ON THE REPRESENTATION OF THE DETERMINANT OF HARISH-CHANDRA'S C-FUNCTION OF $\operatorname{SL}(n, \mathbb{R})$

Shohei Tanaka

Abstract

This paper gives the explicit representation of the determinant of the Harish-Chandra C-function of $\operatorname{SL}(n, \mathbb{R}) \quad(n \geq 3)$ and some application.

1. Introduction. Let G be a semisimple Lie group with finite center, K a maximal compact subgroup of G. Let θ be the Cartan involution of G fixing K. Let P be a cuspidal parabolic subgroup and $P=$ $M A N$ its Langlands decomposition. For σ in \widehat{M}_{d} and γ in \widehat{K}, we set $\tau=(\gamma, \gamma)$ and denote the space of the τ_{M}-spherical cusp forms on M by ${ }^{0} \mathfrak{C}_{M}\left(M, \tau_{M}\right)$. The Harish-Chandra C-function $C_{\bar{P} \mid P}(1: \nu)$ has important information in the representation theory.
In the determinant of $C_{\bar{P} \mid P}(1: \nu), \mathrm{L}$. Cohn has proved the following results.

Theorem (see [2], p. 129). There exist functions $\mu_{1}, \ldots, \mu_{r} \in \mathfrak{a}^{*}$ and constants $p_{i, j}, q_{i, j}\left(i=1, \ldots, r, j=1, \ldots, j_{i}\right)$ depending on τ such that

$$
\operatorname{det} C_{\bar{P} \mid P}(1: \nu)=\mathrm{const} \cdot \prod_{i=1}^{r} \prod_{j=1}^{j_{i}} \frac{\Gamma\left(\frac{\left\langle\nu, \alpha_{j}\right\rangle}{2\left\langle\mu_{i}, \alpha_{i}\right\rangle}+q_{i, j}\right)}{\Gamma\left(\frac{\left\langle\nu, \alpha_{i}\right\rangle}{2\left\langle\mu_{i}, \alpha_{i}\right\rangle}+p_{i, j}\right)},
$$

where $\alpha_{1}, \ldots, \alpha_{r}$ are reduced \mathfrak{a}-roots.
He gives a conjecture that the constants $p_{i, j}$ and $q_{i, j}$ are rational numbers and depending linearly on the highest weight of the irreducible components of τ.

Let G be $\operatorname{SL}(n, \mathbb{R})$ and P the minimal parameter subgroup of G. In the case that $n=2$, the Harish-Chandra C-function and determinant of it are well known explicitly. If n is 3 or 4, in [4] Eguchi and the author give the explicit formula of the determinant of Harish-Chandra's C-function of G, which solves Cohn's conjecture affirmatively. The purpose of this paper is to extend the result in [4]
to G and apply it to the study of the reducibility of $\pi_{P, \sigma, \nu}$. The application does not give any new result but it gives another proof of Speh-Vogan's reducibility condition ([12], [13]).

The author would like to thank Professor M. Eguchi and Professor K . Okamoto for their helpful suggestions and encouragement.
2. Notation and preliminaries. Let G be a semisimple Lie group with finite center and \mathfrak{g} its Lie algebra. Let \mathfrak{l} be a maximal compact subalgebra of $\mathfrak{g}, \mathfrak{g}=\mathfrak{l}+\mathfrak{p}$ the corresponding Cartan decomposition and θ the Cartan involution defining the decomposition. We introduce an inner product B_{θ} on \mathfrak{g} in the standard way such that $B_{\theta}(X, Y)=-B(X, \theta Y)$, where B is the Killing form on \mathfrak{g}. Let \mathfrak{a}_{p} be a maximal abelian subgroup of \mathfrak{p}. We fix an order in the dual space $\left(\mathfrak{a}_{p}\right)^{*}$ of \mathfrak{a}_{p}, and put $\mathfrak{n}_{p}=\sum_{\alpha>0} \mathfrak{g}_{\alpha}$, where \mathfrak{g}_{α} denotes the root space of the \mathfrak{a}_{p}-root α, and we let $\mathfrak{v}_{p}=\theta \mathfrak{n}_{p}$. Then we have an Iwasawa decomposition $\mathfrak{g}=\mathfrak{l}+\mathfrak{a}_{p}+\mathfrak{n}_{p}$ of \mathfrak{g}. Let $\mathfrak{m}_{p}=Z_{\mathfrak{l}}\left(\mathfrak{a}_{p}\right)$ the centralizer of \mathfrak{a}_{p} in \mathfrak{l}.
We now let $K=N_{G}(\mathfrak{l})$ be the normalizer of \mathfrak{l} in $G, M_{p}=Z_{K}\left(\mathfrak{a}_{p}\right)$ the centralizer of \mathfrak{a}_{p} in K and $M_{p}^{\prime}=N_{K}\left(\mathfrak{a}_{p}\right)$ the normalizer of \mathfrak{a}_{p} in K. Let A_{p}, N_{p} and V_{p} be the analytic subgroups of G corresponding to $\mathfrak{a}_{p}, \mathfrak{n}_{p}$ and \mathfrak{v}_{p} respectively.

Any conjugate of $\mathfrak{m}_{p} \oplus \mathfrak{a}_{p} \oplus \mathfrak{n}_{p}$ is called a minimal parabolic subalgebra, and any Lie subalgebra \mathfrak{s} that contains a minimal parabolic subalgebra is called parabolic. Then \mathfrak{s} has a Langlands decomposition (relative to θ) $\mathfrak{s}=\mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}$. Here $\mathfrak{m} \oplus \mathfrak{a}=Z_{\mathfrak{g}}(\mathfrak{a})$, and we can impose an ordering on the \mathfrak{a}-roots so that \mathfrak{n} is built from the positive \mathfrak{a}-roots. Let $\mathfrak{v}=\theta \mathfrak{n}$. If \mathfrak{a}_{M} is a maximal abelian subspace of $\mathfrak{m} \cap \mathfrak{p}$, then $\mathfrak{a} \oplus \mathfrak{a}_{M}$ is a maximal abelian subspace of \mathfrak{p} and can be taken as \mathfrak{a}_{p} in our theory. When we introduce an ordering on the \mathfrak{a}_{p}-roots so that \mathfrak{a} comes before \mathfrak{a}_{M}, then the positive \mathfrak{a}-roots are the nonzero restriction to \mathfrak{a} of the positive \mathfrak{a}_{p}-roots. The sum of the root spaces for the positive \mathfrak{a}_{p}-roots that vanish on \mathfrak{a} is denoted by \mathfrak{n}_{M}.

Let $M_{0}, A, A_{M}, N, V, N_{M}$ be analytic subgroups corresponding to $\mathfrak{m}, \mathfrak{a}, \mathfrak{a}_{M}, \mathfrak{n}, \mathfrak{v}, \mathfrak{n}_{M}$ respectively and put $M=M_{0} M_{p}$. The group $P=M A N$ is a parabolic subgroup. The subgroups in our discussion have the following properties (see e.g. [8]).
) (1) $M A=Z_{G}(\mathfrak{a}), M A N=N_{G}(\mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}), M A N$ is closed, and $(m, a, n) \in M \times A \times N \rightarrow m a n \in M A N$ is a diffeomorphism onto,
(2) $\left.\theta\right|_{\mathfrak{m}}$ is a Cartan involution of \mathfrak{m}, and $K_{M}=K \cap M$ is the corresponding maximal compact subgroup of M,
(3) $M=K_{M} A_{M} N_{M}$ is an Iwasawa decomposition of M,
(4) $A_{p}=A_{M} A$ and $N_{p}=N_{M} N$ diffeomorphically,
(5) $G=K M A N$ with the $K M, A$ and N components unique,
(6) $K \cap M A=K \cap M$,
(7) $V \cap M A N=\{1\}$,
(8) the M_{p} group for M equals the M_{p} group for G.

Two parabolic subgroups with the same $M A$ are associated. The choices for N are in obvious one-to-one correspondence with the Weyl chambers. Let $M^{\prime}=N_{K}(\mathfrak{a}) M$ and $W(\mathfrak{a})=M^{\prime} / M$. If w is in M^{\prime}, then w acts on characters of A and representations of M by

$$
w \cdot \nu(a)=\nu\left(w^{-1} a w\right), \quad w \cdot \sigma(m)=\sigma\left(w^{-1} m w\right) .
$$

Then $W(\mathfrak{a})$ acts on characters of A and classes of representations of M. An a-root is said to be reduced if $r \alpha$ is not a root for $0<$ $r<1(r \in \mathbb{R})$. Let β be a reduced \mathfrak{a}-root in the dual $\mathfrak{a}^{*}, H_{\beta}$ the corresponding member of \mathfrak{a} under the identification set up by B_{θ}, and $\left(H_{\beta}\right)^{\perp}$ the orthogonal complement of $\mathbb{R} \cdot H_{\beta}$ in \mathfrak{a}. We set $\mathfrak{n}^{(\beta)}=$ $\sum_{c>0} \mathfrak{g}_{c \beta}, \mathfrak{v}^{(\beta)}=\theta_{\mathfrak{n}}{ }^{(\beta)}=\sum_{c<0} \mathfrak{g}_{c \beta}$ and let $\mathfrak{g}^{(\beta)}$ be the subalgebra of \mathfrak{g} generated by $\mathfrak{n}^{(\beta)}$ and $\mathfrak{v}^{(\beta)}$. Let $N^{(\beta)}, V^{(\beta)}$ and $G^{(\beta)}$ be the analytic subgroups corresponding to $\mathfrak{n}^{(\beta)}, \mathfrak{v}^{(\beta)}$ and $\mathfrak{g}^{(\beta)}$ respectively.

Let \widehat{K} and \widehat{M} be the set of all equivalence classes of the irreducible unitary representations of K and M respectively. For each $\sigma \in \widehat{M}$ we fix a representation ($\left.\tilde{\sigma}, H^{\tilde{\sigma}}\right)$ in σ and, abusing notation, we use also σ for $\tilde{\sigma}$. For each γ in \widehat{K} we fix an element $\left(\pi_{\gamma}, H^{\gamma}\right)$ in γ.

We recall the generalized principal series representations. Let $P=$ $M A N$ be a parabolic subgroup and $\rho_{P}=\frac{1}{2} \cdot \sum_{\alpha>0}\left(\operatorname{dim} \mathfrak{g}_{\alpha}\right) \alpha$. Let σ be in \widehat{M} and ν in $\mathfrak{a}_{\mathbb{C}}^{*}$ (the complexification of \mathfrak{a}^{*}). Let $C_{P, \sigma, \nu}(G)$ be the space of all continuous functions f from G to H^{σ} such that

$$
f(x m a n)=e^{-\left(\nu+\rho_{p}\right)(\log a)} \sigma(m)^{-1} f(x) \quad(x \in G) .
$$

Let $h^{P, \sigma, \nu}$ be the completion of $C_{P, \sigma, \nu}(G)$ by the norm

$$
\|f\|^{2}=\int_{K}\|f(k)\|^{2} d k \quad\left(f \in C_{P, \sigma, \nu}(G)\right) .
$$

The representation $\pi_{P, \sigma, \nu}$ is given by

$$
\pi_{P, \sigma, \nu}(g) f(x)=f\left(g^{-1} x\right) \quad(g \in G)^{\prime}
$$

The compact picture is the restriction of the induced picture to K. Here the dense subspace $C_{\sigma}(K)$ is

$$
\left\{f: K \rightarrow H^{\sigma} \mid f \text { is continuous and } f(k m)=\sigma(m)^{-1} f(k)\right\}
$$

and is independent of ν. According to the decomposition $G=$ $K M A N$ of (1.1) each $g \in G$ is written as

$$
\begin{aligned}
& g=\kappa(g) \mu(g)(\exp H(g)) n(g), \\
&(\kappa(g) \in K, \mu(g) \in M, H(g) \in \mathfrak{a}, n(g) \in N)
\end{aligned}
$$

Then representation is given by

$$
\pi_{P, \sigma, \nu}(g) f(k)=e^{-\left(\nu+\rho_{P}\right)\left(H\left(g^{-1} k\right)\right)} f\left(\kappa\left(g^{-1} k\right)\right)
$$

If γ is in \widehat{K}, the projection operator E_{γ} defined by

$$
E_{\gamma}=d(\gamma) \bar{\chi}_{\gamma} * f \quad\left(f \in C_{\sigma}(K)\right)
$$

where $d(\gamma)$ and χ_{γ} denote the dimension and the character of γ respectively. For γ in \widehat{K}, we put

$$
H^{P, \sigma, \nu}=\left\{f \in H^{P, \sigma, \nu} \mid E_{\gamma} f=f\right\}
$$

3. Some lemmas for the intertwining operators. Let $P=M A N^{\prime}$ and $P^{\prime}=M A N^{\prime}$ be associated parabolic subgroups and let σ be in \widehat{M} and ν in $\mathfrak{a}_{\mathbb{C}}^{*}$. For f in $C_{P, \sigma, \nu}(G)$ we set

$$
A\left(P^{\prime}: P: \sigma: \nu\right) f(x)=\int_{V \cap N^{\prime}} f(x v) d v
$$

where $V=\theta N$ and $d v$ is the normalized Haar measure on $V \cap N^{\prime}$ by

$$
\int_{V \cap N^{\prime}} e^{-2 \rho_{P}(H(v))} d v=1
$$

The operator $A\left(P^{\prime}: P: \sigma: \nu\right)$ is called the intertwining operator. In this section we shall describe the properties of the intertwining operators, which are well known results (see e.g. [8]).

The inner product B_{θ} on \mathfrak{g} induces an inner product on the dual \mathfrak{a}^{*} of \mathfrak{a}, which we denote by $\langle\cdot, \cdot\rangle$.

Let ρ_{M} be half the sum of the positive \mathfrak{a}_{M}-roots. Since the parabolic subgroup $P=M A N$ contains the minimal parabolic subgroup $P_{p}=M_{p} A_{p} N_{p}$ such that $\mathfrak{a}_{p}=\mathfrak{a} \oplus \mathfrak{a}_{M}$.

For each \mathfrak{a}-root β, set $C_{\beta}=\max \left\{\rho_{M}\left(H_{\alpha}\right)\right\}$, where the maximum is taken over all \mathfrak{a}_{p}-roots α satisfying $\left.\alpha\right|_{a}=\beta$.

Lemma 3.1. Let $P=M A N$ and $P^{\prime}=M A N$ be associated parabolic subgroups and suppose that $\langle\operatorname{Re} \nu, \beta\rangle>C_{\beta}$ for every \mathfrak{a}-root β such that $\mathfrak{g}_{\beta} \subset \mathfrak{n} \cap \mathfrak{v}^{\prime}$. Then the integral $A\left(P^{\prime}: P: \sigma: \nu\right) f(x) \quad(x \in G, f \in$ $\left.C_{P, \sigma, \nu}(G)\right)$ is a convergent. Moreover, if f is a K-finite function in the compact picture of $\pi_{P, \sigma, \nu}$ then the integral has an analytic continuation to a global meromorphic function in ν.

Lemma 3.2. If σ is in \widehat{M} and ν in $\mathfrak{a}_{\mathbb{C}}^{*}$, then we have

$$
A\left(P^{\prime}: P: \sigma: \nu\right) \pi_{P, \sigma, \nu}(g)=\pi_{P^{\prime}, \sigma, \nu}(g) A\left(P^{\prime}: P: \sigma: \nu\right)
$$

for all g in G.
For w in M^{\prime}, let $R(w) f(x)=f(x w)$. Then it follows from Lemma 3.2 that

$$
\begin{equation*}
A_{P}(w, \sigma, \nu)=R(w) A\left(w^{-1} P w: P: \sigma: \nu\right) \tag{3.1}
\end{equation*}
$$

satisfies

$$
\pi_{P, w \sigma, w \nu}(\cdot) A_{P}(w, \sigma, \nu)=A_{P}(w, \sigma, \nu) \pi_{P, \sigma, \nu}(\cdot)
$$

Lemma 3.3. Let $P=M A N$ and $P^{\prime}=M A N^{\prime}$ be associated parabolic subgroups. Then there exists a scalar-valued function $\gamma\left(P^{\prime}: P: \sigma: \nu\right)$ meromorphic in ν such that

$$
\begin{equation*}
A\left(P: P^{\prime}: \sigma: \nu\right) A\left(P^{\prime}: P: \sigma: \nu\right)=\eta\left(P^{\prime}: P: \sigma: \nu\right) I \tag{3.2}
\end{equation*}
$$

Let $P=M A N$ and $P^{\prime}=M A N^{\prime}$ be as in Lemma 3.3. A sequence $P_{i}=\operatorname{MAN}_{i}(0 \leq i \leq r)$ is called a string from P to P^{\prime} if there are P-positive reduced \mathfrak{a}-roots $\beta_{i}(1 \leq i \leq r)$ such that

$$
\begin{gathered}
V_{i-1} \cap N_{i}=V^{\left(\beta_{t}\right)} \text { or } N^{\left(\beta_{t}\right)} \quad(1 \leq i \leq r) \\
P_{0}=P \quad \text { and } \quad P_{r}=P^{\prime}
\end{gathered}
$$

The string P_{i} from P to P^{\prime} is called minimal if we have

$$
\begin{gathered}
V_{i-1} \cap N_{i}=V^{\left(\beta_{i}\right)} \quad(1 \leq i \leq r) \\
P_{0}=P \quad \text { and } \quad P_{r}=P^{\prime}
\end{gathered}
$$

Lemma 3.4. Suppose that $P=M A N$ and $P^{\prime}=M A N^{\prime}$ are associated parabolic subgroups and $P_{i}=M A N_{i}(0 \leq i \leq r)$ is a minimal string from P to P^{\prime}, with associated P-positive reduced \mathfrak{a}-roots $\left\{\beta_{i}\right\}$. Then
(1) the set $\left\{\beta_{i}\right\}$ is characterized as the set of reduced \mathfrak{a}-roots α that are positive for P and negative for P^{\prime}.
(2) r is characterized as the number of \mathfrak{a}-roots described in (1).
(3) the intertwining operators satisfy

$$
A\left(P^{\prime}: P: \sigma: \nu\right)=A\left(P_{r}: P_{r-1}: \sigma: \nu\right) \cdots A\left(P_{i}: P_{0}: \sigma: \nu\right)
$$

Lemma 3.5. Let $P=$ MAN be a parabolic subgroup, let σ be in \widehat{M} and ν in $\mathfrak{a}_{\mathbb{C}}^{*}$ such that $\operatorname{Re} \nu$ is in the open positive Weyl chamber. Then $\pi_{P, \sigma, \nu}$ has a unique irreducible quotient $J(p, \sigma, \nu)$ and $J(P, \sigma, \nu)$ is isomorphic with the image of the intertwining operator $A(\bar{P}: P: \sigma: \nu)$ on $H^{P, \sigma, \nu}$, where $\bar{P}=M A V$.
4. The B_{γ}^{σ}-functions. In this section we shall work only with minimal parabolic subgroups and omit the subscripts p. Let P, P^{\prime} be associated minimal parabolic subgroups and let γ be in \widehat{K}, σ in \widehat{M} and A in $\operatorname{Hom}_{M}\left(V^{\gamma}, H^{\sigma}\right)$, where V^{γ} denotes the representation space of γ. For ν in $\mathfrak{a}_{\mathbb{C}}^{*}, v$ in V^{γ}, let

$$
L_{P}(A, v, \nu)(\operatorname{kan})=e^{-\left(\nu+\rho_{P}\right)(\log a)} A\left(\pi_{\gamma}\left(k^{-1}\right) v\right)
$$

for k in K, a in A, n in N. Then an easy computation shows that $L_{P}(A, v, \nu)$ is in $H_{\gamma}^{P, \sigma, \nu}$. Furthermore the map

$$
V^{\gamma} \otimes \operatorname{Hom}_{M}\left(V^{\gamma}, H^{\sigma}\right) \rightarrow H_{\gamma}^{P, \sigma, \nu}
$$

given by $v \otimes A \rightarrow L_{P}(A, v, \nu)$ is a bijective K-intertwining operator. Set

$$
A_{\gamma}\left(P^{\prime}: P: \sigma: \nu\right)=\left.A\left(P^{\prime}: P: \sigma: \nu\right)\right|_{H_{\gamma}^{P, \sigma, \nu}}
$$

Then we have $A_{\gamma}\left(P^{\prime}: P: \sigma: \nu\right)$ is in $\operatorname{Hom}_{K}\left(H_{\gamma}^{P^{\prime}}, \sigma, \nu, H_{\gamma}^{P, \sigma, \nu}\right)$.
Lemma 4.1. (See [4], [15].) If ν is in $\mathfrak{a}_{\mathbb{C}}^{*}$ and $\langle\operatorname{Re} \nu, \alpha\rangle>0$ for all P-positive roots α then we have

$$
A_{\gamma}\left(P^{\prime}: P: \sigma: \nu\right) L_{P}(A, v, \nu)=L_{P}\left(A \circ B_{\gamma}\left(P^{\prime}: P: \nu\right), v, \nu\right)
$$

where

$$
B_{\gamma}\left(P^{\prime}: P: \nu\right)=\int_{V \cap N^{\prime}} \pi_{\gamma}(\kappa(v))^{-1} e^{-\left(\nu+\rho_{P}\right)(H(v))} d v
$$

Furthermore $B_{\gamma}\left(P^{\prime}: P: \nu\right)$ satisfies the following conditions,
(1) $B_{\gamma}\left(P^{\prime}: P: \nu\right)$ is absolutely convergent.
(2) $B_{\gamma}\left(P^{\prime}: P: \nu\right)$ is in $\operatorname{End}\left(V^{\gamma}\right)$ and satisfies

$$
B_{\gamma}\left(P^{\prime}: P: \nu\right) \pi_{\gamma}(m) B_{\gamma}\left(P^{\prime}: P: \nu\right) \quad(m \in M)
$$

Now we define B_{γ}^{σ}-functions. If σ is in \widehat{M}, we denote the σ component of V^{γ} by V_{σ}^{γ}. Let

$$
B_{\gamma}^{\sigma}\left(P^{\prime}: P: \nu\right)=\left.B_{\gamma}\left(P^{\prime}: P: \nu\right)\right|_{V_{\sigma}^{\gamma}}
$$

Then $B_{\gamma}^{\sigma}\left(P^{\prime}: P: \nu\right)$ is in $\operatorname{End}\left(V_{\sigma}^{\gamma}\right)$ and from Lemma 3.1 it has an analytic continuation to a global meromorphic function in ν. Particularly, $B_{\gamma}(\bar{P}: P: \nu)$ is called Harish-Chandra's C-function.

Corollary 4.2. If w is in M^{\prime}, ν is in $\mathfrak{a}_{\mathbb{C}}^{*}$ such that $\langle\operatorname{Re} \nu, \alpha\rangle>0$ for all P-positive roots α, then we have $A_{P}(w, \sigma, \nu) L_{P}(A, v, \nu)=L_{P^{\prime}}\left(A \circ B_{\gamma}(P, w, \nu) \circ \pi_{\gamma}(w)^{-1}, v, w \nu\right)$, where

$$
B_{\gamma}(P, w, \nu)=B_{\gamma}\left(w^{-1} P w: P: \nu\right)
$$

Let w be in M^{\prime} such that

$$
\begin{equation*}
w^{-1} P w=\bar{P} \quad \text { and } \quad w=w_{r} w_{r-1} \cdots w_{1} \tag{4.1}
\end{equation*}
$$

where each $w_{i}(1 \leq i \leq r)$ is the reflection with respect to the P-simple \mathfrak{a}-root γ_{i} and r is the length of w. Then by the relation

$$
\begin{align*}
& A_{P}(w, \sigma, \nu) \tag{4.2}\\
& \quad=A_{P}\left(w_{r}, w_{r-1} \cdots w_{1} \sigma, w_{r-1} \cdots w_{1} \nu\right) \cdots A_{P}\left(w_{1}, \sigma, \nu\right)
\end{align*}
$$

and Corollary 4.2, we have

$$
\begin{align*}
B_{\gamma}^{\sigma}(\bar{P} & : P: \nu) \tag{4.3}\\
= & B_{\gamma}^{\sigma}\left(P, w_{1}, \nu\right) \pi_{\gamma}^{\sigma}\left(w_{1}\right) B_{\gamma}^{w_{1} \sigma}\left(P, w_{2}, w_{1} \nu\right) \\
& \cdots B_{\gamma}^{w_{r-1} \cdots w_{1} \sigma}\left(P, w_{r}, w_{r-1} \cdots w_{1} \nu\right) \\
& \quad \pi_{\gamma}^{w_{r-1} \cdots w_{1} \sigma}\left(w_{r}\right) \pi_{\gamma}^{w \sigma}(w)
\end{align*}
$$

In connection with Lemma 4.1 we have the following proposition.
Proposition 4.3. Let w be as above. We set

$$
P_{i}=\left(w_{i} w_{i-1} \cdots w_{1}\right)^{-1} P\left(w_{i} w_{i-1} \cdots w_{1}\right) \quad(0 \leq i \leq r)
$$

and

$$
\beta_{i}=\left(w_{i-1} \cdots w_{1}\right)^{-1} \gamma_{i} \quad(1 \leq i \leq r)
$$

Then $P_{i}(0 \leq i \leq r)$ is a minimal string P to \bar{P}, with associated reduced P-positive a-roots $\left\{\beta_{i}\right\}$ and we have

$$
\begin{aligned}
& A(\bar{P}: P: \sigma: \nu) \\
& \quad=A\left(P_{r}: P_{r-1}: \sigma: \nu\right) A\left(P_{r-1}: P_{r-2}: \sigma: \nu\right) \cdots A\left(P_{1}: P_{0}: \sigma: \nu\right)
\end{aligned}
$$

Proof. By an easy computation, we have

$$
\begin{equation*}
V_{i-1} \cap N_{i}=V^{\left(\beta_{i}\right)} \quad(1 \leq i \leq r) \tag{4.4}
\end{equation*}
$$

We shall prove reduced \mathfrak{a}-roots $\beta_{i}(1 \leq i \leq r)$ are P-positive. For an integer i such that $1 \leq i \leq r$ we set
$\left[N_{i}\right]=\left\{\alpha \mid \alpha\right.$ is a P-positive and P_{i}-positive reduced \mathfrak{a}-root $\}$ and denote the cardinality of $\left[N_{i}\right]$ by n_{i}. Since r is n_{0}, we have

$$
\begin{equation*}
n_{i-1}-n_{i}=1 \quad(1 \leq i \leq r) \tag{4.5}
\end{equation*}
$$

From (4.4) and (4.5), $\beta_{i}(1 \leq i \leq r)$ are P-positive. Therefore P_{i} $(1 \leq i \leq r)$ is the minimal string with associated P-positive reduced \mathfrak{a}-roots $\left\{\beta_{i}\right\}$. The other assertion follows from Lemma 3.4(3).
5. The B_{γ}-function in the $\operatorname{SL}(n, \mathbb{R})$ case. We shall specialize to $\mathrm{SL}(n, R)$ the notation described in the previous sections. Our notation is as follows. Let G be in $\operatorname{SL}(n, R)$, the group of n-by- n real matrices g of determinant one. Let

$$
\begin{aligned}
\theta & =-\operatorname{transpose} \\
K & =\mathrm{SO}(n) \\
\mathfrak{a} & =\text { the vector space of the diagonal matrices of trace } 0 \\
M & =\left\{m \in G \mid m=\operatorname{diag}\left(m_{1}, \ldots, m_{n}\right) \text { and } m_{i}= \pm 1(1 \leq i \leq n)\right\} \\
A & =\exp \mathfrak{a} \\
N & =\{n \in G \mid n \text { is the sum of the identity and strictly upper } \\
P & =M A N
\end{aligned}
$$

Then P is a minimal parabolic subgroup of G. Let $e_{j}(1 \leq j \leq n)$. be the linear functional on $\mathfrak{a}_{\mathbb{C}}$ that picks out the j th diagonal entry and set $\alpha_{j}=e_{j}-e_{j+1} \quad(1 \leq j \leq n-1)$. Then simple a-roots are α_{j} $(1 \leq j \leq n-1)$. We denote the simple reflection with respect to α_{j} by $s_{\alpha_{j}}$.

Lemma 5.1. If ν is in $\mathfrak{a}_{\mathbb{C}}^{*}$ such that $\langle\operatorname{Re} \nu, \alpha\rangle>0$ for all P-positive \mathfrak{a}-roots α, then for each integer j such that $1 \leq i \leq n-1$ we have

$$
B_{\gamma}\left(P, s_{\alpha_{j}}, \nu\right)=\text { Const } \cdot \int_{-\infty}^{\infty} f(x)^{-\left(\nu_{j}+1\right)} \pi_{\gamma}\left(f(x)^{-1} k_{j}(x)\right)^{-1} d x
$$

where

$$
f(x)=\left(1+x^{2}\right)^{1 / 2}, \quad \nu_{j}=2\left\langle\nu, \alpha_{j}\right\rangle \cdot\left\langle\alpha_{j}, \alpha_{j}\right\rangle^{-1}
$$

and

Since the results are obtained by an easy computation, we omit the proof.

Let $E_{i j}(1 \leq i, j \leq n)$ be the matrix that is 1 in the $i-j$ th entry and 0 elsewhere. Set

$$
\mathfrak{h}=\sum_{1 \leq l \leq[n / 2]} \mathbb{R} \cdot H_{l},
$$

where $H_{l}=E_{2 l-1,2 l}-E_{2 l, 2 l-1}(1 \leq l \leq[n / 2])$ and $[t](t \in \mathbb{R})$ is the integer satisfying $[t] \leq t<[t]+1$. Then $\exp \mathfrak{h}$ is a maximal torus of K.

Lemma 5.2. Let γ be in \widehat{K}, μ a weight of V^{γ} and ν in $\mathfrak{a}_{\mathbb{C}}^{*}$. If v_{μ} is a μ-weight vector of V^{γ}, then for each integer j such that $0 \leq j \leq n-1$ and $j \equiv 1(\bmod 2)$, we have

$$
B_{\gamma}\left(P, s_{\alpha}, \nu\right) v_{\mu}=\text { Const } \cdot \alpha\left(\nu_{j}, \sqrt{-1} \mu\left(H_{[(j+1) / 2]}\right)\right) v_{\mu},
$$

and

$$
B_{\gamma}\left(\bar{P}, s_{\alpha}, \nu\right) v_{\mu}=\text { Const } \cdot \alpha\left(-\nu_{j}, \sqrt{-1} \mu\left(H_{[(j+1) / 2]}\right)\right) v_{\mu}
$$

where

$$
\alpha(s, n)=\frac{\gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+1-n}{2}\right) \Gamma\left(\frac{s+1+n}{2}\right)} \quad(s \in \mathbb{C}, n \in \mathbb{Z})
$$

Proof. From Lemma 5.1, we have
(5.1) $\quad B_{\gamma}\left(P, s_{\alpha_{j}}, \nu\right) v_{\mu}$

$$
=\text { Const } \cdot \int_{-\infty}^{\infty} f(x)^{-(\nu,+1)} \pi_{\gamma}\left(f(x)^{-1} k_{j}(x)\right)^{-1} v_{\mu} d x
$$

We note that

$$
\pi_{\gamma}\left(\exp t H_{[(j+1) / 2]}\right) v_{\mu}=e^{t \mu\left(H_{[(J+1) / 2]}\right)} v_{\mu} \quad(t \in \mathbb{R})
$$

Putting $\cos t=f(x)^{-1}, \sin t=x / f(x)$, we obtain that

$$
\pi_{\gamma}\left(f(x)^{-1} k_{j}(x)\right)^{-1} v_{\mu}=\left(\frac{1+\sqrt{-1} x}{f(x)}\right)^{-\sqrt{-1} \mu\left(H_{[(J+1) / 2]}\right)} v_{\mu}
$$

Thus (5.1) is equal to

$$
\text { Const } \cdot \int_{-\infty}^{\infty} f(x)^{-\left(\nu_{j}+1\right)}\left(\frac{1+\sqrt{-1} x}{f(x)}\right)^{-\sqrt{-1} \mu\left(H_{[(j+1) / 2]}\right)} d x v_{\mu}
$$

Therefore, the assertion of the lemma follows from the next proposition.

Proposition 5.3 (cf. A. 3 in [3]). Suppose that s is a complex number and n an integer. Then we have

$$
\int_{-\infty}^{\infty}\left(1+x^{2}\right)^{-(s+1) / 2}\left(\frac{1-\sqrt{-1} x}{\left(1+x^{2}\right)^{1 / 2}}\right)^{n} d x=\frac{\sqrt{-1} \Gamma\left(\frac{s}{2}\right) \Gamma\left(-\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+1-n}{2}\right) \Gamma\left(\frac{s+1+n}{2}\right)}
$$

Let $C_{l}(1 \leq l \leq[(n+1) / 2]-1)$ be the n-by-n matrix defined by

Then C_{l}^{2} is equal to identity and we have

$$
\begin{equation*}
C_{l} \cdot k_{2 l}(x) \cdot C_{l}^{-1}=k_{2 l-1}(x), \tag{5.2}
\end{equation*}
$$

whenever $1 \leq l \leq[(n+1) / 2]-1$ and $x \in \mathbb{R}$.
Lemma 5.4. Suppose that γ is in \widehat{K}, μ a weight of V^{γ} and ν in $\mathfrak{a}_{\mathbb{C}}^{*}$. If v_{μ} is a μ-weight vector of V^{γ}, then for each integer j such that $0 \leq j \leq n-1$ and $j \equiv 0(\bmod 2)$, we have

$$
\pi_{\gamma}\left(C_{j / 2}\right) B_{\gamma}\left(P, s_{\alpha_{j}}, \nu\right) \pi_{\gamma}\left(C_{j / 2}\right)=B_{\gamma}\left(P, s_{\alpha_{j-1}},-\left(C_{j / 2} \cdot \nu\right)\right)
$$

where $C_{j / 2} \cdot \nu$ is in $\mathfrak{a}_{\mathbb{C}}^{*}$ defined by

$$
C_{j / 2} \cdot \nu(H)=\nu\left(C_{j / 2}^{-1} H C_{j / 2}\right) \quad\left(H \in \mathfrak{a}_{\mathbb{C}}\right)
$$

Proof. By Lemma 5.1 and (5.2), we have

$$
\begin{align*}
& \pi_{\gamma}\left(C_{j / 2}\right) B_{\gamma}\left(P, s_{\alpha_{j}}, \nu\right) \pi_{\gamma}\left(C_{j / 2}\right) \tag{5.3}\\
& \quad=\text { Const } \cdot \int_{-\infty}^{\infty} f(x)^{-\left(\nu_{j}+1\right)} \pi_{\gamma}\left(f(x)^{-1} k_{j-1}(x)\right)^{-1} d x .
\end{align*}
$$

Since the bilinear form $\langle\cdot, \cdot\rangle$ is invariant under the action of $C_{j / 2}$, we have

$$
\begin{aligned}
& \left\langle-\left(C_{j / 2} \cdot \nu\right), \alpha_{j-1}\right\rangle \cdot\left\langle\alpha_{j-1}, \alpha_{j-1}\right\rangle^{-1} \\
& \quad=-\left\langle\nu, C_{j / 2} \cdot \alpha_{j-1}\right\rangle \cdot\left\langle\alpha_{j}, \alpha_{j}\right\rangle^{-1}=\left\langle\nu, \alpha_{j}\right\rangle \cdot\left\langle\alpha_{j}, \alpha_{j}\right\rangle^{-1} .
\end{aligned}
$$

Therefore (5.3) is equal to

$$
\begin{aligned}
& =\text { Const } \cdot \int_{-\infty}^{\infty} f(x)^{-\left(\left(-\left(C_{j / 2} \cdot \nu\right)\right)_{j-1}+1\right)} \pi_{\gamma}\left(f(x)^{-1} k_{j-1}(x)\right)^{-1} d x \\
& =B_{\gamma}\left(P, s_{\alpha_{j-1}},-\left(C_{j / 2} \cdot \nu\right)\right)
\end{aligned}
$$

This proves the lemma.
6. M-isotypic components of γ. In this section we shall describe the M-isotypic components of γ in \widehat{K}. We fix γ in \widehat{K}. Let σ be in \widehat{M} and denote the σ-isotypic component by V_{σ}^{γ}. Then we have

$$
V_{\gamma}=\sum_{\sigma \in \widehat{M}} V_{\sigma}^{\gamma} \quad(\text { direct sum })
$$

Let P_{σ} be the projection map $V^{\gamma} \rightarrow V_{\sigma}^{\gamma}$. From Lemma 4.1(2), for P, P^{\prime} in $\mathscr{P}(A)$ and ν in $\mathfrak{a}_{\mathbb{C}}^{*}$ we have

$$
\begin{equation*}
B_{\gamma}\left(P^{\prime}: P: \nu\right) P_{\sigma}=P_{\sigma} B_{\gamma}\left(P^{\prime}: P: \nu\right) \tag{6.1}
\end{equation*}
$$

Let μ be a weight of V^{γ} and let $[\mu]$ denote the equivalence class of μ, which is defined as follows; μ^{\prime} is in [μ] if and only if $\mu\left(H_{l}\right)$ is equal to $\pm \mu^{\prime}\left(H_{l}\right)$ for any integer l such that $1 \leq l \leq[n / 2]$. Let $\check{\gamma}$ be the set of the equivalence classes $[\mu]$ and $V^{\gamma, \mu}$ the μ-weight space of V^{γ}. Set

$$
V_{\sigma}^{\gamma, \mu}=P^{\sigma}\left(V^{\gamma, \mu}\right) \quad \text { and } \quad V_{\sigma}^{\gamma,[\mu]}=\sum_{\mu^{\prime} \in[\mu]} V_{\sigma}^{\gamma, \mu^{\prime}}
$$

Lemma 6.1. In the above situation we have

$$
\left.V_{\sigma}^{\gamma}=\sum_{[\mu] \in \check{\gamma}} V_{\sigma}^{\gamma,[\mu]} \quad \text { (direct sum }\right)
$$

Proof. Let m be a positive integer and $\mu_{k}(1 \leq k \leq m)$ a weight of V^{γ} such that μ_{k} is not equivalent to μ_{k}, if $k \neq k^{\prime}$. Suppose $v_{\left[\mu_{k}\right]}$ ($1 \leq k \leq m$) are in $V_{\sigma}^{\gamma,\left[\mu_{k}\right]}$ which satisfy the following relation,

$$
\sum_{k=1}^{m} v_{\left[\mu_{k}\right]}=0
$$

To prove the lemma, it is enough to show that

$$
v_{\left[\mu_{k}\right]}=0 \quad(1 \leq k \leq m)
$$

We shall prove by induction on m. If $m=1$ it is clear. Suppose the assertion is true for $1 \leq m<t$. We check the case that $m=t$. Suppose that

$$
\begin{equation*}
\sum_{k=1}^{t} v_{\left[\mu_{k}\right]}=0 \tag{6.2}
\end{equation*}
$$

Then for an integer i such that $1 \leq i \leq l$ we have

$$
0=\left(B_{\gamma}\left(P, w_{2 i-1}, \nu\right)-\alpha\left(\nu_{2 i-1}, \sqrt{-1} \mu_{1}\left(H_{i}\right)\right)\right)\left(\sum_{k=1}^{t} v_{\left[\mu_{k}\right]}\right)
$$

by Lemma 5.2 and (6.1)

$$
=\sum_{k=2}^{t}\left(\alpha\left(\nu_{2 i-1}, \sqrt{-1} \mu_{k}\left(H_{i}\right)\right)-\alpha\left(\nu_{2 i-1}, \sqrt{-1} \mu_{1}\left(H_{i}\right)\right)\right) v_{\left[\mu_{k}\right]}
$$

Applying the inductive hypothesis, we have

$$
\begin{aligned}
\left(\alpha \left(\nu_{2 i-1}, \sqrt{-1}\right.\right. & \left.\left.\mu_{k}\left(H_{i}\right)\right)-\alpha\left(\nu_{2 i-1}, \sqrt{-1} \mu_{1}\left(H_{i}\right)\right)\right) v_{\left[\mu_{k}\right]}
\end{aligned}=0.0 .
$$

Since $\left[\mu_{k}\right] \neq\left[\mu_{1}\right](2 \leq k \leq t)$, we obtain

$$
v_{\left[\mu_{k}\right]}=0 \quad(2 \leq k \leq t)
$$

From (6.2) we have

$$
v_{\left[\mu_{k}\right]}=0 \quad(1 \leq k \leq t)
$$

This proves the lemma.
Lemma 6.2. Suppose ν is in $\mathfrak{a}_{\mathbb{C}}^{*}$ and j an integer such that $1 \leq$ $j \leq n-1$. Then $B_{\gamma}^{\sigma}\left(P, s_{\alpha_{j}}, \nu\right)$ are diagonalizable and
(1) if $j \equiv 1(\bmod 2)$, we have

$$
\begin{aligned}
& \operatorname{deg}\left(B_{\gamma}^{\sigma}\left(P, \alpha_{j}, \nu\right)\right) \\
& \quad=\text { Const } \cdot \prod_{[\mu] \in \check{\gamma}} \alpha\left(\nu_{j}, \sqrt{-1} \mu\left(H_{[(j+1) / 2]}\right)\right)^{d(\gamma, \sigma,[\mu])},
\end{aligned}
$$

(2) if $j \equiv 0(\bmod 2)$, we have

$$
\begin{aligned}
\operatorname{det} & \left(B_{\gamma}^{\sigma}\left(P, \alpha_{j}, \nu\right)\right) \\
\quad= & \text { Const } \cdot \prod_{[\mu] \in \check{\gamma}} \alpha\left(\nu_{j}, \sqrt{-1} \mu\left(H_{[(j+1) / 2]}\right)\right)^{d\left(\gamma, C_{[(j+1) / 2]} \sigma,[\mu]\right)},
\end{aligned}
$$

where $d(\gamma, \sigma,[\mu])$ is the dimension of the space $V_{\sigma}^{\gamma,[\mu]}$ and $C_{j / 2} \cdot \sigma$ $(1 \leq j \leq n-1, j \equiv 0(\bmod 2))$ are defined by

$$
C_{j / 2} \cdot \sigma(m)=\sigma\left(C_{j / 2}^{-1} \cdot m \cdot C_{j / 2}\right) \quad(m \in M)
$$

Proof. The relation (1) follows immediately from Lemma 5.2, Lemma 6.1 and (6.2). The relation (2) follows from Lemma 5.4 and (1). The first assertion is obvious.
7. The determinant of the C-function. Let w be in W and satisfy that

$$
w^{-1} P w=\bar{P} \quad \text { and } \quad w=w_{r} w_{r-1} \cdots w_{1}
$$

where each $w_{i}(1 \leq i \leq r)$ is the reflection with respect to the simple \mathfrak{a}-root $\alpha_{j_{i}}$ and r is the length of w. Then we have

$$
A(\bar{P}: P: \sigma: \nu)=R(w) A_{P}(w, \sigma, \nu)
$$

By the relation

$$
\begin{align*}
A_{P}(w, \sigma, \nu)= & A_{P}\left(w_{r}, w_{r-1} \cdots w_{1} \sigma,\right. \tag{7.1}\\
& \left.w_{r-1} \cdots w_{1} \nu\right) \\
& \cdots A_{P}\left(w_{2}, w_{1} \sigma, w_{1} \nu\right)
\end{align*}
$$

and by Corollary 4.2, we have for γ in \widehat{K}

$$
\begin{align*}
& B_{\gamma}(\bar{P}: P: \nu)=B_{\gamma}\left(P, w_{1}, \nu\right) \pi_{\gamma}\left(w_{1}\right) B_{\gamma}\left(P, w_{2}, w_{1} \nu\right) \tag{7.2}\\
& \cdots B_{\gamma}\left(P, w_{r}, w_{r-1} \cdots w_{1} \nu\right) \\
& \quad \cdot \pi_{\gamma}\left(w_{r}\right) \pi_{\gamma}(w)
\end{align*}
$$

For each integer j such that $1 \leq j \leq n-1$, we define $\widetilde{C} \cdot \sigma(\in \widehat{M})$ as follows:
if $j \equiv 0(\bmod 2)$,

$$
\widetilde{C}_{j} \cdot \sigma=C_{j} \cdot\left(w_{j-1} \cdots w_{1} \sigma\right)
$$

if $j \equiv 1(\bmod 2)$,

$$
\widetilde{C}_{j} \cdot \sigma=w_{j-1} \cdots w_{1} \sigma
$$

Theorem 7.1. Suppose ν is in $\mathfrak{a}_{\mathbb{C}}^{*}, \gamma$ in \widehat{K} and σ in \widehat{M}. Then we have

$$
\begin{aligned}
& \operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: \nu)\right) \\
& \quad=\text { Const } \cdot \prod_{i=1}^{r} \prod_{[\mu] \in \tilde{\gamma}} \alpha\left(2 \cdot\left\langle\nu, \beta_{i}\right\rangle \cdot\left\langle\beta_{i}, \beta_{i}\right\rangle^{-1}, \sqrt{-1} \mu\left(H_{\left[\left(j_{i}+1\right) / 2\right]}\right)\right)^{d_{i,[\mu]}}
\end{aligned}
$$

where $\beta_{i}(1 \leq i \leq r)$ are as in Corollary 3.3 and

$$
d_{i,[\mu]}=d\left(\gamma, \widetilde{C}_{j_{i}} \cdot \sigma,[\mu]\right)
$$

Proof. From (7.2), we have

$$
\begin{aligned}
& B_{\gamma}^{\sigma}(\bar{P}: P: \nu)=B_{\gamma}^{\sigma}\left(P, w_{1}, \nu\right) \pi_{\gamma}^{\sigma}\left(w_{1}\right) B_{\gamma}^{w_{1} \sigma}\left(P, w_{2}, w_{1} \nu\right) \\
& \cdots B_{\gamma}^{w_{r-1} \cdots w_{1} \sigma}\left(P, w_{r}, w_{r-1} \cdots w_{1} \nu\right) \\
& \quad \cdot \pi_{\gamma}^{w_{r-1} \cdots w_{1} \sigma}\left(w_{r}\right) \pi_{\gamma}^{w \sigma}(w),
\end{aligned}
$$

where $\rho_{\gamma}^{\sigma}\left(w^{\prime}\right)\left(w^{\prime} \in W\right)$ is $\left.\pi_{\gamma}\left(w^{\prime}\right)\right|_{V_{\sigma}}$.
Let i be an integer such that $0 \leq i \leq n-1$ and σ^{\prime} in \widehat{M} such that $V_{\sigma}^{\gamma} \neq\{0\}$. We extend $B_{\gamma}^{\sigma^{\prime}}\left(w_{i}, \cdot\right)$ to an operator $\widetilde{B}_{\gamma}^{\sigma^{\prime}}\left(w_{i}, \cdot\right)$ of V^{γ} by

$$
\widetilde{B}_{\gamma}^{\sigma^{\prime}}\left(w_{i}, \cdot\right)= \begin{cases}B_{\gamma}^{\sigma^{\prime}}\left(w_{i}, \cdot\right) & \text { on } V_{\sigma}^{\gamma}, \tag{7.3}\\ \text { identity } & \text { on } V_{\sigma^{\prime \prime}}^{\gamma}\left(\sigma^{\prime \prime} \neq \sigma^{\prime}\right)\end{cases}
$$

and define

$$
\begin{align*}
& \widetilde{B}_{\gamma}^{\sigma}(\bar{P}: P: \nu)=\widetilde{B}_{\gamma}^{\sigma}\left(P, w_{1}, \nu\right) \pi_{\gamma}^{\sigma}\left(w_{1}\right) \widetilde{\boldsymbol{B}}_{\gamma}^{w_{1} \sigma}\left(P, w_{2}, w_{1} \nu\right) \tag{7.4}\\
& \\
& \cdots \widetilde{\boldsymbol{B}}_{\gamma}^{w_{r-1}+w_{1} \sigma}\left(P, w_{r}, w_{r-1} \cdots w_{1} \nu\right) \\
& \quad \cdot \pi_{\gamma}^{w_{r-1} \cdots w_{1} \sigma}\left(w_{r}\right) \pi_{\gamma}^{w \sigma}(w) .
\end{align*}
$$

Then we have

$$
\begin{equation*}
\left.\widetilde{B}_{\gamma}^{\sigma}(\bar{P}: P: \nu)\right|_{V_{\sigma}^{y}}=B_{\gamma}^{\sigma}(\bar{P}: P: \nu) \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(\widetilde{B}_{\gamma}^{\sigma}(\bar{P}: P: \nu)\right)=d_{1} \cdot \operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: \nu)\right), \tag{7.6}
\end{equation*}
$$

where d_{1} is a nonzero constant which is independent of ν. On the other hand, from (7.3) and (7.4) we have

$$
\begin{align*}
& \operatorname{det}\left(\widetilde{B}_{\gamma}^{\sigma}(\bar{P}: P: \nu)\right)= d_{2} \cdot \operatorname{det}\left(B_{\gamma}^{\sigma}\left(P, w_{1}, \nu\right)\right) \tag{7.7}\\
& \cdots \operatorname{det}\left(B_{\gamma}^{w_{r-1}} \cdots w_{1} \sigma\right. \\
&\left.\left(P, w_{r}, w_{r-1} \cdots w_{1} \nu\right)\right),
\end{align*}
$$

where d_{2} is a constant such that $\left|d_{2}\right|=1$. Therefore, from (7.6) and (7.7) we have

$$
\begin{aligned}
& \operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: \nu)\right) \\
& \quad=\operatorname{Const} \cdot \operatorname{det}\left(B_{\gamma}^{\sigma}\left(P, w_{1}, \nu\right)\right) \\
& \quad \cdots \operatorname{det}\left(B^{w_{r-1} \cdots w_{1} \sigma}\left(P, w_{r}, w_{r-1} \cdots w_{1} \nu\right)\right)
\end{aligned}
$$

by Lemma 6.2

$$
=\text { Const } \cdot \prod_{i=1}^{r} \prod_{[\mu] \in \tilde{\gamma}} \alpha\left(\left(w_{i-1} \cdots w_{1} \nu\right)_{j_{i}}, \sqrt{-1} \mu\left(H_{[(j+1) / 2]}\right)\right)^{d_{i,(u]}}
$$

by Proposition 4.3

$$
=\text { Const } \cdot \prod_{i=1}^{r} \prod_{[\mu] \in \tilde{\gamma}} \alpha\left(2 \cdot\left\langle\nu, \beta_{i}\right\rangle \cdot\left\langle\beta_{i}, \beta_{i}\right\rangle^{-1}, \sqrt{-1} \mu\left(H_{[(J+1) / 2]}\right)\right)^{d_{t},[\mu]} .
$$

This proves the theorem.
8. The reducibility of $\pi_{P, \sigma, \nu}$ in the nonsingular case. Let ν be in $\mathfrak{a}_{\mathbb{C}}^{*}$ such that $\langle\operatorname{Re} \nu, \alpha\rangle \neq 0$ for all P-positive roots. In this section we shall describe a necessary and sufficient condition for that $\pi_{P, \sigma, \nu}$ is reducible.

Let β be a reduced P-positive \mathfrak{a}-root and $G^{(\beta)}$ as in $\S 1$. In this case $G^{(\beta)}$ is isomorphic to $\operatorname{SL}(2, \mathbb{R})$ and we can put

$$
M \cap G^{(\beta)}=\left\{e, m_{\beta}\right\},
$$

where e is the identity matrix. Let σ be in \widehat{M}. Since M is abelian and any element of M is of order two, $\sigma(m) \quad(m \in M)$ is a scalar operator and the scalar is ± 1. We define integers σ_{β} such that $0 \leq$ $\sigma_{\beta} \leq 1$ by

$$
\sigma\left(m_{\beta}\right)=(-1)^{\sigma_{\beta}} \cdot I,
$$

where I is the identity operator.
Lemma 8.1. Let σ be in \widehat{M}, γ in \widehat{K} and μ a weight of V^{γ}. Let j be an integer such that $0 \leq j \leq n-1$ and $j \equiv 1(\bmod 2)$. Suppose that

$$
\begin{equation*}
\sqrt{-1} \mu\left(H_{[(j+1) / 2]}\right)-\sigma_{\alpha_{j}} \equiv 1 \quad(\bmod 2) . \tag{8.1}
\end{equation*}
$$

Then we have

$$
V_{\sigma}^{\gamma,[\mu]}=\{0\} .
$$

Proof. Let v be in $V_{\sigma}^{\gamma,[\mu]}$. By an easy computation, we have

$$
\pi_{\gamma}\left(m_{\alpha}\right) v=\sqrt{-1} \mu\left(H_{[(j+1) / 2]}\right) v .
$$

On the other hand, we have

$$
\pi_{\gamma}\left(m_{\alpha_{j}}\right) v=\sigma_{\alpha_{j}} v .
$$

Therefore, from (8.1) the element v must be zero. This proves the lemma.

Lemma 8.2. Let γ be in \widehat{K}, σ in \widehat{M} and let j be an integer such that $1 \leq j \leq n-1$ and $j \equiv 1(\bmod 2)$. If ν is in $\mathfrak{a}_{\mathbb{C}}^{*}$ such that $\left\langle\operatorname{Re} \nu, \alpha_{j}\right\rangle>0$, then the operator $B_{\gamma}^{\sigma}\left(P, s_{\alpha_{j}}, \nu\right)$ has a nontrivial kernel if and only if
(c1) ν_{j} is an integer and $\nu_{j}+1 \equiv \sigma_{\alpha_{j}}(\bmod 2)$.
(c2) there exists a weight μ of V^{γ} such that

$$
\left|\sqrt{-1} \mu\left(H_{[(j+1) / 2]}\right)\right| \geq \nu_{j}+1 \quad \text { and } \quad V_{\sigma}^{\gamma,[\mu]} \neq\{0\}
$$

(c3) there exists a weight μ^{\prime} of V^{γ} such that

$$
\left|\sqrt{-1} \mu^{\prime}\left(H_{[(j+1) / 2]}\right)\right|<\nu_{j}+1 \quad \text { and } \quad V_{\sigma}^{\gamma,\left[\mu^{\prime}\right]} \neq\{0\}
$$

where ν_{j} are as in $\S 5$.
Proof. Suppose that $B_{\gamma}^{\sigma}\left(P, s_{\alpha_{j}}, \nu\right)$ has the nontrivial kernel. By Lemma 5.4, the conditions (c2), (c3) are obvious and ν_{j} is an integral. Moreover, we have

$$
\begin{equation*}
\nu_{j}+1+\sqrt{-1} \mu\left(H_{[(j+1) / 2]}\right) \equiv 0 \quad(\bmod 2) . \tag{8.2}
\end{equation*}
$$

Therefore, by Lemma 8.1, we have

$$
\nu_{j}+1 \equiv \sigma_{\alpha_{j}} \quad(\bmod 2)
$$

Conversely, suppose that (c1), (c2) and (c3) are satisfied. Then from Lemma 8.1 and (c1), it follows that any weight μ of V^{γ} such that $V_{\sigma}^{\gamma,[\mu]} \neq\{0\}$ satisfies (8.2). Therefore, from Lemma 5.1, (c2) and (c3) it follows that $B_{\gamma}^{\sigma}\left(P, s_{\alpha_{j}}, \nu\right)$ has the nontrivial kernel.

Corollary 8.3. Let γ be in \widehat{K}, σ in \widehat{M} and let j be an integer such that $1 \leq j \leq n-1$. If ν is in $\mathfrak{a}_{\mathbb{C}}^{*}$, such that $\left\langle\operatorname{Re} \nu, \alpha_{j}\right\rangle>0$ then the operator $B_{\gamma}^{\sigma}\left(P, s_{\alpha_{j}}, \nu\right)$ has the nontrivial kernel if and only if
(c1) ν_{j} is an integer and $\nu_{j}+1 \equiv \sigma_{\alpha_{j}}(\bmod 2)$,
(c2) there exists a weight μ of V^{γ} such that

$$
\left|\sqrt{-1} \mu\left(H_{[(j+1) / 2]}\right)\right| \geq \nu_{j}+1 \quad \text { and } \quad V_{\sigma}^{\gamma,[\mu]} \neq\{0\}
$$

(c3) there exists a weight μ^{\prime} of V^{γ} such that

$$
\left|\sqrt{-1} \mu^{\prime}\left(H_{(j+1 / 2)}\right)\right|<\nu_{j}+1 \quad \text { and } \quad V_{\sigma}^{\gamma,\left[\mu^{\prime}\right]} \neq\{0\}
$$

where $\nu_{j}(1 \leq j \leq n-1)$ are as in $\S 5$.

Proof. If the integer j is odd, then the assertion is that of Lemma 6.2. Thus we may assume that j is even. By Lemma 5.4, the operator $B_{\gamma}^{\infty}\left(P_{p}, s_{\alpha}, \nu\right)$ has the nontrivial kernel if and only if the operator $B_{\gamma}^{C_{j / 2} \cdot \sigma}\left(P, s_{\alpha_{j-1}},-\left(C_{j / 2} \cdot \nu\right)\right)$ does also. Since

$$
\left\langle\operatorname{Re}\left(-\left(C_{j / 2} \cdot \nu\right)\right), \alpha_{j}\right\rangle=\left\langle\operatorname{Re} \nu, \alpha_{j-1}\right\rangle>0
$$

we can apply Lemma 8.2 to the operator $B_{\gamma}^{C_{j / 2} \cdot \sigma}\left(P, s_{\alpha_{j-1}},-\left(C_{j / 2} \cdot \nu\right)\right)$.
We note that

$$
\begin{equation*}
\left(C_{j / 2} \cdot \sigma\right)_{\alpha_{j}}=\sigma_{\alpha_{j-1}} \quad \text { and } \quad\left(-\left(C_{j / 2} \cdot \nu\right)\right)_{j}=\nu_{j-1} \tag{8.3}
\end{equation*}
$$

Combining Lemma 8.2 and the relations (8.3) we have the assertion of the corollary.

Lemma 8.4. Let ν be in $\mathfrak{a}_{\mathbb{C}}^{*}$ such that $\langle\operatorname{Re} \nu, \alpha\rangle>0$ for all P positive roots α and σ in \widehat{M}. Then $A(\bar{P}: P: \sigma: \nu)$ has the nontrivial kernel if and only if there exists a reduced P-positive \mathfrak{a}-root β satisfying the following conditions:
(*) $2\langle\nu, \beta\rangle \cdot\langle\beta, \beta\rangle^{-1}$ is an integer and $2\langle\nu, \beta\rangle \cdot\langle\beta, \beta\rangle^{-1}+1 \equiv$ $\sigma_{\beta},(\bmod 2)$.

Proof. Let w be in M^{\prime} such that

$$
w^{-1} P w=\bar{P} \quad \text { and } \quad w=w_{r} w_{r-1} \cdots w_{1}
$$

where each $w_{i}(1 \leq i \leq r)$ is the reflection with respect to the P simple a-root $\alpha_{k_{1}}\left(1 \leq k_{i} \neq n-1\right)$ and r is the length of w. Let $P_{i} \quad(1 \leq i \leq r)$ be the minimal string P to \bar{P}, which is described in Proposition 4.3. From Lemma 4.1 it follows that $A(\bar{P}: P: \sigma: \nu)$ has the nontrivial kernel if and only if
(c1) there exists γ in \widehat{K} such that $B_{\gamma}^{\sigma}(\bar{P}: P: \nu)$ has the nontrivial kernel.

Moreover, the condition (c1) is equivalent to
(c2) there exist γ in \widehat{K} and an integer $j(1 \leq j \leq r)$ such that $B_{\gamma}^{w_{j-1} \cdots w_{1} \sigma}\left(P, w_{j}, w_{j-1} \cdots w_{1} \nu\right)$ has the nontrivial kernel.
Since we have

$$
\left\langle w_{j-1} \cdots w_{1} \nu, \alpha_{j}\right\rangle=\left\langle\nu, \beta_{j}\right\rangle>0
$$

from Corollary 6.3 the condition (c2) is equivalent to
(c3) there exist γ in \widehat{K}, weights of $V^{\gamma} \mu, \mu^{\prime}$ and an integer j $(1 \leq j \leq r)$ satisfying the following relations:

$$
\begin{gather*}
2 \cdot\left\langle\nu, \beta_{j}\right\rangle \cdot\left\langle\beta_{j}, \beta_{j}\right\rangle^{-1} \in \mathbb{Z} \tag{8.4}\\
V_{\sigma}^{\gamma,[\mu]} \neq\{0\}, \quad V_{\sigma}^{\gamma,\left[\mu^{\prime}\right]} \neq\{0\} \\
2 \cdot\left\langle\nu, \beta_{j}\right\rangle \cdot\left\langle\beta_{j}, \beta_{j}\right\rangle^{-1}+1 \equiv \sigma_{\alpha_{k_{j}}}(\bmod 2) \\
\left|\sqrt{-1} \mu\left(H_{k_{j}}\right)\right| \geq 1+2 \cdot\left\langle\nu, \beta_{j}\right\rangle \cdot\left\langle\beta_{j}, \beta_{j}\right\rangle^{-1} \\
\left|\sqrt{-1} \mu^{\prime}\left(H_{k_{j}}\right)\right|<1+2 \cdot\left\langle\nu, \beta_{j}\right\rangle \cdot\left\langle\beta_{j}, \beta_{j}\right\rangle^{-1}
\end{gather*}
$$

From Proposition 8.5, the condition (c3) is equivalent to
(c3') there exists an integer $j(1 \leq j \leq r)$ such that $2 \cdot\left\langle\nu, \beta_{j}\right\rangle$. $\left\langle\beta_{j}, \beta_{j}\right\rangle^{-1}$ is an integer and satisfies the relation (8.4).
Since $\beta_{j}=\alpha_{k_{j}}$, the assertion of the lemma follows from the condition (c3').

Proposition 8.5. Let σ be in \widehat{M} and k an integer such that $1 \leq$ $k \leq n-1$ and $k \equiv 1(\bmod 2)$. Then for any positive integer l which satisfies (6.1), there exists γ in \widehat{K} such that

$$
V_{\sigma}^{\gamma,[\mu]} \neq\{0\} \quad \text { and } \quad \bar{\mu}\left(H_{[(k+1) / 2]}\right)=l,
$$

where $\bar{\mu}$ is the highest weight of V^{γ}.
Proof. Let γ be an element in \widehat{K} such that the highest weight of V^{γ} is $\bar{\mu}$. We put

$$
n_{j}=\sqrt{-1} \bar{\mu}\left(H_{[(j+1) / 2]}\right) \quad(1 \leq j \leq n-1, j \equiv 1(\bmod 2)) .
$$

Then each n_{j} is an integer. By the representation theory of compact groups, we can choose γ in \widehat{K} satisfying the following conditions;

$$
\begin{gathered}
\quad n_{k}=n, \\
n_{j} \neq 0 \quad \text { and } \quad n_{j}-\sigma_{j} \equiv 0 \quad(1 \leq j \leq n-1, j \equiv 1(\bmod 2)) .
\end{gathered}
$$

Let $v_{\bar{\mu}}$ be a $\bar{\mu}$-weight vector. We shall prove that $P_{\sigma}\left(v_{\bar{\mu}}\right) \neq 0$. We can easily see that

$$
P_{\sigma}\left(v_{\bar{\mu}}\right)=\prod_{\substack{1 \leq i \leq n-1 \\ i \equiv 0(\bmod 2)}} \frac{1}{2}\left(I+\sigma_{\alpha_{t}} \cdot \pi_{\gamma}\left(m_{\alpha_{t}}\right)\right)\left(v_{\bar{\mu}}\right),
$$

where I is the identity operator on V^{γ}. On the other hand, for integers i, j such that $1 \leq i, j \leq n-1,1 \equiv 0(\bmod 2)$ and $j \equiv 1$ $(\bmod 2)$ we have

$$
\sqrt{-1} m_{\alpha_{i}} \cdot \bar{\mu}\left(H_{[(j+1) / 2]}\right)= \begin{cases}-n_{j} & (i \leq 1 \leq j \leq i+1) \\ n_{j} & \text { otherwise } .\end{cases}
$$

Therefore, $P_{\sigma}\left(v_{\bar{\mu}}\right) \neq 0$. This proves the assertion of the lemma.
Theorem 8.7. Let ν be an element in $\mathfrak{a}_{\mathbb{C}}^{*}$ such that $\langle\operatorname{Re} \nu, \alpha\rangle \neq 0$ for all P-positive roots α and σ in \widehat{M}. Then $\pi_{P, \sigma, \nu}$ is reducible if and only if there exists a reduced P-positive \mathfrak{a}-root β satisfying the following conditions:
(*) $2\langle\nu, \beta\rangle \cdot\langle\beta, \beta\rangle^{-1}$ is an integer and $2\langle\nu, \beta\rangle \cdot\langle\beta, \beta\rangle^{-1}+1 \equiv \sigma_{\beta}$ $(\bmod 2)$.

Proof. Suppose that $\langle\operatorname{Re} \nu, \alpha\rangle>0$ for all P-positive \mathfrak{a}-roots α. Then by Lemma $3.5 \pi_{P, \sigma, \nu}$ is reducible if and only if $A(\bar{P}: P: \sigma: \nu)$ has the nontrivial kernel. Thus in this case, the assertion of the theorem follows from Lemma 8.4. In general, there exists w in $W(\mathfrak{a})$ such that $\langle\operatorname{Re} w \nu, \alpha\rangle>0$ for all P-positive \mathfrak{a} roots. Since $\pi_{P, \sigma, \nu}$ and $\pi_{P, w \sigma, w \nu}$ have equivalent composition series, $\pi_{P, \sigma, \nu}$ is reducible if and only if there exists a reduced P positive \mathfrak{a}-root β such that $w \beta$ satisfies the condition (*). Since the inner product $\langle\cdot, \cdot\rangle$ is $W(\mathfrak{a})$-invariant and $\sigma_{w \beta}=\sigma_{\beta}$, Theorem 8.6 is proved.
9. The reducibility of $\pi_{P, \sigma, \nu}$ in the singular cases. Let ν_{0} be in $\mathfrak{a}_{\mathbb{C}}^{*}$ such that $\left\langle\operatorname{Re} \nu_{0}, \alpha\right\rangle \geq 0$ for all P-positive \mathfrak{a}-roots. Set

$$
\Delta_{\nu_{0}}^{+}(P)=\left\{i \in \mathbb{N} \mid 1 \leq i \leq n-1 \text { and }\left\langle\operatorname{Re} \nu_{0}, \alpha_{i}\right\rangle \neq 0\right\} .
$$

Then we have

$$
\operatorname{Re} \nu_{0}=\sum_{j \in \Delta_{\nu_{0}}^{+}(P)} b_{j} \omega_{j},
$$

where $b_{j}\left(j \in \Delta_{\nu_{0}}^{+}(P)\right)$ are positive real numbers and $\omega_{j}(1 \leq j \leq$ $n-1)$ in $\mathfrak{a}_{\mathbb{C}}^{*}$ are defined by

$$
\left\langle\alpha_{i}, \omega_{j}\right\rangle=\delta_{i j} \quad(1 \leq i, j \leq n-1) .
$$

We take

$$
\begin{array}{cc}
\mathfrak{a}_{1}=\sum_{j \in \Delta_{\nu_{0}}^{+}(P)} \mathbb{R} \cdot H_{\omega_{j}}, & \mathfrak{a}_{2}=\sum_{j \in \Delta_{\nu_{0}}^{+}(P)} \mathbb{R} \cdot H_{\alpha_{j}}, \\
\mathfrak{n}_{1}=\sum_{\substack{\left.\beta \in \Sigma^{+} \\
\beta\right|_{\mathfrak{a}} \neq 0}} \mathfrak{g}_{\beta}, & \mathfrak{n}_{2}=\sum_{\substack{\left.\beta \in \Sigma^{+} \\
\beta\right|_{\mathfrak{a}}=0}} \mathfrak{g}_{\beta}, \\
\mathfrak{m}_{1}=\mathfrak{m} \oplus \mathfrak{a}_{2} \oplus \mathfrak{n}_{2} \oplus \mathfrak{v}_{2}, & M_{1}=Z_{K}(\mathfrak{a})\left(M_{1}\right)_{0}, \\
P_{1}=M_{1} A_{1} N_{1}, & P_{2}=M A_{2} N_{2},
\end{array}
$$

where Σ^{+}is the set of P-positive a-roots. Then P_{1} is a parabolic subgroup of G and P_{2} is a minimal parabolic subgroup of M_{1}. Let us write $\nu_{0}=\nu_{0}^{1}+\nu_{0}^{2}$ correspondingly, with $\nu_{0}^{1}=\left.\nu_{0}\right|_{\mathfrak{a}_{1}}$ and $\nu_{0}^{2}=\left.\nu_{0}\right|_{\mathfrak{a}_{2}}$. From the double induction formula (see [8], p. 170), $\operatorname{ind}_{P}^{G} \sigma \otimes \nu_{0} \otimes 1$ and $\operatorname{ind}_{P_{1}}^{G}\left(\operatorname{ind}_{P_{2}}^{M_{1}} \sigma \otimes \nu_{0}^{2} \otimes 1\right) \otimes \nu_{0}^{1} \otimes 1$ are infinitesimally equivalent. $\operatorname{ind}_{P_{2}}^{M_{1}} \sigma \otimes \nu_{0}^{2} \otimes 1$ is a tempered unitary representation of M_{1} and we denote it by ξ.

Set $P^{\prime}=M A \bar{N}_{2} N_{1}$ and let $w^{\prime}, w^{\prime \prime}$ be elements in $W(\mathfrak{a})$ such that

$$
\left(w^{\prime}\right)^{-1} P w^{\prime}=P^{\prime}, \quad\left(w^{\prime \prime}\right)^{-1} P^{\prime} w^{\prime \prime}=\bar{P}
$$

respectively. Suppose that $w^{\prime}=w_{s}^{\prime} \cdot w_{s-1}^{\prime} \cdots w_{1}^{\prime}$ and $w^{\prime \prime}=w_{t}^{\prime \prime}$. $w_{t-1}^{\prime \prime} \cdots w_{1}^{\prime \prime}$ are the minimal expressions, respectively. Let $w=$ $w^{\prime \prime} \cdot w^{\prime}$. Then we have

$$
w^{-1} P w=\bar{P}
$$

By Lemma 3.4, the length of w is equal to $r+s$ and

$$
w=w_{t}^{\prime \prime} \cdot w_{t-1}^{\prime \prime} \cdots w_{1}^{\prime \prime} \cdot w_{s}^{\prime} \cdot w_{s-1}^{\prime} \cdots w_{1}^{\prime}
$$

is the minimal expression. Let $P_{i}(1 \leq i \leq s+t)$ be the minimal string P to \bar{P} with associated reduced P-positive \mathfrak{a}-roots $\left\{\beta_{i}\right\}$, which are described in Proposition 4.3.

Lemma 9.1. Let $\beta_{i}(1 \leq i \leq s+t)$ be defined as above. We have

$$
\mathfrak{n}_{2}=\sum_{\substack{1 \leq i \leq s \\ c>0}} \mathfrak{g}_{c \beta_{i}}
$$

Therefore, we have

$$
\begin{array}{cc}
\left\langle\operatorname{Re} \nu_{0}, \beta_{i}\right\rangle=0 & (1 \leq i \leq s) \\
\left\langle\operatorname{Re} \nu_{0}, \beta_{j}\right\rangle=0 \quad(s+1 \leq j \leq s+t) \tag{9.3}
\end{array}
$$

Since the proof is easy, it is left to the reader.
For σ in \widehat{M} and γ in \widehat{K}, we set

$$
F_{\sigma, \gamma, \nu_{0}}=\left\{i \in \mathbb{N} \mid 1 \leq i \leq s \text { and } B_{\gamma}^{w_{i-1}^{\prime} \cdots w_{1}^{\prime} \sigma}\left(P, w_{i}^{\prime}, w_{i-1}^{\prime} \cdots w_{1}^{\prime} \nu\right)\right.
$$

has a singularity at $\left.\nu_{0}\right\}$.
Lemma 9.2. Set $F_{\sigma, \nu_{0}}=F_{\sigma, \gamma, \nu_{0}}$. Then we have

$$
F_{\sigma, \nu_{0}}=F_{\sigma, \gamma, \nu_{0}}
$$

Proof. The assertion of the lemma follows from Lemma 6.2 and Lemma 8.1.

Lemma 9.3. Let ν be in $\mathfrak{a}_{\mathbb{C}}^{*}, \sigma$ in \widehat{M} and γ in \widehat{K}. Then the function

$$
\left.\prod_{i \in F_{\sigma, \nu_{0}}}-\left\langle\nu, \beta_{i}\right\rangle^{2} B_{\gamma}^{\sigma}(\bar{P}: P: \nu) B_{\gamma}^{\sigma}\left(\overline{P^{\prime}}\right): \bar{P}: \nu\right)
$$

has no singularity at ν_{0}.
Proof. For any u in W, we define $\pi_{\gamma}^{\sigma}(u)$ by $\left.\pi_{\gamma}(u)\right|_{V_{\gamma}^{\sigma}}$. By the relation (4.3), we have

$$
\begin{aligned}
& B_{\gamma}^{\sigma}(\bar{P}: P: \nu) \\
& =B_{\gamma}^{\sigma}\left(P, w_{1}^{\prime}, \nu\right) \rho_{\gamma}^{w_{1}^{\prime} \sigma}\left(w_{1}^{\prime}\right) \\
& \cdots B_{\gamma}^{w_{s-1}^{\prime} \cdots w_{1}^{\prime} \sigma}\left(P, w_{s}^{\prime}, w_{s-1}^{\prime} \cdots w_{1}^{\prime} \nu\right) \pi_{\gamma}^{w^{\prime} \sigma}\left(w_{s}^{\prime}\right) \\
& \cdot B_{\gamma}^{w^{\prime} \sigma}\left(P, w_{1}^{\prime \prime}, w^{\prime} \nu\right) \pi_{\gamma}^{w_{1}^{\prime \prime}}{ }^{w^{\prime} \sigma}\left(w_{1}^{\prime \prime}\right) \\
& \cdots B_{\gamma}^{w_{t-1}^{\prime \prime} \cdots w_{1}^{\prime \prime} w^{\prime} \sigma}\left(P, w_{t}^{\prime \prime}, w_{t-1}^{\prime \prime} \cdots w_{1}^{\prime \prime} w^{\prime} \nu\right) \\
& \text { - } \pi_{\gamma}^{w \sigma}\left(w_{t}^{\prime \prime}\right) \pi_{\gamma}^{\sigma}(w), \\
& =B_{\gamma}^{\sigma}\left(P, w^{\prime}, \nu\right) \pi_{\gamma}^{w^{\prime} \sigma}\left(w^{\prime}\right) B_{\gamma}^{w^{\prime} \sigma}\left(P, w_{1}^{\prime \prime}, w^{\prime} \nu\right) \pi_{\gamma}^{w_{1}^{\prime \prime} w^{\prime} \sigma}\left(w_{1}^{\prime \prime}\right) \\
& \cdots B_{\gamma}^{w_{t-1}^{\prime \prime} \cdots w_{1}^{\prime \prime} w^{\prime} \sigma}\left(P, w_{t}^{\prime \prime}, w_{t-1}^{\prime \prime} \cdots w_{1}^{\prime \prime} w^{\prime} \nu\right) \pi_{\gamma}^{w \sigma}\left(w_{t}^{\prime \prime}\right) \pi_{\gamma}(w) .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& B_{\gamma}^{\sigma}(\bar{P}: P: \nu) \\
& =B_{\gamma}^{\sigma}(P, w, \nu) \pi_{\gamma}^{w^{\prime} \sigma}\left(w^{\prime}\right) B_{\gamma}^{w^{\prime}}\left(P, w_{1}^{\prime \prime}, w^{\prime} \nu\right) \pi_{\gamma}^{w_{1}^{\prime \prime}} w^{\prime \sigma}\left(w_{1}^{\prime \prime}\right) \\
& \quad \cdots B_{\gamma}^{w_{t-1}^{\prime \prime} \cdots w_{1}^{\prime \prime} w^{\prime \sigma}}\left(P, w_{t}^{\prime \prime}, w_{t-1}^{\prime \prime} \cdots w_{1}^{\prime \prime} w^{\prime} \nu\right) \pi_{\gamma}^{w \sigma}\left(w_{t}^{\prime \prime}\right) \pi_{\gamma}(w) \\
& \quad \cdot B_{\gamma}^{\sigma}\left(\left(\overline{P^{\prime}}\right): \bar{P}: \nu\right) .
\end{aligned}
$$

From Lemma 6.2 and Lemma 9.1, the functions

$$
\begin{aligned}
B_{\gamma}^{w_{1}^{\prime \prime} w^{\prime \sigma}}\left(P, w_{1}^{\prime \prime},\right. & \left.w^{\prime} \nu\right) \\
& \cdots B_{\gamma}^{w_{t-1}^{\prime \prime} \cdots w_{1}^{\prime \prime} w^{\prime} \sigma}\left(P, w_{t}^{\prime \prime}, w_{t-1}^{\prime \prime} \cdots w_{1}^{\prime \prime} w^{\prime} \nu\right) \pi_{\gamma}^{w \sigma}\left(w_{t}^{\prime \prime}\right) \pi_{\gamma}(w)
\end{aligned}
$$

and

$$
\prod_{i \in F_{\sigma, \nu_{0}}}\left\langle\nu, \beta_{i}\right\rangle B_{\gamma}^{\sigma}\left(P, w^{\prime}, \nu\right)
$$

have no singularity at ν_{0}. On the other hand, we have

$$
\begin{aligned}
& B_{\gamma}^{\sigma}\left(\left(\overline{P^{\prime}}\right): P^{\prime}: \nu\right)=B_{\gamma}\left(\bar{P}, w^{\prime}, \nu\right) \\
& \quad=B_{\gamma}^{\sigma}\left(\bar{P}, w_{1}^{\prime}, \nu\right) \pi_{\gamma}^{\sigma}\left(w_{1}^{\prime}\right) \cdots B_{\gamma}^{w_{s-1}^{\prime} \cdots w_{1}^{\prime} \sigma}\left(\bar{P}, w_{s}^{\prime}, w_{s-1}^{\prime} \cdots w_{1}^{\prime \nu}\right) \\
& \quad \cdot \pi_{\gamma}^{w^{\prime} \sigma}\left(w_{s}^{\prime}\right) \pi_{\gamma}^{\sigma}\left(w^{\prime}\right)
\end{aligned}
$$

by Lemma 5.2,

$$
\begin{aligned}
(9.6)= & B_{\gamma}^{\sigma}\left(\bar{P}, w_{1}^{\prime},-\nu\right) \pi_{\gamma}^{\sigma}\left(w_{1}^{\prime}\right) \cdots B_{\gamma}^{w_{s-1}^{\prime} \cdots w_{1}^{\prime \sigma}}\left(\bar{P}, w_{s}^{\prime},-w_{s-1}^{\prime} \cdots w_{1}^{\prime} \nu\right) \\
& \cdot \pi_{\gamma}^{w^{\prime} \sigma}\left(w_{s}^{\prime}\right) \pi_{\gamma}^{\sigma}\left(w^{\prime}\right) \\
= & B_{\gamma}^{\sigma}\left(P, w^{\prime},-\nu\right)
\end{aligned}
$$

Then the function $\prod_{i \in F_{\sigma, \nu_{0}}}\left\langle\nu, \beta_{i}\right\rangle B_{\gamma}^{\sigma}\left(\left(\overline{P^{\prime}}\right): \bar{P}: \nu\right)$ also has no singularity at ν_{0}. Therefore, from the relation (9.5), the function

$$
\prod_{i \in F_{\sigma, \nu_{0}}}-\left\langle\nu, \beta_{i}\right\rangle^{2} B_{\gamma}^{\sigma}(\bar{P}: P: \nu) B_{\gamma}^{\sigma}\left(\left(\overline{P^{\prime}}\right): \bar{P}: \nu\right)
$$

has no singularity at ν_{0}.
Corollary 9.4. Let ν be in $\mathfrak{a}_{\mathbb{C}}^{*}$ and σ in \widehat{M}. Then the operator

$$
\prod_{i \in F_{\sigma, \nu_{0}}}-\left\langle\nu, \beta_{i}\right\rangle^{2} A\left(\left(\overline{P^{\prime}}\right): \bar{P}: \sigma: \nu\right) A(\bar{P}: P: \sigma: \nu)
$$

has no singularity at ν_{0}.
Lemma 9.5. Let ν be in $\mathfrak{a}_{\mathbb{C}}^{*}$ and σ in \widehat{M}. Then the kernel of the operator

$$
\lim _{\nu \rightarrow \nu_{0}} \prod_{i \in F_{\sigma, \nu_{0}}}\left\langle\nu, \beta_{i}\right\rangle A\left(\left(\overline{P^{\prime}}\right): \bar{P}: \sigma: \nu\right)
$$

is equal to $\{0\}$.
Proof. It is enough to show that for any γ in \widehat{K}, the kernel of the operator

$$
\lim _{\nu \rightarrow \nu_{0}} \prod_{i \in F_{\sigma, \nu_{0}}}\left\langle\nu, \beta_{i}\right\rangle^{2} B_{\gamma}^{\sigma}\left(\left(\overline{P^{\prime}}\right): \bar{P}: \nu\right)
$$

is equal to $\{0\}$. The assertion of the lemma follows from Lemma 6.2 and (9.6).

Theorem 9.6. Let ν be in $\mathfrak{a}_{\mathbb{C}}^{*}$, σ in \widehat{M}. Then we have

$$
\operatorname{Im}\left(\lim _{\nu \rightarrow \nu_{0}} \prod_{i \in F_{\sigma, \nu_{0}}}\left\langle-\nu, \beta_{i}\right\rangle A(\bar{P}: P: \sigma: \nu)\right) \simeq \operatorname{Im}\left(A\left(\bar{P}_{1}: P_{1}: \xi: \nu_{0}^{1}\right)\right),
$$

(infinitesimally equivalent).
Proof. We have

$$
\begin{aligned}
& \lim _{\nu \rightarrow \nu_{0}} \prod_{i \in F_{\sigma, \nu_{0}}}-\left\langle\nu, \beta_{i}\right\rangle A\left(\left(\overline{P^{\prime}}\right): \bar{P}: \sigma: \nu\right) \lim _{\nu^{\prime} \rightarrow \nu_{0}} \prod_{i \in F_{\sigma, \nu_{0}}}-\left\langle\nu^{\prime}, \beta_{i}\right\rangle \\
& \cdot A\left(\bar{P}: P: \sigma: \nu^{\prime}\right) \\
&= \lim _{\nu \rightarrow \nu_{0}} \prod_{i \in F_{\sigma, \nu_{0}}}-\left\langle\nu, \beta_{i}\right\rangle^{2} A\left(\left(\overline{P^{\prime}}\right): \bar{P}: \sigma: \nu\right) A(\bar{P}: P: \sigma: \nu) \\
&=\left.\lim _{\nu \rightarrow \nu_{0}} \prod_{i \in F_{\sigma, \nu_{0}}}-\left\langle\nu, \beta_{i}\right\rangle^{2} \eta\left(\bar{P}:\left(\overline{P^{\prime}}\right): \sigma: \nu\right) A\left(\overline{P^{\prime}}\right): P: \sigma: \nu_{0}\right) .
\end{aligned}
$$

Thus, from Lemma 9.5 we have
(9.7) $\operatorname{Im}\left(\lim _{\nu \rightarrow \nu_{0}} \prod_{i \in F_{\sigma, \nu_{0}}}-\left\langle\nu, \beta_{i}\right\rangle^{2} A(\bar{P}: P: \sigma: \nu)\right)$

$$
\simeq \lim _{\nu \rightarrow \nu_{0}} \prod_{i \in F_{\sigma, \nu_{0}}}-\left\langle\nu, \beta_{i}\right\rangle^{2} \eta\left(\bar{P}:\left(\overline{P^{\prime}}\right): \sigma: \nu\right) A\left(\left(\overline{P^{\prime}}\right): P: \sigma: \nu_{0}\right) .
$$

Since we have for any γ in \widehat{K}

$$
\eta\left(\bar{P}:\left(\overline{P^{\prime}}\right): \sigma: \nu\right)=B_{\gamma}^{\sigma}\left(\bar{P}:\left(\overline{P^{\prime}}\right): \nu\right) B_{\gamma}^{\sigma}\left(\left(\overline{P^{\prime}}\right): \bar{P}: \nu\right)
$$

and

$$
B_{\gamma}^{\sigma}\left(\bar{P}:\left(\overline{P^{\prime}}\right): \nu\right)=B_{\gamma}^{\sigma}\left(P^{\prime}: P: \nu\right),
$$

we obtain

$$
\eta\left(\bar{P}:\left(\overline{P^{\prime}}\right): \sigma: \nu\right)=B_{\gamma}^{\sigma}\left(P, w^{\prime}, \nu\right) B_{\gamma}^{\sigma}\left(\bar{P}^{\prime}, w^{\prime}, \nu\right) .
$$

Thus by Lemma 5.2, we have

$$
\lim _{\nu \rightarrow \nu_{0}} \prod_{i \in F_{\sigma, \nu_{0}}}-\left\langle\nu, \beta_{i}\right\rangle^{2} \eta\left(\bar{P}:\left(\overline{P^{\prime}}\right): \sigma: \nu\right) \neq 0,
$$

and (9.7) is infinitesimally equivalent to $\operatorname{Im}\left(A\left(\overline{P^{\prime}}\right): P: \sigma: \nu_{0}\right)$. From the double induction formula we have

$$
\operatorname{Im}\left(A\left(\left(\overline{P^{\prime}}\right): P: \sigma: \nu\right)\right) \simeq \operatorname{Im}\left(A\left(\bar{P}: P: \xi: \nu^{1}\right)\right) .
$$

Therefore, we have

$$
\operatorname{Im}\left(\lim _{\nu \rightarrow \nu_{0}} \prod_{i \in F_{\sigma, \nu_{0}}}-\left\langle\nu, \beta_{i}\right\rangle A(\bar{P}: P: \sigma: \nu)\right) \simeq \operatorname{Im}\left(A\left(\bar{P}: P: \xi: \nu^{1}\right)\right)
$$

THEOREM 9.7. The representation $\pi_{P, \sigma, \nu_{0}}$ is reducible if and only if the tempered unitary representation ξ of M is reducible or there exists a P-positive reduced \mathfrak{a}-root β satisfying the following conditions:
(*) $2\langle\nu, \beta\rangle \cdot\langle\beta, \beta\rangle^{-1}$ is an integer and $2\langle\nu, \beta\rangle \cdot\langle\beta, \beta\rangle^{-1}+1 \equiv \sigma_{\beta}$ $(\bmod 2)$,
$\left.(* *) \quad \beta\right|_{\mathfrak{a}_{1}} \neq 0$.
Proof. According to Lemma 3.4, $\pi_{P, \sigma, \nu_{0}}$ is reducible if and only if $A\left(\bar{P}: P: \xi: \nu_{0}^{1}\right)$ has the nontrivial kernel or ξ is reducible. By Theorem 9.6 or the double induction formula, $A\left(\bar{P}: P: \xi: \nu_{0}^{1}\right)$ has the nontrivial kernel if and only if $A\left(\left(\overline{P^{\prime}}\right): P: \nu_{0}\right)$ does so. Thus by similar argument to that in $\S 8$, we can prove the assertion of the theorem.

References

[1] A. Borel and N. R. Wallach, Continuous Cohomology, Discrete Subgroups and Representations of Reductive groups, Princeton Univ. Press, Princeton, N. J., 1980.
[2] L. Cohn, Analytic Theory of the Harish-Chandra C-function, Lecture Notes in Math., vol. 429, Springer-Verlag, Berlin and New York, 1974.
[3] , Some theorems on C-functions, Bull. Amer. Math. Soc., 80 (1974), 921926.
[4] M. Eguchi and S. Tanaka, The explicit representation of the determinant of Harish-Chandra's C-function in $\operatorname{SL}(3, \mathbb{R})$ and $\operatorname{SL}(4, \mathbb{R})$ cases, preprint.
[5] Harish-Chandra, Harmonic analysis on real reductive groups I. The theory of the constant term, J. Funct. Anal., 19 (1975), 104-204.
[6] _, Harmonic analysis on real reductive groups II. Wave packets in the Schwartz space, Invent. Math., 36 (1976), 1-55.
[7] _, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math., 104 (1976), 117-201.
[8] A. W. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples, Princeton Univ. Press, Princeton, N. J., 1986.
[9] A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math., 93 (1971), 489-578.
[10] , Intertwining operators for semisimple groups II, Invent. Math., 60 (1980), 9-84.
[11] R. P. Langlands, On the classification of irreducible representations of real algebraic groups, mimeographed notes, Institute for Advanced Study, 1973.
[12] B. Speh, The unitary dual of $\mathrm{GL}(3, \mathbb{R})$ and $\mathrm{GL}(4, \mathbb{R})$, Math. Ann., 258 (1981), 113-133.
[13] B. Speh and D. A. Vogan, Reducibility of generalized principal series representations, Acta Math., 145 (1980), 227-299.
[14] D. A. Vogan, Representations of Real Reductive Lie Groups, Birkhäuser, Boston, 1981.
[15] N. R. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York, 1973.
[16] \quad, On Harish-Chandra's generalized C-functions, Amer. J. Math., 97 (1975), 385-403.
[17] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups I, II, Springer-Verlag, New York, 1972.

Received June 11, 1990 and in revised form April 15, 1991.
Fukuoka University of Education
729 Akama
Munakata City Fukuoka Pref, 811-41 Japan

