PULLING BACK BUNDLES

GEORGE R. KEMPF

Let D be an ample divisor on a smooth projective algebraic variety X. We will define the notion of a vector bundle $\mathscr W$ on X to be strongly stable with respect to D. If X has characteristic zero this definition is the same as the usual definition of stability. In general it implies stability.

Let $f: Y \to X$ be a finite morphism. Then we have the bundle $f^*\mathcal{W}$ on Y which has the ample divisor $f^{-1}D$. If \mathcal{W} is stable with respect to D, we will prove

THEOREM 1 (Characteristic zero). f^*W is the direct sum of stable bundles of the same slope with respect to $f^{-1}D$, i.e. f^*W is poly-stable.

Consider the special case of a finite morphism $f: \mathbb{P}^n \to \mathbb{P}^n$. For instance f is given by raising the homogeneous coordinates to the kth power. Then we have an essentially unique choice of D and $f^{-1}D$. Our result is a strong version of the above problem. When rank $\mathscr{W} = 2$ this is due to Barth [5].

THEOREM 2. If W is a strongly stable bundle on \mathbb{P}^n , then f^*W is strongly stable.

By Theorem 1 in characteristic zero we need only see that f^*W is indecomposable. One may apply this in particular to the Mumford-Horrocks' bundle on \mathbb{P}^4 and thereby produce many other rank two bundles on \mathbb{P}^4 with larger Chern classes. See [6].

1. Stability and strong stability. Let D be an ample divisor on a smooth projective variety X. Let $\mathscr W$ be a torsion-free coherent sheaf on X. The slope $\mu(\mathscr W) = \deg \mathscr W / \operatorname{rank} \mathscr W$ where $\deg \mathscr W = [c_1(\mathscr W) \cdot D^{\dim X - 1}]$.

Then \mathscr{W} is stable with respect to D if $\mu(\mathscr{F}) < \mu(\mathscr{W})$ for all non-zero coherent subsheaves $\mathscr{F} \subsetneq \mathscr{W}$.

For strong stability we will assume that \mathscr{W} is locally free. When \mathscr{W} is strongly free if for all $0 < i < \operatorname{rank} \mathscr{W}$, $\Gamma(X, \mathscr{L}^{\otimes -1} \otimes \bigwedge^i \mathscr{W}) = 0$ for all invertible sheaves \mathscr{L} on X such that $\deg \mathscr{L} \geq i\mu(\mathscr{W})$.

LEMMA 3. Strongly stable implies stable.

Proof. Let $0 \neq \mathscr{F} \subsetneq \mathscr{W}$ be a coherent subsheaf of \mathscr{W} of rank i. Then we have the obvious homomorphism $i \colon \bigwedge^i \mathscr{F} \to \bigwedge^i \mathscr{W}$. Let \mathscr{L} be $(\bigwedge^i \mathscr{F}/\text{torsion})^{\text{double dual}}$. Then i induces an inclusion $\mathscr{L} \subset \bigwedge^i \mathscr{W}$. Thus if \mathscr{W} is strongly stable then $\deg \mathscr{L} < i\mu(\mathscr{W})$ but $\mu(\mathscr{F}) = \deg \mathscr{L}/i$. Thus $\mu(\mathscr{F}) < \mu(\mathscr{W})$ and hence \mathscr{W} is stable.

Thus one easily checks that stable means that no section of $\mathcal{L}^{\otimes -1} \otimes \bigwedge^{i} \mathcal{W}$ satisfies the Plücker relations at the generic point X if $\deg \mathcal{L} \geq i\mu(\mathcal{W})$.

Next we will use some analysis.

PROPOSITION 4. If char(X) = 0 then strongly stable \Leftrightarrow stable.

Proof. Assume that \mathscr{W} is stable. Let \mathscr{W} be a Kähler metric with $c_1(D)$ as cohomology class. Then by the theorem of Donaldson-Uhlenberg-Yau \mathscr{W} admits a Kähler-Einstein metric. As mentioned in [4] $\bigwedge^i \mathscr{W}$ has a Kähler-Einstein metric of slope $i\mu(\mathscr{W})$. Thus by Kobayashi's theorem $\bigwedge^i \mathscr{W}$ is the direct sum of stable bundles \mathscr{F}_* of slope $i\mu(\mathscr{W})$. In particular each \mathscr{F}_* does not contain an invertible sheaf \mathscr{L} of $\deg \geq i\mu(\mathscr{W})$. Hence $\bigwedge^i \mathscr{W}$ has the same property. \square

2. The proof of Theorem 1. We will prove Theorem 1 by induction of dimension X = n. Let $h = \dim \mathcal{W}$.

If n=1 then \mathcal{W} has a Hermitian-Einstein metric for some Hermitian metric ω_X on X. Thus $f^*\mathcal{W}$ has a Hermitian-Einstein metric for the degenerate metric $f^*\omega_Z$ on Y which vanishes at the ramification points of f. Let $\mathcal{F} \subset f^*\mathcal{W}$ be a coherent sheaf of rank f, which we may assume is a subbundle as Y is a smooth curve. Thus $\mathcal{L} = \bigwedge^h \mathcal{F} \subset \bigwedge^h f^*\mathcal{W}$ is a subbundle. Hence the curvature of \mathcal{L} is pointwise smaller than that of $\bigwedge^h f^*\mathcal{W}$.

We immediately conclude that $f^*\mathscr{W}$ is semi-stable. If the $\deg \mathscr{L} = \operatorname{slope} \bigwedge^h f^*\mathscr{W}$, then \mathscr{L} has a Hermitian-Einstein metric with respect to $f^*\mathscr{W}_X$. Then we have a section of $\mathscr{L}^{\otimes -1} \otimes \bigwedge^h f^*\mathscr{W}$ corresponding to the inclusion but this sheaf has zero curvature. As usual we see that \mathscr{F} is a direct summand of $f^*\mathscr{W}$.

For the inductive step let X' be a general hyperplane section of X of large degree. Then $\mathscr{W}|_{X'}$ is stable by the restriction theorem of Mehta-Ramanathan [1]. By Bertini $f^{-1}(X') = Y'$ is smooth. Trivially $f' \colon Y' \to X'$ is finite. Then $f'^*(\mathscr{W}|_{X'}) = f'^*\mathscr{W}|_{Y'}$ is poly-stable. Say

 $f'^*\mathcal{W}|_{Y'} = \bigoplus \mathcal{V}_i^{\oplus n_i}$ where the \mathcal{V}_i are non-isomorphic bundles with the same slope. It follows that

$$\operatorname{End}(f'^*\mathscr{W}|_{Y'}) = \bigoplus \operatorname{End}_{\mathbb{C}}(\mathbb{C}^{\oplus n_i})$$

and each direct summand is given by a idempotent.

By Serre's vanishing theorem $\operatorname{End}(f^*\mathscr W) \to \operatorname{End}(f^*\mathscr W|_{Y'})$ is an isomorphism because Y' has large degree. Thus we have a decomposition $f^*\mathscr W = \bigoplus \mathscr W_i^{\oplus n_i}$ which extends to the one above and this decomposition is independent of the choice of Y'. Thus each $\mathscr W_i$ is stable and they have the same slope by the trivial direction of the reasoning of the restriction theorem. Thus Theorem 1 is here.

3. Endomorphisms of \mathbb{P}^n . Let $f: \mathbb{P}^n \to \mathbb{P}^n$ be a non-constant morphism. Then $f^*\mathcal{O}_{\mathbb{P}^n}(1) = \mathcal{O}_{\mathbb{P}^n}(k)$ where k is positive. Now $f(x_0, \ldots, x_n) = (F_0(x), \ldots, F_n(X))$ where F_0, \ldots, F_n are homogeneous polynomials of degree k with no common zero.

Let $i: k[Y_0, \ldots, Y_n] \to k[X_0, \ldots, X_n]$ be the homomorphism sending Y_i to F_i . Then by the argument in invariant theory [3] we may conclude that i is injective and $k[X_0, \ldots, X_n]$ is a free $k[Y_0, \ldots, Y_n]$ -module with a basis r_1, \ldots, r_d of homogeneous elements. This implies

LEMMA 5. (a) f is a flat finite morphism.

- (b) for all l, $f_*(\mathscr{O}_{\mathbb{P}^n}(l)) = \bigoplus_{m \in S(l)} \mathscr{O}_{\mathbb{P}^n}(m)$ where the finite set S(l) satisfies
- (c) S(0) has only one non-negative element which is zero and S(l) has non-negative elements if l < 0.

Proof. The point (c) follows from (b) by looking to the isomorphism of global sections

$$\Gamma(\mathbb{P}^n\,,\,\mathscr{O}_{\mathbb{P}^n}(l))=\bigoplus_{m\in S(l)}\Gamma(\mathbb{P}^n\,,\,\mathscr{O}_{\mathbb{P}^n}(m))\,.$$

To prove (a) first note that f is affine as $f^{-1}(Y_i \neq 0) = (F_i \neq 0)$ is affine. Thus (a) follows from (b). For (b) we compute

$$\begin{split} \Gamma(F_i) &\neq 0 \,,\, \mathscr{O}_{\mathbb{P}^n}(l) = [k[X_0 \,,\, \ldots \,,\, X_n]_{F_0}]_{\text{degree } l} \\ &= \bigoplus [r_i \,,\, k[Y_0 \,,\, \ldots \,,\, Y_n]_{(X_i)}]_{\text{degree } l} \\ &= \bigoplus [r_i \,,\, k[Y_0 \,,\, \ldots \,,\, Y_n]_{(X_i)}]_{\text{some degree depending on } r_i} \,. \end{split}$$

As this isomorphism is global (b) follows.

4. The proof of Theorem 2. Let $f: \mathbb{P}^n \to \mathbb{P}^n$ be a non-constant morphism. Let \mathscr{W} be a strongly stable vector bundle on \mathbb{P}^n of slope μ with respect to D where D is a hyperplane section.

Now we want to prove that $f^*\mathscr{W}$ is strongly stable of slope $k \cdot \mu$ with respect to D where $kD \sim f^*\mathscr{W}$. Let \mathscr{L} be an invertible sheaf on \mathbb{P}^n such that $\Gamma(\mathbb{P}^n, \mathscr{L}^{\otimes -1} \otimes \bigwedge^j f^*\mathscr{W}) \neq 0$ for $0 < i < \operatorname{rank} \mathscr{W}$. Then we need to show that $\deg \mathscr{L} < ik\mu$. Let $\mathscr{L} = \mathscr{O}_{\mathbb{P}^n}(l)$.

Write l = kr - s where $0 \le s < k$. Then

$$\begin{split} \Gamma\big(\mathbb{P}^n\,,\,\mathcal{L}^{\otimes -1}\otimes \bigwedge^i f^*\mathcal{W}\big) &= \Gamma(\mathbb{P}^n\,,\,\mathcal{O}_{\mathbb{P}^n}(-s))\otimes f^*\big(\mathcal{O}_{\mathbb{P}^r}(-r)\otimes \bigwedge^i \mathcal{W}\big) \\ &= \Gamma(\mathbb{P}^n\,,\,\mathcal{O}_{\mathbb{P}^r}(-s))\oplus \big(\mathcal{O}_{\mathbb{P}^n}(-r)\otimes \bigwedge^i \mathcal{W}\big) \\ &= \bigoplus_{m\in S(-s)} \Gamma\big(\mathbb{P}^n\,,\,\mathcal{O}_{\mathbb{P}^n}(-rm)\otimes \bigwedge^i \mathcal{W}\big)\,. \end{split}$$

As \mathcal{W} is strongly stable we get $+rm < i\mu$ for some $m \in S(-s)$ where m < 0 unless s = 0 then $m \le 0$. Thus $\deg \mathcal{L} = l = kr + s = k(r+s/k) \le k(rm) \le k(i\mu) = i(k\mu)$ which is what we wanted.

5. Splitting of bundles. Let \mathscr{W} be a bundle on \mathbb{P}^n . Then \mathscr{W} is split if and only if $\mathscr{W} = \bigoplus \mathscr{O}_{\mathbb{P}^n}(l_i)$ for some l_i . Let $f: \mathbb{P}^n \to \mathbb{P}^n$ be a finite morphism.

LEMMA 6. f^*W is split iff W is.

Proof. The "if" part is trivial.

To prove the other way note that $H^i(\mathbb{P}^n, \mathcal{W}(i))$ is a direct summand of $H^i(\mathbb{P}^n, f^*\mathcal{W}(ki))$ by §2. Thus Horrocks' criterion [2] for $f^*\mathcal{W}$ implies the same condition for \mathcal{W} . Hence \mathcal{W} is split if $f^*\mathcal{W}$ is. \square

REFERENCES

- [1] V. B. Mehta and A. Ramanathan, Semistable sheaves on projective varieties and their restrictions to curves, Math. Ann., 258 (1982), 213-224.
- [2] G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3), 14 (1958), 689-713.
- [3] G. Kempf, Computing Invariants, in Invariant Theory (S. S. Koh), Lecture Notes in Math., vol. 1278, Springer-Verlag, New York, 1980, pp. 8-94.
- [4] M. Lübke, Stability of Einstein-Hermitian vector bundle, Manuscripta Math., 42 (1983), 245-257.
- [5] W. Barth, Some properties of stable rank-2 vector bundles on \mathbb{P}^n , Math. Ann., **226** (1977), 125–150.
- [6] W. Decker and F. O. Schreyer, *Pullbacks of the Horrocks-Mumford bundle*, J. Reine Angew Math., **382** (1978), 215–220.

Received November 20, 1989. Partially supported by an NSF grant.

THE JOHN'S HOPKINS UNIVERSITY BALTIMORE, MD 21218