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LINK HOMOTOPY IN R3 AND S3

UWE KAISER

We give the general homotopy classification of 2-component link
maps in I 3 and study 3-component link maps in S3.

Introduction. For any sequence of integer numbers p\ > p2 > >
Pr > 0 by an r-link map is meant a collection of continuous maps

/= II fί U

with mutually disjoint images. A link homotopy is a homotopy
through link maps.

In [M] J. Milnor studied the case p\ = = pr = 1 and classified
links up to homotopy for r = 2 and r = 3. The classification in case
r > 3 has recently been given by N. Habegger and S. Lin. Note that
for p\ < 1 the classifications in R3 and S3 coincide. Moreover in
this case all involved 0-spheres can be omitted by transversality.

We write (p, q) and (p,q9r) instead of {px, pi) and (pu p2, Pi).

Let E(p, q), resp. L(p, q, r ) , denote the set of link homotopy classes
of link maps S ' Ί I S 1 - + R 3 , resp. S*>US*ΊISr -+S3.

The starting point is the following easy consequence of the sphere
theorem (compare [Kol]).

PROPOSITION. If q > 0, and p > 1, then every link map f:SpΊl
Sq —• S 3 is link homotopic to a trivial link map.

Furthermore link maps S^IIS0 —• S3 are easily seen to be classified
by the homotopy group πpS

2 .
It is a remarkable fact that link homotopy in R3 contains a consid-

erable amount of additional information. This is solely caused by the
hole at oo e S3 (compare [Kl, K2]). On the other hand the strength
of the sphere theorem implies that expectable phenomena are fully
present, at least for r = 2.

There are two obvious constructions briefly described as follows: for
q < 3 take the standard embedding Sι c S3 and map Sp into the
complement which contains an embedded S3~g~lwS2 as deformation
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retract. This defines

[ , ] is the set of unbased homotopy classes. In the general situation
we map one of the spheres onto the origin of R3 and wrap the second
sphere into S 2 c R 3 . This defines

pU: πpS
2\/πqS

2 -+E(p9q).

Here, for two based sets M, N, i.e. sets with distinguished elements
mo, no, let M V N denote {(m, n) £ M x N\m = mo or n =
lϊ M, N are topological spaces, then My N is the usual wedge.

THEOREM 1. The following assignments are 1-1 and onto:

pU: πpS
2 V 7^S2 -> £ ( p , 0), ifq

Note that the nontrivial elements of [5^, Sι VS2] are in 1-1 corre-
spondence with sequences (tf^keN? s u c h that a\ Φ 0, α^ G π p 5 2 for
A: G N, almost all a^ trivial.

The techniques we develop to handle 2-link maps in R3 can easily
be applied to 3-link maps in S 3 . Define pU into L(p 9 q9r) as above
by mapping two spheres constantly. Let j * : E(p, q) —> L(p, q, 1) be
defined by mapping the ^-sphere onto oo e S3 and identify 5'3\oo «
R 3 . Define e* into L(p9 1, 1) by taking the unlinked disjoint union
L of two unknotted circles and then mapping Sp into an embedded
S2 V S1 V Sι, which is a deformation retract of S3\L.

THEOREM 2. The following assignments are 1-1 and onto:

(a) />/*: π p 5 2 V π^S2 V π ^ 2 ->L(p9q9r)9 ifr > 1,

Λ : £ ( p , l ) v J Ϊ ( « , l ) - L ( p , β f , l ) , //^ > 1.

Moreover, the map

(b) Λ V ^ : £ ( 1 , l ) V [ ^ , 5 2 v 5 1 v 5 1 ] - ^ L ( / 7 , 1, 1)

is onto for p > 1.

In a future paper we will study r-link maps in R3 and S3 for r > 3.
For instance, if pr > 1, the sphere theorem implies a funny generat
"periodicity" as follows: The natural map

\J L(px 9...9pi9...9Pj9...9Pr,0)-+ L(pι, . . . 9pr)

is onto. Here Λ means "omit the corresponding sphere.
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NOTATION. ~ means homotopic or homotopically equivalent, «
diffeomorphic. For each manifold M let int(Af) denote the interior
and dM denote the boundary. 1 is the identity map and [ ] is a
homotopy or link homotopy class.

Proof of Theorem 1. The result is obvious for q = 0 and is known
for (/?, q) = (1, 1). Assume q > 1, so that also p > 1. Recall the
definition of a belt projection of a 2-component link map g: Sp II
S* -> S3. Just take a path γ: I -> S 3 , such that y(0) e g(Sp),
γ(l) e g(Sq), y(0, l)ng(SpllSq) = 0 , and define the belt projection
of g to be the oriented stereographic projection from y{\). This
is well-defined up to link homotopy (compare [Ko2] or [Kl]). So, if
/ : Sp II Sq —• R3 maps each sphere into the unbounded component
of the second sphere, then / is belt projection of a link map in S3,
thus trivial by the proposition. So we assume that / maps Sp into
a bounded component of R3\f(Sg), which is a component of the
complement of f(Sq) in S 3 , thus aspherical [P]. Contract the map
of Sp into a constant map on some point and deform the ^-sphere
into a surrounding 2-sphere. This proves [f] e pt*(πqS

2). It is proved
in [Kl] that pU injects.

As expected the only interesting case involves a circle Sι. A link
map / : Sp U Sι —• E 3 is called proper, if / is differentiable and
embeds the circle. We may replace link homotopy of link maps by
link homotopy of proper link maps. Let / : Sp IIS 1 —• R3 be proper,
K:=f(Sι)cΈL3.

To prove that e* maps onto we have to unknot K by a link homo-
topy. Let T be a tubular neighborhood of K, such that Tnf(Sp) =
0 . Choose an arc σ in X := S3\ int T, which joins oc to a point on
d T. Now deform X along this path to get a manifold I ' c R 3 \ int T
diffeomorphic to X. Let 5Όo be a small sphere around oo. We have
the obvious embedding (see Figure 1) e: X V S2 « X9 V 5Όo ~* K3

(w means diffeomorphic outside the basepoints), such that HL3\K ~
e(X V S2) =: Y. Thus we may assume that / maps Sp into Y.
Let p: X —> X be the universal cover. The universal cover Ϋ of
Y can be described as follows (Figure 2): p~ι(*) = {*j}jez is a
countable set in X. To each point *7 we attach a separate 2-sρhere
Sj. Note that Z is contractible. Let rt: X -> X, 0 < ί < 1, be
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FIGURE 1

FIGURE 2

a contraction, r0 = 1, rx{X) = *ι. For each * ; e /?~1(*) there is

the path σ 7 : / 3 t -> ^ ( * 7 ) e X . Define r 2 : 7 -• \fjeZ{S2)j as

follows: ri|AΓ = r i , r t maps 5 7 onto (S2)j by a degree 1 map.
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Similarly let /: V'jβz(S2)j —• ? be the map which takes the upper
hemispheres with degree 1 onto Sj . The restriction of / on the lower
hemispheres maps the geodesic lines from the equator of Sj to the
common basepoint onto the path σ ; . By homotopy extension it fol-
lows that ίo f j ~ 1. Lift /i to f\: Sp -> Ϋ. Since Sp is com-
pact, f\(Sp) Γ\p~{(*) = {*j}jej , / C Z finite, and fγ o/J maps into
\fjeJ(S2)j. Thus (i o r i ) o / ! maps into \Jj€j(Sj U σ; (/)). The pro-
jection of the homotopy 1 o fx ~ i o f\ o /j is a homotopy of /i in
R3\ίΓ to a map into the union of £Όo and a finite collection of loops
p(σj(t)) based in * e 5Όo Π ΛΓ'. Now we can unknot K. This proves
that e* maps onto.

To prove injectivity of e* we have to take advantage once more of
the structure of knot complements. Recall that a knot K c S3 comes
naturally equipped with a Seifert map, i.e. a diίferentiable map h =
h{K): X -» S 1 , which restricts to the meridional projection dX -• 5 1

associated to a special framing, h is well defined up to homotopy [Z].
Recall that h~ι(y) is a Seifert-surface of Γ̂ for some regular value
yeS1.

DEFINITION. A based knot is a pair (K, τ), such that i d 3 is
an oriented differentiate knot and τ, the basing, is an arc in X =
S 3 \ i n t Γ for some tubular neighborhood Γ c R 3 ; τ joins oc e S3

to some point on dT. D

To each based knot we associate an unbased map g = g(K9 τ): Y:=
M3\int(Γ) -• Sι V S2 as follows: Use τ to construct X1 V SΌo «
X v S 2 ~ y as above. We can assume that h{K) maps a closed tubular
neighborhood N of τ onto (-1) e 5 1 . Define g(x) = h(x) for
x eY\ int(iV). Let 5 ^ c 5 3 denote the ball bounding S^ . The cell
N' = NXintiBoo) can be collapsed onto (dNf)\(Nf π 9X). Similarly
we have the retraction B^oc -> *Soo . This defines gf: int(Λ/r)\oc —•
dX' V 5Όo. We compose g' and h\l d, where J : 5Όo -• S2 is a
diffeomorphism, to get g: int(J/V)\oc —• Sι V 5 2 . It is easy to check
that the unbased homotopy class of g{K, τ) does not depend on the
choice of h(K). Note that we may move τ in S3\K fixing τ(0) and
restricting τ(l) to dX without changing [g(K, τ)] G [Y, Sι V 5 2 ] .
Thus in case of an unknot K = U the homotopy class of g{K, τ)of{

does not depend on the choice of τ . This follows from the fact that
any two arcs can be deformed into each other in S3\K by a move as
above and a homotopy fixing endpoints.
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It is convenient to introduce the following

DEFINITION. A based homotopy of based knots (Ko, τ0) and
(K\, τi) is a pair (F, τ) consisting of:

(i) F : Sι x / —• R3 is a homotopy, which restricts to Ko, resp.
K\9 on Sι xO, resp. S 1 x 1.

(ii) τ : I x I -+ S3 is an isotopy of arcs and restricts to TQ , resp.
τ i , on 7 x 0 , resp. 7 x 1 . Furthermore τ(0, t) = oc for all t e I and
τ ( l , t) is a point on a meridional curve over some regular point of
F\Sιxt. Ώ

LEMMA 1. Let T: (Sp II Sι) x 7 -+ R3 6e <z /mλ: homotopy between
proper link maps and (F \ Sι, τ) te (2 fowed homotopy of knots. Then
g(Ko, τ0) o ( F l ^ x 0) α ^ ^ ( ^ , n ) o (F\SP x 1) αr^ homotopic
maps.

Proof. The crucial point is already in [M]. The homomorphisms
Hι(S3\K0) -• Z and Hι(S3\K{) -• Z corresponding to Seifert-maps
for AΓ0 and K\ extend to a map Hι(S3xI\F(SιxI)) onto Z . 1 This
can be proved by elementary obstruction theory and Poincare duality.
The resulting map S3 x I\F(Sι x I) -> Sι and the basing τ can be
used to construct R3 x I\T(Sι x I) -+ Sι V S2. Composition with the
trace of F | Sp x I yields the desired homotopy. D

LEMMA 2. Let f = fx Π f2: ^ U Sι -> R3 te prcp^r, #
g(K , τ ) o / ! - ^ ( Λ : ,σ)ofx for a n y two basings σ,τ.

Proof. We know already that / can be homotoped into f, such
that f(Sι) is the unknot U. A corresponding differentiate generic
link homotopy can be split up into link homotopies which either re-
strict to isotopy on 5 1 or involve a single crossing change of a knot.
Since isotopies are ambient we get induced deformations of the bas-
ings (7, τ . If a crossing change is involved we may first move a
given basing (at the corresponding stage of the homotopy) away from
the singularity. This is possible because of transversality. Thus the
link homotopy from / to f induces based knot homotopies frouj
(K, σ) to (U, σ') and (K, τ) to (U, τ ') . By Lemma 1 we know
g(K,τ)ofι~g(U,τ')ofι and g(K, σ) of ~ g(U, σf) of[. Now
the assertion follows by a previous remark. D

This observation is due to N. Habegger.
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Lemmas 1 and 2 and the fact that the arguments in the proof of
Lemma 2 can be applied to arbitrary link homotopies show that the
assignment

λ:E(p9l)^[S'9S
ιvS2]9

λ[f] = [g(K,τ)ofx], K = f(Sι)

is well defined, i.e. independent of all involved choices (/ is assumed
proper!).

From the construction above follows immediately

LEMMA 3. The composition

[Sp, Sι V S2] - ^ E{p, 1) Λ [Sp, Sι V S2]

is given by the identity map. D

This proves the rest of Theorem 1. D

Proof of Theorem 2 . I f r > 1 , t h u s p , q,r > 1 , w e c o n s i d e r a
path σ in S3 which meets the image of each component sphere. We
assume σ(0) 6 f(Sp), σ(t0) e f(S*) and σ[0, to]Γ)f(Sr) = 0 . Then,
f(Sp) U σ[0, t0] U f{Sq) c 5 3 is a path connected subset of S3. By
[Pa] each component of the complement of this set is aspherical, so
/1 Sr can be homotoped into a constant. Thus [f] is in the image of
j*:E(p,q) -+L(p9q9r). But pU\ πpS

2 V πqS
2 -> E(p9 q) is 1-1

and onto by Theorem 1. If we take into consideration all possibilities,
clearly we have that pU: πpS

2VπqS
2VπrS

2 —• L(p, q, r) is onto. The
map, which restricts each component to a map into the complement
of the images of the basepoints of the other two components, is a
two-sided inverse of pU .

Now assume r = 1 and p, q > 1. As above, a path σ which starts
in /(S 1 ) and meets each component sphere, has empty intersection
with one of the remaining spheres for t < to. So we may assume that
f\Sq maps into a component of 5 3 \(/(5 1 )Uσ[0, to\\Jf(Sp)), which
is aspherical by [Pa]. This proves that j * is onto. Again, a two-sided
inverse is obvious.

The proof of (b) is very similar to the proof of Theorem 1. If the
link of the two circles does not split, then [/] is in the image of y'*.
Note that the complement of an unsplit link is aspherical by [Pa], 27.
Thus, we may assume that there is a 2-sphere S embedded in S3,
which separates two knots K\, K2. Choose a basepoint x € S and
arcs ϋ\, θ2, which join points in tubular neighborhoods of the knots to
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FIGURE 3

* E 5 and meet S only in their endpoints. Let X\, resp. X2, denote
S\KX, resp. S3\K2. Clearly, S3\(KX u K2) c* X[ V X'2 V S, X[ « JT/
for z = 1, 2. The covering space argument of Theorem 1 carries over
first to deform /1 Sp and then unknot Kx and K2. Note that X[ VX'2
is homotopically equivalent to the complement of K\ u σ[ u σ̂  U #2 >
when σ{, ^ are canonical extensions of σ\, σ2 inside the tubular
neighborhoods. This shows [/] e Im(β«) and completes the proof. D
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