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SOME REMARKS ON ORDERINGS
UNDER FINITE FIELD EXTENSIONS

CLAUS SCHEIDERER

Let XK denote the space of orderings of a field K, and rL/K:
XL —• XK the restriction mapping, when L/K is a field extension.
Fixing K, the image sets rL/κ(XL) for finite extensions L/K are
investigated. If K is hilbertian, any clopen subset U C XK has
the form U = rL/K{Xι) for some finite L/K, and [L : K] can be
bounded in terms of U . This bound is even sharp in some cases, but
not always. A second construction gives the same qualitative result
for a much larger class of fields. It is based on iterated quadratic
extensions. The bounds on [L : K] obtained here are weaker than in
the hilbertian case.

Let K be a field, and let XK be the (topological) space of its order-
ings. It is known to be compact and totally disconnected. If L/K is
a finitely generated field extension, then Elman, Lam and Wadsworth
showed that the natural restriction mapping r = rL/K : XL —• XK is
(not only closed but also) open [ELW, Theorem 4.9]. In particular,
the set τLjK{X£) of those orderings of K which extend to L is clopen
(:= closed and open) in XK This means that it is a union of finitely
many basic clopen subsets, i.e. sets of the form

Xκ{β\ ? ? a{) := {x € XK a>\ ? ? a% are non-negative in x }

with αz- G K. Conversely, given a clopen subset U of J ^ , it is not
hard to find explicitly a finitely generated extension L/K such that
U = rL/κ{XL) For example, if the complement of U is presented as

Xκ\U=\JXκ(a[9...,a})9

ι = l

then one may take L = K(φ\, ... , φs) where φι is the Pfister form
(1, a\) ® ® (1, a\) [ELW, Theorem 4.18].

The question becomes somewhat harder when one tries to realize
U by a finite extension L/K. In fact, this is not always possible
[ELW, §5]. On the other hand, Prestel has shown [Pr, p. 904] that
it is possible if the field K is hilbertian. In fact, this is merely a
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corollary to a much stronger theorem by Prestel and Brόcker which
essentially states that the set of trace forms of finite extensions of a
(fixed) hilbertian field K is closed under addition in the Witt ring
WK ([Pr]; see also [K, Kapitel l(b)] and [KS]).

PresteΓs proof, however, gives little hint about the possible degree
[L : K] of such an L (which one would like to keep bounded in terms
of the prescribed set U c Xκ)> Such information is provided implic-
itly, in the special case of function fields over a real closed field R, by
work of Andradas and Gamboa [AG2]. Here, too, the field-theoretic
statement is a corollary to a more general theorem, in this case a
geometric one, about realizing closed semi-algebraic sets as images of
finite morphisms between irreducible i?-varieties.

This little note has two aims. First, we obtain a quantitative version
of PresteΓs corollary for hilbertian fields, i.e. for any clopen subset
U C XK a bound is given for the degree of a finite extension L/K
which realizes U. These bounds are even best possible in some cases,
but not always. Second, we present a different approach, based on the
construction of iterated quadratic extensions. It yields weaker bounds
for [L : K], but has the advantage of applying to a larger class of
fields than only the hilbertian ones. Besides it is fairly constructive,
and could probably be used for an algorithmic procedure to find L/K
(for a given U c XK) , e.g. in the case of function fields over some
base field.

After this work was done, I learned about recent work by D. Pecker
[Pel-Pe3] in which he improves the results of Andradas and Gam-
boa about real varieties. Part of the construction in [Pe3] has some
similarity to ours in Lemma 1. It is interesting that he also arrives at
similar bounds in the "geometric case".

I would like to thank J. Kδnigsmann and M. Kriiskemper for their
helpful comments and suggestions on this subject.

The essential observation for our quantitative version of PresteΓs
corollary is the following lemma. The construction is inspired by ideas
of Andradas and Gamboa [AG1, AG2]:

LEMMA 1. For every n > 1 there is N > 1 and a polynomial fn =
fn(t;x,y) with integer coefficients (where x = (xx , . . . , xn), y =
0>i > >yN)) having the following properties:

(1) fn is monic of degree In with respect to t\
(2) for any field K and any sequence a = (a\, . . . , an) ofpairwise

distinct non-zero elements of K, fn(t\a9y) is irreducible in K[t, y]
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(3) for any real closed field R and any aeRn, beRN, fn(t;a, b)
has a root in R if and only if aι > 0 for some 1 < i < n.

The lemma implies

PROPOSITION 1. Let K be a hilbertian field. Let U c XK be a
clopen subset, and fix some presentation

ι = l 7 = 1

with aί e K. Then there is afield extension LD K with rLjK(XL) =
U and [L:K] = 2mnι nm.

Proof by induction on m. We may assume that the αj are non-zero
and pairwise distinct. First let n = 1, write n:= n\, aj := αj . Since
fn(t;a,y) is irreducible in K[t, y] (y = (yx, . . . , yN) as in the
lemma), there is b e KN such that fn(t; a/b) remains irreducible,
by the hilbertian property of K. Let L = K(τ)9 where τ is a root
of fn{t\ a, b). From property (3) of fn it follows that rL/K(XL) =
Xκ(a\) U U Xκ{a>n) = U moreover, [L : K] = In. Passing to the
general case now, we may assume there is an extension F/K such
that

m-\ n.

rFικ{XF) = Γl U **(*]•)
1=1 7=1

and [F : jfiΓ] = 2m~ιn\ n m _ i . Since also F is hilbertian [FJ, Prop.
11.11], we find L/F of degree 2nm with

7 = 1

Thus, [L:K] = 2mnχ nm. Moreover,

= rF/κ(rL/F(XL)) = rFjκ ί \J XF{af)

= rF/K(XF)n{jXF(a]1) = U,
7=1

as desired. D
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It remains to prove the lemma. First let n > 2, and consider the
rational function

rn(t; x 9 y ) : = 1 -
1=1 l X i

where x = (x\, . . . , x Λ ), y = (y\, . . . , y Λ ). Let i? be a real closed
field and a\, . . . , an e R*, b eRn . Then one of fli αn is posi-
tive iff there is ί G i? for which rn(t \ a,b) is defined and rn(t\ a, b)
= 0. Indeed, if all of the α, 's are negative, rn takes strictly positive
values everywhere. If at > 0, then rn has a simple pole in t = + v ^
and jumps from +oc to —oc there. Moreover, lim/_>oorrt(ί a, b) =
1. Hence, if α, is the largest of the aj 's and is positive, rn must
have a zero ί > y/aj, by the Mean Value Theorem.

Clearing denominators, define fn to be the polynomial

n

Mt;x,y) := rn(t; x, y)

Then (1) clearly holds, and (3) follows from what has just been said.
Concerning (2), observe that one can write

ι = l

with non-zero polynomials a, β\, . . . , βn e K[t]. As a polynomial
over K(t) in the variables y\, . . . , yn, this is clearly irreducible.
Thus, if fn{t\ α, y) were reducible in K[t, y], the polynomials α,
βι, . . . , βn would have to have a non-trivial common divisor. But
since

βt(t) =-atllit2 - aj),

iφi

the assumption on the a\ 's shows that this is not the case. So
fn(t; a,y) is irreducible.

In the case n = 1 one has to modify the construction slightly. For
example, take N = 2 and

fi(t;χ,yi, yί) := t1 -χ(i +y\ + yl). •

Brόcker [B] has shown that there is a function t: Nu{0} —• N such
that, whenever K is a field of stability index n < oo, any clopen subset
U of XK is a union of at most t(ή) basic clopen subspaces. For
example, ί(l) = 1, ί(2) = 2, ί(3) < 8008. Passing to complements,
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Proposition 1 gives us

COROLLARY. Let K be a hilbertian field of finite stability index n >
1. Then for any clopen subset U of X& there is an extension L/K
with rL/K(XL) = U and [L : K] < (2n)^ . D

It it interesting to note that, at least in certain cases, the bound on
[L : K] provided by Proposition 1 is best possible. For example, this
is true if m = 1 or nx• = 1 for all /, i.e. if U or its complement is a
basic clopen subspace of

PROPOSITION 2. Let K be any field and L D K a proper finite
extension. Suppose there are a\, . . . , an e K* with

(a) rL/κ(XL) = Xκ(aι)υ ' υXκ(an),resp.
(b) rL/K(XL) = XK(au...9an),

and that no presentation of the same type is possible with less than n
elements. Then (a) [L:K]>2n, resp. (b) [L : K] > 2n.

Proof. We may assume rL/K(XL) Φ Xκ . Let d = [L : K], and let τ
be the trace form of L/K. So τ is a ^-dimensional quadratic form
over K with everywhere non-negative signature, and

rL/κ(*L) = {xeXκ: sign^τ) > 0}

[S, Theorem 3.4.4]. We have to assume a little bit of real algebra,
namely the notion of a fan in a field and some of its properties. For
this, one may consult [L].

(a) Let Z be the basic clopen subspace

XKVL/ΛXL) = Xκ{-ax, . . . , -an) = {x e Xκ: signer) = 0}

of Xκ. It is well known that there is a fan Y c Xκ with #Y = 2n

such that YnZ contains exactly one element, x say. (Compare [Sch,
Lemma 2.1].) Diagonalizing τ we can assume (writing d = 2m)

τ = (b\, . . . , bm, C\, . . . , cm)

where the b\ are positive in x and the cz are negative in x. If
m < n, then

being non-empty, would contain at least one element y different from
x. But then necessarily also signy(τ) = 0, contradicting #(YnZ) = 1.
Hence m > n .
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(b) Let Z = rL/K(Xι). As before, there is a 2"-element fan Y c
such that Y Π Z contains exactly one element x. Since 2n divides

yeY

i t f o l l o w s t h a t d = d i m τ>2n. D

However, there are certainly cases when the bound of Proposition
1 is not best possible. For example, consider an extension L/K of
degree 4 such that neither U := rL/K(XιJ) nor its complement is basic
in Xκ. Then in any presentation U = p|£Li Ό%ι Xκ{β)) o n e must
have ra > 2 and n, > 2 for at least one i hence 2mnχ n m > 8. As
an example of such an extension take K = R(x, y), the 2-dimensional
rational function field over the reals, and L = K{^/y{\ + y/x)) this
gives U = r L / *(X z ) = X*(x, y) U ^ ( x - 1).

We now start out for a different approach to the problem of realizing
a given clopen set in Xκ by a finite extension of K. It will be based
only on iterated quadratic extensions.

Recall that a subset of XK is called basic clopen if it is of the
form Xκ(d\, ... , ar) for suitable r > 1 and at e K. The following
principle has already been used before.

LEMMA 2. Let K be a field. Assume that for any finite extension
F/K and any basic clopen subset Y of Xp there is a finite extension
E/F such that rE/F(XE) = XF\Y. Then for any finite extension F/K
and any clopen subset U of Xp there is a finite extension E/F with

Proof. Write Xf\U = Y\ U U Yt, where the Y, are basic clopen in
XF . Induction on t, the case t = 1 being settled by hypothesis. There
is E'/F finite with rE IF{XE.) = XF\Y{. Let Z, := (rEΊF)'ι(Yi)9 a
basic clopen subset of XE> (i = 1, . . . , ί ) , and V := {rE>/F)~ι(U).
Then XE\V = Z2 U U Zt. By induction hypothesis we find E/E'
finite with rE/E>{XE) = V. Since rE>/F{V) = U, we get rE/F{XE) =
U. D

LEMMA 3. Assume that for any finite extension F/K of K and any
a, b e F* there is a finite extension E/F and λ e E* such that
rE/F XE -> χF issurjectiveand rE/F(XE(λ)) = XF(a)UXF(b). Then
K satisfies the assumption {and hence the conclusion) of Lemma 2.
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Proof. Given F/K finite and a basic clopen Y c XF we have to
find E/F finite w i t h rE/F(XE) = XF\Y. W r i t e Y = X F ( a { , . . . , a s )
with a, G F*. If 5 = 1, take 2? = F(y/—a\). If 5 > 1, there is, by
hypothesis, E'/F finite and A G £'* such that r ^ ^ is surjective and
rE>/F(XE'(λ)) = XF(-aι)uXF(-a2). Putting Z\=XE {-λ9 Λ3, ... , α,)
we get

rEΊF{XE\Z) = U XF{-ai) = X F \ r .
ι = l

So the claim follows by induction on s. D

Let L = K(y/d) be a quadratic extension of # . If λ = α + &λ/rf G
L* with a.beK, then

^ ( I L W ) = r L / *(* L ) n ({a >0}u{a2-b2d< 0}),

i.e.

rLικ(XL{λ)) = Xκ(d) n (Xκ(tr(λ)) U J^(-N(λ))),

tr and N denoting trace and norm of L/K. Writing Σ K2 for the set
of sums of squares in K and Σ # * 2 = Σ^2\{0} » w e s e e :

LEMMA 4. Le/ a, b e K such that a2 - 4b e ΣK*2, but is not
a square. Then L = K(Va2 - 4b) is a quadratic extension of K for
which rL/K is surjective and for which there is λeL* with

= XK(-a) U Xκ{-b).

Proof. Take for λ a root of T2 + aT + b. D

Conversely, let a, b e K* be given. What does it mean to find
a',b'e K* such that a12 - 4b' e ΣK*2\K*2 and

Xκ(-a) U Xκ(-b) = Xκ(-a') U.

Putting b' := \a2b{\ + b2)'1, one has Xκ(b) = XKΦ') , and

a2 - 4b' = a2

is a sum of squares since it is positive under every ordering (Artin's
Theorem). If it is still a square, say a2 -4b1 = c2, put b" := b'{\ +c2t)
with teΣK2- Then X*(Z>) = XKΦ") and

α2 - 46/; = a2 - 4b1 - 4b'c2t = c2(l -
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So it suffices to find teΣK2 with 1 - Λb't e Σ K*2\K*2 . For ease
of reference, let us single out this property of a field K:

(*) Either K is non-real, or for every u e K* there exists t e Σ K2

with 1 ^ W G Σ ^ * V * 2

By an iterated quadratic extension of K we mean an extension F/K
for which there is a finite chain

K = FocFιc-cFn = F

of intermediate fields with [Fji i^-i] = 2 for all /. Summarizing the
above discussion, we get

PROPOSITION 3. Assume K is a field such that every iterated quad-
ratic extension of K satisfies (*). Then

(a) for any clopen U c X& there is an iterated quadratic extension
F/K with rF/κ(XF) = U;

(b) ifU = Π?=i U j i χκ{a)) with a)eK, then there is such an F
with [F:K] = 2mi+'"+m*.

Proof. The statement about [F : K] follows from the construction
of F using Lemmas 2-4. α

EXAMPLES. 1. Every hilbertian field K satisfies (*). To see this,
let ue K* and consider

P(x, y) := y2 - (l - γ^ϊ) € K(x)[y].

Then p(x,y) is irreducible over AT(.x), so there is a e K* with
1 + a4u2 Φ 0 such that

1 — -T—X - u

1 + a4u2

is not a square in JRΓ . But this element is positive under every ordering
of K.

Since finite extensions of hilbertian fields are hilbertian, every
hilbertian field meets the hypotheses of Proposition 3. But observe
that the bound given there is generally weaker than that obtained in
Proposition 1.

2. Another class of examples is provided by the next result. An
ordered abelian group Γ is said to be n-regular (where n > 1 is a
given integer) if S Π nT φ 0 for every infinite convex subset S of
Γ. This notion is due to E. Zakon [Z], who proved together with
A. Robinson that Γ is ^-regular for all n > 1 precisely iff Γ satis-
fies the model theory of all archimedean ordered groups. (The latter
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condition means that any sentence which holds in every archimedean
ordered group also holds in Γ.) We are using only 2-regularity, which
can be thought of as a far generalization of being archimedean.

Originally I only had a proof of the following proposition in the
archimedean case. Then J. Kόnigsmann pointed out to me the notion
of ^-regular groups and showed me how to prove the result for all
2-regular groups. I am indebted to him for his kind permission to
include (a modified version of) his proof in this paper, as well as for
other helpful comments and remarks.

PROPOSITION 4. Let K be a field which has a valuation ring B sat-
isfying

(1) the residue field of B is non-real of characteristic Φ 2
(2) the value group T of B is 2-regular and not 2-divisible.

Then every finitely generated extension of K satisfies (*). In par-
ticular, the conclusions of Proposition 3 hold for all finitely generated
extensions of K.

Proof. If K'/K is a finite extension and B' is any valuation ring of
K' lying over B, then also B1 satisfies (1) and (2). This is immediate
for (1). As for (2), one has an exact sequence

0 -+ Tor(Δ, Z/2) -* Γ/2 -> Γ/2 -> Δ/2 -> 0,

where F is the value group of Bf and Δ := F / Γ . Since Δ is finite,
Tor(Δ, Z/2) = 2Δ is isomorphic to Δ/2. This shows that actually
Γ/2 = F/2 (non-canonically). It is also easy to see that Γ 2-regular
implies F 2-regular.

It is clear anyway that every positive-dimensional function field
(over any field of characteristic Φ 2) has a valuation ring satisfying
(1) and (2). So we are reduced to show: Given K as in Proposition
4, and given ueK*, there is teΣK2 with l-tue Σ # * 2 \ ^ * 2 .

By assumption, there are units b\, . . . , bn G B* such that υ(l+b) >
0 for b := Σbf. Given c G B with 0 < v(c) < v(l + b), we have
v(l+b') = υ(c) for

V := {bι + c)2 + b\ + + b2

n = b + 2b{c + c2.

Since by (2), any interval [0, a] c Γ with a > 0 contains an odd
element, it is hence possible to choose the bf such that β := v(l +b) >
0 is odd. From 2-regularity of Γ it follows that every coset of Γ mod
2Γ is represented by an element in [0, β]. (In fact, this is immediate
if the interval [0, β] is infinite. If it is finite one may assume that β
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is the smallest positive element. Looking at a + Zβ c Γ one sees that
either a or a + β is even, for any a e Γ.) Consequently, any γ eΓ
is of the form γ = v (a), for some aeΣ K*2

Given u e AT*, we may hence assume ι (w) = 0. Now observe that

4u _ s + (u- I ) 2

~~ s + (u+ I ) 2 " 5 + (w+ I) 2

is a sum of squares for any s e Σ&*2 Taking 5 := b(u + I ) 2 , where
6 is as above, we find that υ(s + (w + I)2) = β + 2v(u + 1) is positive
and odd. On the other hand, s + (u - I ) 2 = (1 + b)(u + I ) 2 - 4u has
valuation zero. So, for

t . =

 4

 =

 4

s + {u+\)2 (w+l)2(

ϋ(l - tu) is odd; hence l-tue Σ ^ * 2

REMARKS. 1. As noted before, every rank one place of K with a
non-2-divisible value group satisfies (2) of Proposition 4. However,
the given formulation covers a larger class of fields K, since a 2-
regular group Γ with Γ/2 Φ 0 need not have an archimedean ordered
factor group Γ with Γ/2 ^ 0.

2. The class of fields covered by Proposition 3 is strictly larger than
the class of all hilbertian fields. For example, a henselian valued field
can never be hilbertian [FJ, p. 181].

3. The proof of Propositions 3 and 4 has the advantage of be-
ing more constructive than that of Proposition 1 (which yielded bet-
ter bounds for hilbertian fields). Specifically, if K is a (positive-
dimensional) function field over some base field k, and U c XK
is given explicitly, this proof can be used to produce a concrete finite
extension L/K with rL/K{XL) = U.
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