrow \cdots
\end{aligned}
$$

are exact, where $e(\tau)$ and e are the respective Euler classes of the oriented sphere bundles.

Since $e(\tau) \cap[M]$ is the Euler characteristic of M which is equal to $n+1$, it follows from (2) that

$$
\begin{align*}
& H^{k}(U M)= \begin{cases}\mathbf{Z} & \text { for } k=2 i \text { or } 4 n-1-2 i, \\
\mathbf{Z}_{n+1} & \text { for } k=2 n, \\
0 & \text { otherwise },\end{cases} \tag{3}\\
& H^{k}(C M)= \begin{cases}(i+1) \mathbf{Z} & \text { for } k=2 i \text { or } 4 n-2-2 i, \\
0 & \text { otherwise },\end{cases}
\end{align*}
$$

where \mathbf{Z} denotes the group of integers, \mathbf{Z}_{n+1} denotes the group of integers modulo $n+1$ and $(i+1) \mathbf{Z}$ denotes the direct sum of $i+1$ copies of \mathbf{Z}. If a is an element of $H^{2}(C M)$ with $\pi^{*} a=\tau^{*} g$, then for any $i=1, \ldots, n,\left(\pi^{*} a\right)^{i}$ is a generator of $H^{2 i}(U M)$ and for any $i=1, \ldots, n-1,\left\{a^{i}, a^{i-1} e, \ldots, a e^{i-1}, e^{i}\right\}$ is a basis of $H^{2 i}(C M)$. Moreover, $H^{2 n}(C M)$ is generated by $\left\{a^{n}, a^{n-1} e, \ldots, a e^{n-1}, e^{n}\right\}$ and hence the cohomology ring $H^{*}(C M)$ is generated by $\{a, e\}$.

Remark 1. The element $a \in H^{2}(C M)$ in (3) can be replaced by and only by $a+k e$ with $k \in \mathbf{Z}$. For our purpose, we shall pick a special a as specified in (5).
(4) The involution $\lambda: U M \rightarrow U M$ defined by $\lambda(u)=-u$, is orientation-preserving and it induces an involution $\lambda: C M \rightarrow C M$ such that $\lambda \pi=\pi \lambda$. Moreover, $\lambda: C M \rightarrow C M$ is orientation-reversing.

Proof. It is a consequence of the following facts. First, for any $x \in$ $M, \lambda\left(\tau^{-1} x\right)=\tau^{-1} x$ and $\tau: \tau^{-1} x \rightarrow \tau^{-1} x$ is orientation-preserving. Second, for any $\gamma \in C M, \lambda\left(\pi^{-1} \gamma\right)=\pi^{-1}(-\gamma)$ and $\lambda: \pi^{-1} \gamma \rightarrow$ $\pi^{-1}(-\gamma)$ is orientation-reversing.
(5) The element $a \in H^{2}(C M)$ in (3) can be uniquely chosen such that

$$
e=a-b, \quad b=\lambda^{*} a .
$$

Proof. Let γ be an oriented closed geodesic in M and let p and q be two points of γ which divide γ into two arcs of equal length. It is known that the union of all the closed geodesics in M which pass through p and q is a smooth 2 -sphere K, and that K can be oriented
so that $g \cap[K]=1$. Let D and D^{\prime} be the oriented closed 2-disks in K such that they have the same orientation as K and $\partial D=\gamma=-\partial D^{\prime}$.

Since $\tau: U M \rightarrow M$ is an $S^{2 n-1}$ bundle with $2 n-1 \geq 3$, there is a map $f: K \rightarrow U M$ such that for any $x \in K, \tau f(x)=x$, and for any $x \in \gamma, \pi f(x)=\gamma$. Then we have maps

$$
\pi f: K \rightarrow C M, \quad \pi(f \mid D): D / \partial D \rightarrow C M, \quad \pi\left(f \mid D^{\prime}\right): D^{\prime} / \partial D^{\prime} \rightarrow C M
$$

which represent three elements of $H_{2}(C M)$, say $\bar{e}, \bar{a}, \bar{b}$. It is not hard to see that $\bar{e}, \bar{a}, \bar{b}$ are unique and

$$
\bar{e}=\bar{a}+\bar{b} .
$$

Now we assert that

$$
\bar{b}=\lambda_{*} \bar{a} .
$$

Let

$$
h: D \times[0, \pi] \rightarrow K
$$

be the homotopy such that (i) for any $x \in D, h(x, 0)=x$, and (ii) if ξ is a geodesic segment from p to q contained in D, then for any $\theta \in[0, \pi], h(\xi \times\{\theta\})$ is a geodesic segment from p to q such that ξ and $h(\xi \times\{\theta\})$ intersect at an angle θ at p and $h: \xi \times\{\theta\} \rightarrow h(\xi \times\{\theta\})$ is isometric. Intuitively speaking, h is the homotopy such that $h(D \times\{\theta\})$ is the closed 2 -disk in K obtained by rotating D an angle θ around p and q. Therefore $h(D \times\{0\})=D$, $h(D \times\{\pi\})=D^{\prime}$ and for any $\theta \in[0, \pi], h(\partial D \times\{\theta\})$ is an oriented closed geodesic in M containing p and q such that $h(\partial D \times\{0\})=\gamma$ and $h(\partial D \times\{\pi\})=\lambda \gamma$. Hence we have a map

$$
H^{\prime}: \partial(D \times[0, \pi]) \rightarrow U M
$$

such that (i) for any $x \in D, H^{\prime}(x, 0)=\lambda f(x)=\lambda f h(x, 0)$ and $H^{\prime}(x, \pi)=f h(x, \pi)$ and (ii) for any $(x, \theta) \in \partial D \times[0, \pi], H^{\prime}(x, \theta)$ is the unit tangent vector of $\lambda h(\partial D \times\{\theta\})$ at $h(x, \theta)$. Clearly for any $(x, \theta) \in \partial(D \times[0, \pi]), \tau H^{\prime}(x, \theta)=h(x, \theta)$. Since $\pi: U M \rightarrow M$ is an $S^{2 n-1}$ bundle with $2 n-1 \geq 3, H^{\prime}$ can be extended to a map

$$
H: D \times[0, \pi] \rightarrow U M
$$

such that for any $(x, \theta) \in D \times[0, \pi], \tau H(x, \theta)=h(x, \theta)$. The homotopy H induces a homotopy

$$
\pi H: D / \partial D \times[0, \pi] \rightarrow C M
$$

which is a homotopy between $\lambda \pi(f \mid D)$ and $\pi\left(f \mid D^{\prime}\right)$. Hence $\lambda_{*} \bar{a}=\bar{b}$.

Let $e, a \in H^{2}(C M)$ be the elements as seen in (2) and (3). Then

$$
\begin{aligned}
& e \cap \bar{e}=\pi^{*} e \cap \pi_{*}^{-1} \bar{e}=0 \\
& a \cap \bar{e}=\pi^{*} a \cap \pi_{*}^{-1} \bar{e}=\tau^{*} g \cap \tau_{*}^{-1}[K]=g \cap[K]=1
\end{aligned}
$$

Moreover, we see from the Gysin homology and cohomology sequences of $\pi: U M \rightarrow C M$ that

$$
e \cap \bar{a}=1
$$

As noted in Remark 1, a can be replaced by and only by $a+k e$, where $k \in \mathbf{Z}$. Hence we can uniquely choose a such that

$$
a \cap \bar{a}=1
$$

Let

$$
b=a-e
$$

It is easy to verify that

$$
\begin{array}{ll}
a \cap \bar{a}=1, & a \cap \bar{b}=0 \\
b \cap \bar{a}=0, & b \cap \bar{b}=1
\end{array}
$$

which means that $\{a, b\}$ is the basis of $H^{2}(C M)$ dual to the basis $\{\bar{a}, \bar{b}\}$ of $H_{2}(C M)$. Since $\lambda_{*} \bar{a}=\bar{b}$, it follows that $\lambda^{*} a=b$. Hence the proof is completed.

Remark 2. The choice of $a \in H^{2}(C M)$ given in (5) is a key step of the proof of our theorem. In fact, we shall prove later that in $H^{*}(C M)$,

$$
a^{n+1}=0
$$

If this is shown, then our theorem can be proved as follows. Since $a^{n+1}=0, b^{n+1}=\lambda^{*} a^{n+1}=0$ so that

$$
\begin{aligned}
e^{2 n-1} & =(a-b)^{2 n-1} \\
& =(-1)^{n-1}\binom{2 n-1}{n-1} a^{n} b^{n-1}+(-1)^{n}\binom{2 n-1}{n} a^{n-1} b^{n}
\end{aligned}
$$

By (4), $a^{n-1} b^{n}=-a^{n} b^{n-1}$ and then

$$
e^{2 n-1}=(-1)^{n-1} 2\binom{2 n-1}{n-1} a^{n} b^{n-1}
$$

By Poincaré duality, there is an element $\left(a^{n}\right)^{*} \in H^{2 n-2}(C M)$ such that $a^{n}\left(a^{n}\right)^{*} \cap[C M]=1$. Since $a^{n+1}=0$, we may let $\left(a^{n}\right)^{*}=r b^{n-1}$, where $r \in \mathbf{Z}$. Therefore

$$
1=a^{n}\left(a^{n}\right)^{*} \cap[C M]=\left(a^{n} b^{n-1} \cap[C M]\right)
$$

so that $a^{n} b^{n-1} \cap[C M]=r= \pm 1$. Hence the Weinstein integer of M is

$$
i(M)=\frac{1}{2} e^{2 n-1} \cap[C M]=\binom{2 n-1}{n-1} .
$$

Remark 3. If M is merely a Riemannian $2 n$-manifold, $n>1$, which is of the homotopy type of $\mathbf{C} P^{n}$ and in which all geodesics are smoothly closed and have the same length, (1), (2), (3) and (4) remain valid. Hence the stronger assumption that M is a Blaschke manifold of the homotopy type of $\mathbf{C} P^{n}, n>1$, is used for the first time in the proof of (5).
(6) Let

$$
\tau^{\prime}: W_{1} \rightarrow M, \quad \pi^{\prime}: W_{2} \rightarrow C M
$$

be the smooth $D^{2 n}$ bundle and D^{2} bundle associated with $\tau: U M \rightarrow$ M and $\pi: U M \rightarrow C M$ respectively. Then W_{1} and W_{2} are 1connected compact smooth $4 n$-manifolds with boundary $U M$ and there is a 1 -connected closed smooth $4 n$-manifold W obtained by pasting together W_{1} and W_{2} along their common boundary $U M$ via the identity diffeomorphism. Moreover, there is a natural involution $\lambda: W \rightarrow W$ such that $\lambda \mid U M$ and $\lambda \mid C M$ coincide with those given in (4) and it has M as its fixed point set.

We let W_{1} be oriented so that $\partial W_{1}=U M$, and let W have the same orientation as W_{1}.

The inclusion map of $C M$ into W induces an isomorphism of $H^{2}(W)$ onto $H^{2}(C M)$. If we use the isomorphism to identify $H^{2}(W)$ with $H^{2}(C M)$, then

$$
H^{k}(W)= \begin{cases}(i+1) \mathbf{Z} & \text { for } k=2 i \text { or } 4 n-2 i, i=0, \ldots, n, \\ 0 & \text { otherwise },\end{cases}
$$

and for any $i=1, \ldots, n,\left\{a^{i}, a^{i-1} e, \ldots, a e^{i-1}, e^{i}\right\}$ is a basis of $H^{2 i}(W)$ and so is $\left\{a^{i}, a^{i-1} b, \cdots, a b^{i-1}, b^{i}\right\}$, where

$$
b=\lambda^{*} a, \quad e=a-b
$$

Moreover, the cohomology ring $H^{*}(W)$ is generated by $\{a, e\}$ as well as by $\{a, b\}$.

Proof. The computation of $H^{k}(W)$ is a consequence of (3) and the Mayer-Vietoris sequence of ($W ; W_{1}, W_{2}$) and the rest is rather clear.

Remark 4. For the special case $M=\mathbf{C} P^{n}$, closed geodesics in M are of length π and there is a λ-invariant homeomorphism f of W onto $\mathbf{C} P^{n} \times \mathbf{C} P^{n}$ given as follows.

Whenever $u \in U M$, there is a totally geodesic smooth 2 -sphere K_{u} in M which is the union of the geodesic segments from τu to $\exp (\pi / 2) u$, where \exp is the exponential map. W_{1} is obtained from $[0,1] \times U M$ by identifying every $(0, u) \in[0,1] \times U M$ with τu. For (r, u) in W_{1}, we let

$$
f(r, u)=(\exp (r \pi / 8) u, \exp (-r \pi / 8) u)
$$

W_{2} is obtained from $[0,1] \times U M$ by identifying every $(0, u) \in$ $[0,1] \times U M$ with πu. For any $(r, u) \in[0,1] \times U M$, there is a unique $u_{r} \in U M$ such that u_{r} is tangent to K_{u} at τu and the angle from u to u_{r} is $(1-r) \pi / 2$ using the orientation on K_{u}. For (r, u) in W_{2}, we let

$$
f(r, u)=\left(\exp (2-r)(\pi / 8) u_{r}, \exp (-2+r)(\pi / 8) u_{r}\right)
$$

Notice that if πu is the equator of K_{u} and $f(0, u)=(x, y)$, then x is the north pole of K_{u} and y is the south pole of K_{u}.

Let us use f to identify W with $\mathbf{C} P^{n} \times \mathbf{C} P^{n}$. Then $p: W \rightarrow M$ defined by $p(x, y)=x$ is a trivial fibre bundle of fibre $\mathbf{C} P^{n}$ and $p: C M \rightarrow M$ is a non-trivial fibre bundle of fibre $\mathbf{C} P^{n-1}$. Hence it is preferable to consider $H^{*}(W)$ rather than $H^{*}(C M)$.

For the general case, we are not able to construct the fibration $p: W \rightarrow M$. However, we can still prove that $H^{*}(W)$ is isomorphic to $H^{*}\left(\mathbf{C} P^{n} \times \mathbf{C} P^{n}\right)$ as for the special case $M=\mathbf{C} P^{n}$. This is what we are going to do from now on.
(7) The fixed point set M of $\lambda: W \rightarrow W$ is a closed smooth $2 n$ manifold such that

$$
a^{n} \cap[M]=1, \quad e \cap[M]=0
$$

Moreover, there is a smooth imbedding

$$
\phi: \mathbf{C} P^{n} \rightarrow W
$$

such that
(i) $a^{n} \cap \phi_{*}\left[\mathbf{C} P^{n}\right]=1, b \cap \phi_{*}\left[\mathbf{C} P^{n}\right]=0$,
(ii) M and $\phi\left(\mathbf{C} P^{n}\right)$ intersect transversally at a single point and
(iii) $\phi\left(\mathbf{C} P^{n}\right)$ and $\lambda \phi\left(\mathbf{C} P^{n}\right)$ intersect transversally at an odd number of points.

Proof. Since the homomorphism of $H^{2}(W)$ into $H^{2}(M)$ induced by the inclusion map of M into W maps a into g, we infer that $a^{n} \cap[M]=g^{n} \cap[M]=1$. Since M is the fixed point set of $\lambda: W \rightarrow W$ and λ is orientation-preserving, it follows that

$$
b \cap[M]=\lambda^{*} a \cap[M]=a \cap \lambda_{*}[M]=a \cap[M] .
$$

Hence $e \cap[M]=(a-b) \cap[M]=0$.
Let $\phi^{\prime}: \mathbf{C} P^{1} \rightarrow C M$ be a smooth imbedding homotopic to the imbedding of $\pi(f \mid D)$ of $D / \partial D\left(=\mathbf{C} P^{1}\right)$ into $C M$ given in the proof of (5). Then

$$
a \cap \phi_{*}^{\prime}\left[\mathbf{C} P^{1}\right]=1, \quad b \cap \phi_{*}^{\prime}\left[\mathbf{C} P^{1}\right]=0 .
$$

Since for any $k=3, \ldots, 2 n-2, \pi_{k}(C M)=\pi_{k}(U M)=\pi_{k}(M)=0$ and since $\operatorname{dim} C M>2 \operatorname{dim} C P^{n-1}$, ϕ^{\prime} can be extended to a smooth imbedding $\phi^{\prime \prime}: \mathbf{C} P^{n-1} \rightarrow C M$.

Let T be a closed tubular neighborhood of $\mathbf{C} P^{n-1}$ in $\mathbf{C} P^{n}$ and let $\pi^{\prime}: W_{2} \rightarrow C M$ be the D^{2} bundle we had earlier. Then $\phi^{\prime \prime}$ can be extended to a smooth imbedding $\phi^{\prime \prime \prime}: T \rightarrow W_{2}$ such that

$$
\phi^{\prime \prime \prime}(T)=\pi^{\prime-1} \phi^{\prime \prime}\left(\mathbf{C} P^{n-1}\right) .
$$

Clearly $\phi^{\prime \prime \prime}(\partial T)$ is a smooth $(2 n-1)$-sphere in $U M$ at which $\phi^{\prime \prime \prime}(T)$ intersects $U M$ transversally. Since $\pi_{2 n-1}\left(W_{1}\right)=\pi_{2 n-1}(M)=0$ and $\operatorname{dim} W=2 \operatorname{dim} \mathbf{C} P^{n}>4$, we infer that $\phi^{\prime \prime \prime}$ can be extended to a smooth imbedding $\phi: \mathbf{C} P^{n} \rightarrow W$ such that $\phi\left(\mathbf{C} P^{n}-T\right) \subset W_{1}$. From the construction of ϕ, we see that

$$
a \cap \phi_{*}\left[\mathbf{C} P^{1}\right]=1, \quad b \cap \phi_{*}\left[\mathbf{C} P^{1}\right]=0 .
$$

Therefore for any $i=2, \ldots, n$,

$$
a \cap \phi_{*}\left[\mathbf{C} P^{i}\right]=\phi_{*}\left[\mathbf{C} P^{i-1}\right], \quad b \cap \phi_{*}\left[\mathbf{C} P^{i}\right]=0 .
$$

Hence

$$
a^{n} \cap \phi_{*}\left[\mathbf{C} P^{n}\right]=1, \quad b \cap \phi_{*}\left[\mathbf{C} P^{n}\right]=0 .
$$

Let $p: \widetilde{W} \rightarrow W$ be the smooth S^{1} bundle of Euler class e. From its Gysin sequence, we see that

$$
H^{k}(\widetilde{W})= \begin{cases}\mathbf{Z} & \text { for } k=2 i \text { or } 4 n+1-2 i, i=0, \ldots, n ; \\ 0 & \text { otherwise }\end{cases}
$$

Moreover, for any $i=0, \ldots, n,\left(p^{*} a\right)^{i}$ is a generator of $H^{2 i}(\widetilde{W})$. Since $e \cap[M]=0, p^{-1} M$ is diffeomorphic to $S^{1} \times M$ so that there is an oriented closed smooth submanifold M^{\prime} of $p^{-1} M$ such that
$p: M^{\prime} \rightarrow M$ is an orientation-preserving diffeomorphism. Now

$$
\left(p^{*} a\right)^{n} \cap\left[M^{\prime}\right]=a^{n} \cap p_{*}\left[M^{\prime}\right]=a^{n} \cap[M]=1 .
$$

Hence [M^{\prime}] is a generator of $H_{2 n}(\widetilde{W})$.
Since $e^{n} \cap \phi_{*}\left[\mathbf{C} P^{n}\right]=a^{n} \cap \phi_{*}\left[\mathbf{C} P^{n}\right]=1, p^{-1} \phi\left(\mathbf{C} P^{n}\right)$ is a $(2 n+1)$ sphere. From the Gysin sequence of $p: \widetilde{W} \rightarrow W$, we see that [$p^{-1} \phi\left(\mathbf{C} P^{n}\right)$] is a generator of $H_{2 n+1}(\widetilde{W})$. Therefore, by Poincaré duality, $\left[M^{\prime}\right] \cap\left[p^{-1} \phi\left(\mathbf{C} P^{n}\right)\right]= \pm 1$. Hence $[M] \cap \phi_{*}\left[\mathbf{C} P^{n}\right]= \pm 1$. That $[M] \cap \phi_{*}\left[\mathbf{C} P^{n}\right]=1$ is a consequence of the choice of the orientation of W. In fact, ϕ may be so chosen that the closed $2 n$-disk $\phi\left(\mathbf{C} P^{n}\right) \cap W_{1}$ intersects M transversally at exactly one point.
Altering ϕ by a homotopy if it is necessary, we may assume that $\phi\left(\mathbf{C} P^{n}\right)$ and $\lambda \phi\left(\mathbf{C} P^{n}\right)$ intersect transversally at finitely many points. Besides the point $M \cap \phi\left(\mathbf{C} P^{n}\right)$, other points in $\phi\left(\mathbf{C} P^{n}\right) \cap \lambda \phi\left(\mathbf{C} P^{n}\right)$ are in pairs. Hence $\phi_{*}\left[\mathbf{C} P^{n}\right] \cap(\lambda \phi)_{*}\left[\mathbf{C} P^{n}\right]=$ odd integer.

Let N be an integer $>4 n$, let

$$
\lambda: \mathbf{C} P^{N} \times \mathbf{C} P^{N} \rightarrow \mathbf{C} P^{N} \times \mathbf{C} P^{N}
$$

be the involution defined by $\lambda(x, y)=(y, x)$ and let $\{a, b\}$ be the basis of $H^{2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$ such that

$$
\begin{aligned}
& a \cap\left[\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right]=\left[\mathbf{C} P^{N-1} \times \mathbf{C} P^{N}\right], \\
& b \cap\left[\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right]=\left[\mathbf{C} P^{N} \times \mathbf{C} P^{N-1}\right] .
\end{aligned}
$$

(8) There is a smooth imbedding

$$
f: W \rightarrow \mathbf{C} P^{N} \times \mathbf{C} P^{N}
$$

such that $f \lambda=\lambda f, f^{*} a=a$ and $f^{*} b=b$. Moreover, there is a natural isomorphism

$$
H^{2 n}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right) \cong H_{2 n}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)
$$

which maps every $x \in H^{2 n}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$ into $x \cap f_{*}[W] \in$ $H_{2 n}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$.

Proof. There is a smooth map $f^{\prime}: W \rightarrow \mathbf{C} P^{N}$ such that $f^{\prime *}$ maps the generator g of $H^{2}\left(\mathbf{C} P^{N}\right)$ into a. Since $\operatorname{dim} \mathbf{C} P^{N}>2 \operatorname{dim} W, f^{\prime}$ can be approximated by a smooth imbedding homotopic to f^{\prime}. (See [5].) Therefore we may assume that f^{\prime} is a smooth imbedding. Hence $f: W \rightarrow \mathbf{C} P^{N} \times \mathbf{C} P^{n}$ defined by $f(x)=\left(f^{\prime} x, \lambda f^{\prime} x\right)$ is as desired.

By Poincaré duality, there is an isomorphism $H^{2 n}(W) \cong H_{2 n}(W)$ which maps every $x \in H^{2 n}(W)$ into $x \cap[W] \in H_{2 n}(W)$. Since

$$
f^{*}: H^{2 n}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right) \rightarrow H^{2 n}(W)
$$

and

$$
f_{*}: H_{2 n}(W) \rightarrow H_{2 n}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)
$$

are isomorphisms, the second part of (8) follows.
Now we consider an oriented λ-invariant connected closed smooth $4 n$-submanifold X of $\mathbf{C} P^{N} \times \mathbf{C} P^{N}, n \geq 1$, which has the following properties of W (or rather of $f W$).
(a) Let $f: X \rightarrow \mathbf{C} P^{N} \times \mathbf{C} P^{N}$ be the inclusion map. Then for any $i=0, \ldots, n$,

$$
f_{*}: H_{2 i}(X) \rightarrow H_{2 i}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)
$$

is surjective. Moreover, there is an isomorphism

$$
H^{2 n}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right) \cong H_{2 n}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)
$$

which maps every $x \in H^{2 n}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$ into $x \cap[X] \in$ $H_{2 n}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$.
(b) The fixed point set M of $\lambda: X \rightarrow X$ is a closed smooth $2 n$ manifold which can be so oriented that

$$
a^{n} \cap[M]=1, \quad e \cap[M]=0 .
$$

(c) There is a smooth imbedding $\phi: \mathbf{C} P^{n} \rightarrow X$ such that

$$
a^{n} \cap \phi_{*}\left[\mathbf{C} P^{n}\right]=1, \quad b \cap \phi_{*}\left[\mathbf{C} P^{n}\right]=0 .
$$

(d) $[M] \cap \phi_{*}\left[\mathbf{C} P^{n}\right]=1$,

$$
\phi_{*}\left[\mathbf{C} P^{n}\right] \cap(\lambda \phi)_{*}\left[\mathbf{C} P^{n}\right]=\text { odd integer. }
$$

For any $k=0, \ldots, 2 n$, we let $P_{k}(a, b)$ be the group of homogeneous polynomials in variables a and b of degree k with integral coefficients. Then for any $i=0, \ldots, 2 n$,

$$
H^{2 i}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)=P_{i}(a, b) .
$$

As a consequence of (a), (b), (c), (d) above, we have
(9) There are unique $p(a, b), q(a, b) \in P_{n}(a, b)$ such that

$$
p(a, b) \cap[X]=[M], \quad q(a, b) \cap[X]=\phi_{*}\left[\mathbf{C} P^{n}\right] .
$$

Moreover,

$$
\begin{array}{ll}
a^{n} p(a, b) \cap[X]=1, & e p(a, b) \cap[X]=0 ; \\
a^{n} q(a, b) \cap[X]=1, & b q(a, b) \cap[X]=0 .
\end{array}
$$

Furthermore,

$$
\begin{aligned}
& p(a, b) q(a, b) \cap[X]=1 \\
& q(a, b) q(b, a) \cap[X]=\text { odd integers. }
\end{aligned}
$$

(10) (i) For any $i=0, \ldots, n, a^{i} b^{n-i} p(a, b) \cap[X]=1$.
(ii) $p(a, b)=p(b, a)$.
(iii) $p(1,0)=p(0,1)=q(1,1)=1$.
(iv) Let K be the subgroup of $H^{2 n+2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)=P_{n+1}(a, b)$ consisting of the elements x with $x \cap[X]=0$ and let L be the subgroup of $P_{n+1}(a, b)$ generated by $\left\{a^{n} b, a^{n-1} b^{2}, \ldots, a^{2} b^{n-1}, a b^{n}\right\}$. Then

$$
P_{n+1}(a, b)=K \oplus L,
$$

$q(0,1)= \pm 1$ and $\{a q(b, a), b q(a, b)\}$ is a basis of K.

$$
\text { (v) } a q(b, a)-b q(a, b)=q(0,1) e p(a, b) \text {. }
$$

Proof.

(i) Since, by (9), $(a-b) p(a, b) \cap[X]=0$, we have

$$
a p(a, b) \cap[X]=b p(a, b) \cap[X] .
$$

Hence for any $i=0, \ldots, n$,

$$
a^{i} b^{n-i} p(a, b) \cap[X]=a^{n} p(a, b) \cap[X]
$$

which is equal to 1 by (9).
(ii) Since $\lambda^{*} a=b, \lambda^{*} b=a$ and $\lambda_{*}[X]=[X]$, it follows from (i) and (9) that

$$
\begin{aligned}
a^{n} p(b, a) \cap[X] & =b^{n} p(a, b) \cap[X]=1 \\
e p(b, a) \cap[X] & =-e p(a, b) \cap[X]=0
\end{aligned}
$$

Hence, by (9), $p(b, a)=p(a, b)$.
(iii) By (9) and (ii),

$$
\begin{aligned}
1 & =p(a, b) q(a, b) \cap[X]=p(1,0) a^{n} q(a, b) \cap[X] \\
& =p(1,0)=p(0,1) .
\end{aligned}
$$

Let $q(a, b)=\sum_{i=0}^{n} \beta_{i} a^{i} b^{n-i}$. Then, by (9) and (i),

$$
\begin{aligned}
1 & =q(a, b) p(a, b) \cap[X]=\sum_{i=0}^{n} \beta_{i} a^{i} b^{n-i} p(a, b) \cap[X] \\
& =\sum_{i=0}^{n} \beta_{i}=q(1,1) .
\end{aligned}
$$

(iv) $\mathrm{By}(\mathrm{a})$,

$$
a^{n} \cap[X], a^{n-1} b \cap[X], \ldots, a b^{n-1} \cap[X], b^{n} \cap[X]
$$

are linearly independent elements of $H_{2 n}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$. Therefore

$$
a^{n-1} \cap[X], a^{n-2} b \cap[X], \ldots, a b^{n-2} \cap[X], b^{n-1} \cap[X]
$$

are linearly independent elements of $H_{2 n+2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$ and hence K does not have more than two linearly independent elements.

By (9),

$$
\begin{aligned}
q(0,1) & =q(0,1) a^{n} q(a, b) \cap[X] \\
& =q(a, b) q(b, a) \cap[X]=\text { odd integers. }
\end{aligned}
$$

We infer that in $P_{n+1}(a, b)$,

$$
a q(b, a), a^{n} b, a^{n-1} b^{2}, \ldots, a^{2} b^{n-1}, a b^{n}, b q(a, b)
$$

are linearly independent. Therefore $\{a q(b, a), b q(a, b)\}$ generates a subgroup of K of finite index.

Let $\{r(a, b), s(a, b)\}$ be a basis of K. Then

$$
\left\{r(a, b), a^{n} b, a^{n-1} b^{2}, \ldots, a^{2} b^{n-1}, a b^{n}, s(a, b)\right\}
$$

is a basis of $P_{n+1}(a, b)$ so that we may assume that

$$
r(1,0)=1, \quad r(0,1)=0, \quad s(1,0)=0, \quad s(0,1)=1 .
$$

Therefore there are $r_{1}(a, b), s_{1}(a, b) \in P_{n}(a, b)$ such that

$$
r(a, b)=a r_{1}(a, b), \quad s(a, b)=b s_{1}(a, b)
$$

From this result, it follows that

$$
a q(b, a)=q(0,1) r(a, b)=q(0,1) a r_{1}(a, b)
$$

so that

$$
q(b, a)=q(0,1) r_{1}(a, b) .
$$

Since, by (iii), $q(1,1)=1$, we infer that

$$
q(0,1)= \pm 1
$$

Hence

$$
a q(b, a)= \pm r(a, b), \quad b q(a, b)= \pm s(a, b)
$$

and consequently $\{a q(b, a), b q(a, b)\}$ is a basis of K.
(v) By (9), ep (a,b) is in K and by (iv), $\{a q(b, a), b q(a, b)\}$ is a basis of K. Then for some integers s and t,

$$
e p(a, b)=\operatorname{saq}(b, a)+t b q(a, b)
$$

By setting $a=1$ and $b=0$, we obtain $s q(0,1)=1$ by (iii). Therefore $s=q(0,1)$. Similarly, $t=-q(0,1)$. Hence our assertion follows.

$$
\begin{equation*}
p(a, b)=\sum_{i=0}^{n} a^{n-i} b^{i} \quad \text { and } \quad q(a, b)=b^{n} \tag{11}
\end{equation*}
$$

Proof. Assume first that $n=1$. By [4], we may set

$$
M=\mathbf{C} P^{1}
$$

As seen in Remark 4, which is valid for $n=1$, we may let W be $\mathbf{C} P^{1} \times \mathbf{C} P^{1}$ and let M be the diagonal set in $\mathbf{C} P^{1} \times \mathbf{C} P^{1}$. As we have done earlier, we let $\{a, b\}$ be the basis of $H^{2}\left(\mathbf{C} P^{1} \times \mathbf{C} P^{1}\right)$ such that

$$
\begin{aligned}
a \cap\left[\mathbf{C} P^{1} \times \mathbf{C} P^{1}\right] & =\left[\mathbf{C} P^{0} \times \mathbf{C} P^{1}\right] \\
b \cap\left[\mathbf{C} P^{1} \times \mathbf{C} P^{1}\right] & =\left[\mathbf{C} P^{1} \times \mathbf{C} P^{0}\right]
\end{aligned}
$$

and let $p(a, b)$ and $q(a, b)$ be the elements of $H^{2}\left(\mathbf{C} P^{1} \times \mathbf{C} P^{1}\right)$ such that

$$
p(a, b) \cap[W]=[M], \quad q(a, b) \cap[W]=\left[\mathbf{C} P^{1} \times \mathbf{C} P^{0}\right]
$$

It is not hard to see that

$$
p(a, b)=a+b, \quad q(a, b)=b
$$

Hence (11) holds for $n=1$.
Now we proceed by induction on n and assume that our assertion holds when n is replaced by $n-1, n>1$. Since

$$
X \subset \mathbf{C} P^{N} \times \mathbf{C} P^{N} \subset \mathbf{C} P^{N+1} \times \mathbf{C} P^{N+1}
$$

we can use a λ-equivariant isotopy to alter X so that the following hold.
(1) $\phi\left(\mathbf{C} P^{n}\right)$ is contained in $\mathbf{C} P^{N+1} \times \mathbf{C} P^{N}$ and intersects $\mathbf{C} P^{N} \times$. $\mathbf{C} P^{N+1}$ transversally at $\phi\left(\mathbf{C} P^{n-1}\right)$.
(2) M and X are transversal to $\mathbf{C} P^{N} \times \mathbf{C} P^{N+1}$.
(3) $X^{\prime}=X \cap\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$ is a connected closed smooth (4n-4)manifold invariant under λ.

Let X^{\prime} be oriented so that

$$
\left[X^{\prime}\right]=a b \cap[X] .
$$

We claim that X^{\prime} satisfies (a), (b), (c), (d) with $n-1$ in place of n.
For any $i=0, \ldots, n-2$,

$$
\begin{aligned}
f_{*} H_{2 i}\left(X^{\prime}\right) & =a b \cap f_{*} H_{2 i+4}(X) \\
& =a b \cap H_{2 i+4}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)=H_{2 i}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right) .
\end{aligned}
$$

By (10), (iv),

$$
a b \cup f^{*} H^{2 n-2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)=f^{*} H^{2 n+2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right) .
$$

Then

$$
a b \cap f_{*} H_{2 n+2}(X)=f_{*} H_{2 n-2}(X)=H_{2 n-2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)
$$

and hence

$$
f_{*} H_{2 n-2}\left(X^{\prime}\right)=f_{*}\left(a b \cap H_{2 n+2}(X)\right)=H_{2 n-2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right) .
$$

Since

$$
\begin{aligned}
f^{*} & H^{2 n-2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right) \cap\left[X^{\prime}\right] \\
& =f^{*} H^{2 n-2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right) \cap(a b \cap[X]) \\
& =\left(a b \cup f^{*} H^{2 n-2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)\right) \cap[X] \\
& =f^{*} H^{2 n+2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right) \cap[X] \\
& \cong f_{*} H_{2 n-2}(X)=f_{*} H_{2 n-2}\left(X^{\prime}\right),
\end{aligned}
$$

it follows that there is an isomorphism of $H^{2 n-2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$ onto $H_{2 n-2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$ which maps every $x \in H^{2 n-2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$ into $x \cap f_{*}\left[X^{\prime}\right] \in H_{2 n-2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$. The rest is rather obvious.

By the induction hypothesis, $q^{\prime}(a, b)=b^{n-1}$ is the unique element of $H^{2 n-2}\left(\mathbf{C} P^{N} \times \mathbf{C} P^{N}\right)$ such that

$$
q^{\prime}(a, b) \cap\left[X^{\prime}\right]=\phi_{*}\left[\mathbf{C} P^{n-1}\right]
$$

so that

$$
a b^{n} \cap[X]=b^{n-1} \cap(a b \cap[X])=\phi_{*}\left[\mathbf{C} P^{n-1}\right] .
$$

Then

$$
a\left(b^{n}-q(a, b)\right) \cap[X]=\phi_{*}\left[\mathbf{C} P^{n-1}\right]-a \cap \phi_{*}\left[\mathbf{C} P^{n}\right]=0 .
$$

Therefore, by (10), (iv),

$$
b^{n}-q(a, b)=k q(b, a)
$$

for some integer k. Since, by (10), (iii), $q(1,1)=1$, it follows that
$k=0$ and hence

$$
q(a, b)=b^{n} .
$$

From this result and (10), (v), it is clear that

$$
p(a, b)=\sum_{i=0}^{n} a^{n-i} b^{i}
$$

follows.
Proof of our theorem. In $H^{*}(W)$,

$$
a^{n+1}=a q(b, a)=0
$$

and then in $H^{*}(C M)$,

$$
a^{n+1}=0 .
$$

Hence our assertion follows as seen in Remark 2.

References

[1] A. Besse, Manifolds All of Whose Geodesics are Closed, Ergebnisse der Mathematik, No. 93, Springer-Verlag, Berlin, 1978.
[2] A. Berger, Blaschke's Conjecture for Spheres, Appendix D in the book above by A. Besse.
[3] R. Bott, On manifolds all of whose geodesics are closed, Ann. Math., 60 (1954), 375-382.
[4] L. W. Green, Aug Wiedersehensflachen, Ann. math., 78 (1963), 289-299.
[5] A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv., 36 (1961), 47-81.
[6] J. L. Kazdan, An Inequality Arising in Geometry, Appendix E in the book above by A. Besse.
[7] H. Samelson, On manifolds with many closed geodesics, Portugal. Math., 22 (1963), 193-196.
[8] A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Differential Geom., 9 (1974), 513-517.
[9] C. T. Yang, Odd-dimensional Wiedersehen manifolds are spheres, J. Differential Geom., 15 (1980), 91-96.
[10] __, On the Blaschke conjecture, Yau, Seminar on Differential Geometry, pp. 159-171.

Received March 30, 1988. The author was supported in part by the National Science Foundation when the paper was prepared.

