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LEVY-HINCIN TYPE THEOREMS FOR
MULTIPLICATIVE AND ADDITIVE FREE CONVOLUTION

HARI BERCOVICI AND DAN VOICULESCU

We give a description of infinitely divisible compactly supported
probability measures relative to the multiplicative free convolutions on
the positive half-line and on the unit circle. A new proof is provided
for the analogous result for additive free convolution.

1. Introduction. In classical probability theory an important role is
played by the convolution of probability distributions on the real line;
indeed, the distribution of the sum of two independent random vari-
ables is the convolution of the distributions of the two summands. In
connection with this, the infinitely divisible probability distributions,
and the associated convolution semigroups, occupy a central place.
On the one hand, infinitely divisible probability distributions are the
natural object in the study of the limits of sums of independent ran-
dom variables, and on the other, convolution semigroups are related
with stationary processes with independent increments; see [2, 3, and
4] for further information in the classical situation. The Levy-Hincin
formula gives a complete description of all the infinitely divisible dis-
tributions on the real line, and it shows that such distributions can be
obtained as limits of convolutions of Gaussian and Poisson distribu-
tions.

In this paper we study infinite divisibility for multiplicative and
additive free convolution, which are two operations arising from the
non-commutative probability theory of free products; see [5, 6, 7,
8, and 9] for the background of this non-commutative theory. We
will describe briefly the definition of the free convolution operations.
Consider a unital algebra A, endowed with a functional φ such that
φ(\) = 1 the elements x e A will be called random variables. One
can associate with each random variable x an analytic functional vx,
i.e., a functional on the polynomial algebra C[X], by the formula
vx{p) = Φ(p(x)) if p e C[X]. If x and y are two free random
variables (in a technical sense which we will not explain here) then
vx+y and vxy can be shown to depend only on vx and vy. This
allows one to define the additive and multiplicative free convolution
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of analytic functional by vx EB vy — vx+y and vx El vy = i/^. Now,
given a compactly supported measure μ in the complex plane, one
can regard it as an analytic functional by setting μ(p) = Jcp(z)dμ(z)
if p E C[JΓ]. Moreover, the measure μ is completely determined by
the corresponding analytic functional if the support of μ is contained
in the real line R or the unit circle T. The following observations help
then define the additive and multiplicative convolution operations on
certain classes of compactly supported measures.

(1) If μ and v are compactly supported probability measures on
R, then μ EB v is also a compactly supported probability measure
on R.

(2) If μ and v are compactly supported probability measures on
T, then μ El v is also a compactly supported probability measure
onT.

(3) If μ and v are compactly supported probability measures on
the positive axis R+ = (0, +oo), then μ El v is also a compactly
supported probability measure on R+ .

Infinite divisibility for free additive convolution was studied in [6].
A complete characterization of EB-infinitely divisible distributions was
given, and it was explained in [9] that this characterization is an ana-
logue of the classical Levy-Hincin characterization. In fact, the ana-
logue of the Gaussian distribution appeared even earlier, when the
central limit theorem for free additive convolution was proved in [5].

The present paper grew out of a desire to obtain similar results for
the El-infinitely divisible probability distributions supported on R+

or on the unit circle T. While working on this project, we realized
that the methods required in the multiplicative case can also be used
in the additive case, and they yield a substantial simplification of the
argument used in [6]. This simplification is described in §8 below,
which is substantially self-contained. In fact we show that the Levy-
Hincin measure associated with a EB-infinitely divisible distribution μ
can be calculated, as in the classical case, as a weak limit of measures
related with the convolution semigroup generated by μ.

Let us denote by Jί the set of all compactly supported Borel proba-
bility measures μ on the complex plane C. We denote by Λ^R , Jfa ,
and J^i the set of those measures μ e </# which are supported by R,
R+ , and T, respectively. We also set .#* = {μ € Jί: Jc z dμ(z) Φ 0} .
We note for further reference the following properties of free convo-
lutions:

(1) ( ^ R , ffl) is a commutative semigroup;
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(2) (JtJBi , El) is a commutative semigroup;
(3) (Λ0T, El) is a commutative semigroup;
(4) JfR+ c uf,
(5) (JZf Π Λί,, El) is a commutative semigroup;
(6) if μ\, //2 G ̂ T and ^2 ^ ^C , then J τ zw rfμi la //2(z) = 0 f° r

As mentioned above, we will study infinitely divisible probability
measures relative to free convolution. More precisely, an element
μ G J£ is said to be K-infinitely divisible if for every natural number
n there exists a measure μn^M such that

μ=μn la μn El El μ^ .

A2 t imes

Of course, we have to restrict ourselves to measures in ^ R + or
so that the free convolution is defined. The main tool that we use is
a result of [7] that gives a function theoretical property of the free
multiplicative convolution. More precisely, it is shown in [7] that one
can associate with each μ G Jt* a convergent power series Sμ(z) such
that Sμ{z) = Sμχ{z)Sμ2{z) if μ, μx, μ2 G «/#* and μ = μi El μ2 . Our
characterizations of S-infinitely divisible probability measures in J^
and e/#r will be given in terms of the corresponding functions S.

The paper is organized as follows. Sections 2 and 3 contain a de-
tailed discussion of the functions Sμ for μ e Jfo Π Jf* and μ G ̂ R + ,
respectively. Section 4 contains some calculations of functions Sμ for
simple measures μ. These calculations are useful later in the calcu-
lation of analogues of the Gaussian and Poisson distributions. In §5
we give a limit theorem for the description of the function Sμ when
μ belongs to a ^-convolution semigroup. Sections 6 and 7 provide
the analogues of the Levy-Hincin formula for measures in ^ n ΛC
and ./^R , respectively. Finally, §8 is dedicated to an application of
the methods of the paper to EB-infinitely divisible distributions.

Our main reference for the theory of moments and Nevanlinna-Pick
interpolation is Achieser [1]. For background in probability theory,
like the classical theory of infinitely divisible distributions and the
Levy-Hincin formula, we refer to [2, 3, and 4].

2. The function Sμ for μ G Jfa Π ΛC . We recall for convenience
the construction of the function Sμ for μ G Jΐ*. First one considers
the function
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which is defined and analytic in a neighborhood of z = 0. Moreover,
ψμ(Q) = 0 and ψf

μ(0) = Jctdμ(t) Φ 0 since / / 6 / * . It follows that
there exists a function χμ(z), analytic in a neighborhood of zero, such
that

ψμ(χμ{z)) = χμ(ψμ(z)) = z

for sufficiently small z. Clearly χμ(0) = 0 and χ'μ(0) = l/ψf

μ(0), and
hence the function

Sμ{z) =
z

is also analytic in a neighborhood of z = 0, and 5^(0) = Xμ(0) φ 0.
Sometimes it will be convenient to use the function

Σμ(z)=Sμ

which is also analytic in a neighborhood of zero. If we introduce the
functions

then

for z close to zero, and Σμ(z) = (l/z)χ~(z).

2.1. LEMMA. Assume that μ\, μi ^ -#* αn /̂ Sβι = Sβi. If either
μι, μ2e -#R+ or //!, μ2 E Jtτ, then μ{ = μ2 .

Proof. The condition S^ = 5 ^ implies, of course ^ t = ^ 2 or,
equivalently,

»dμι(z)= ί z«dμ2(z), n = l,2,....
Jc

We also have then

z n d μ ι ( z ) = [ zndμ2(z), n = l , 2 , . . . ,

[ z»
c

f
and Jc dμ\{z) = j c dμ2(z) = 1. If both μ\ and μ2 are supported on
R+ or T then the corresponding Weierstrass approximation theorem
implies immediately that μ\ = μ2 . D

It is important to note that the equality 5^ = *Ŝ 2 does not always
imply μ\ = μ2. The following example is relevant in this direction.
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Fix a point a € C, \a\ < 1, and denote μ\ = δa (Dirac unit mass at
a). Define next μ2 = Pa on T = {elt :0<t< 2π} by

Clearly dμ2 is harmonic measure for the unit disc, relative to the point
a, a n d t h e r e f o r e / c z n d μ \ (z) = an = j c z

n d μ 2 ( z ) , n = 1,2, ... .
If a Φ 0 then μ\, μ2 E Jf* and Sμ = Sβi. Using dominating se-
quences in the unit disc one can in fact construct purely atomic mea-
sures μ\φ μ2 such that Sβι = Sμ2.

We proceed now to give descriptions of the functions Sμ and Σμ

associated with measures μ ^ C

2.2. PROPOSITION. Let S(z) be a convergent power series. Then
S = Sμ for some μ e J%ι ΐ\J£* if and only if the following conditions
are satisfied:

(1) P(θ) | > i ;
(2) ί/z^r^ α w ϋ e > 0 such that, given a natural number n and

points z\, z2, . . . , zn G C with \zj\<e, j = 1,2, ..., n, the matrix

zS{Z]) ZkS{zk)
1 1+z,

is nonnegative definite.

If S = Sμ then the number e can be chosen to be the greatest with the
property that \χμ{z)\ < 1 for \z\ < ε.

and note that 5^(0) = ^ ( 0 ) =Proof. Let
and

This proves the necessity of (1). Observe next that

zC J m i i

Thus is analytic for |z| < 1 and, for such z,

1 - \z\2
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We conclude from the theory of Nevanlinna-Pick interpolation that
given a\9 ai, ... , an with \aj \ < 1, j = 1, 2, . . . , n , the matrix

ψμjaj) + \ + ψμ{μk) + j
1 - cijΰk j,k=l

aj) + ψμ(ak) + 1

1 -
\j,k=\

is nonnegative definite. If z\, zi, . . . , zn are sufficiently close to
zero, we can take aj = χμ(zj), j = 1, 2 , . . . , # , and we deduce im-
mediately the necessity of condition (2).

Conversely, let 5 satisfy conditions (1) and (2). Define

and note that χ(0) = 0 and χ'(0) = S(0) φ 0 so that / is locally
invertible at z = 0. Denote by ^(z) the local inverse of / , de-
fined in a neighborhood of z = 0. Condition (2) implies that for
fli,fl2,...,fl« in a neighborhood of zero, the matrix

is nonnegative definite, where u(z) = ψ(z) + 1/2. Using again the
theory of the Nevanlinna-Pick interpolation problem we deduce that
u extends to an analytic function such that $tu(z) > 0 for all z in the
unit disc. Indeed, let an be a sequence of distinct points converging
to zero. There exist functions un analytic in the unit disc and with
positive real part such that un(aj) — u(dj) for j = 1, 2, . . . , n.
Dropping, if necessary, to a subsequence we may assume that the un

converge uniformly on compact subsets of the unit disc to a function
υ. We have Uv(z) > 0 for \z\ < 1 and v(a,j) = u(dj) for all j ,
which implies immediately that v is an analytic continuation of u
to the unit disc. Note that ι (O) = u(0) = 1/2, and a theorem of
Herglotz implies that we can write

1 f 1 + zζ
/ — z \z\

for some measure μ e ^ x . We conclude at once that ψ = ψμ , and
hence μ e Jt* because ψ is locally invertible at zero. Thus we have
μ E </#r n ^ and S = Sμ , as desired.

In order to verify the last statement of the proposition, assume that
\χμ{z)\ < 1 for \z\ < ε. Then ψμ(χμ(z)) makes sense for \z\ < ε, and
since ψμ(χμ(z)) = z for z close to zero, we must have ψμ(χμ{z)) = z
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for \z\ < ε. The claim now follows from the first part of the proof
since we can take α, = χμ(zj) if \ZJ\ < ε for j = 1, 2, . . . , n . D

We note for further reference the following extreme case of Propo-
sition 2.2.

2.3. LEMMA. Assume that μ e Jtj n JF* is a measure satisfying the
condition \Sμ{Qi)\ = 1. Then μ = δa for some a e T.

Proof Observe that \ψ'μ(0)\ = 1, and choose a e T such that
άψ'μ(0) = 1. Then

/ »(1 - άζ)dμ(ζ) = * /(I - άζ)dμ(ζ) = 0,
τ Jτ

which implies that the nonnegative function 5R(1 — άζ) must vanish
almost everywhere with respect to μ. We conclude that μ = δa. D

2.4. COROLLARY. Let μ, e ^ 0 ^ , i= 1,2, ..., be such that the
functions Sμ(z) converge uniformly in some neighborhood of z = 0
to a function S(z). Then there exists μ e ^jΠ^ such that S = Sμ.

Proof. Clearly |5(0)| > 1, and therefore it suffices to show that
S satisfies condition (2) of Proposition 2.2. Indeed, denote χ(z) =
zS(z)/(z + 1), and choose ε > 0 so small that \χ(z)\ < 1/2 and
\χ{z) — χμ(z)\ < 1/2 for \z\ < ε and i sufficiently large. Then clearly
\χμ (z)| < 1 for \z\ < ε, and therefore the matrix

i s n o n n e g a t i v e d e f i n i t e if \zj\<e, j = 1,2, ... , n . T h u s t h e m a t r i x

[l-χ(zj)χ(zk)\jk=ι i^oo [l-χμt(zj)χμi{zk)\j9kssl

is also nonnegative definite. •

It is not difficult to show that actually the weak* convergence of
a sequence of measures in Jt*ι n Jΐ* is equivalent to the uniform
convergence of the corresponding functions S in some neighborhood
of zero.
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2.5. PROPOSITION. Consider a measure μ e J%ι Π Λ C , and a se-
quence βi e Jfj, i = 1,2, ... . If μ\ converge to μ in the weak?
topology, then /// e J£γ Π ΛC eventually, and the functions Sμt con-
verge uniformly to Sμ in some neighborhood of zero. Conversely, if
μi e Jfj Π Jf* and Sβι converge uniformly to Sμ in some neigh-
borhood of zero, then the measures μz converge to μ in the weak*
topology.

Proof. Assume first that μ, converge to μ in the weak* topology.
Clearly then the functions ψμ, converge uniformly on the compact
subsets of the unit disc to ψμ, and therefore we can find an integer
n, and positive numbers e, δ such that, for i > n, the function
ψμt\{z: \z\ < e} is one-to-one, and onto some neighborhood of {z :
\z\ < δ}. Clearly, for i > n, μι belongs to Λ0χ Π <^C, and the
functions χμ(z) and Sμ^ are defined for \z\ < δ .

Observe now that there exist polynomials Pn in n variables such
that, given two inverse (formal) power series Σ™=ιanZn and
Y^=xbnz

n, w e h a v e

an = b-n-Pn{bχ, b2, . . . ,bn), n= 1 , 2 , . . . .

It follows immediately that the coefficients of the Taylor series of
χμ converge to the corresponding coefficients of χμ , and since these
functions are bounded by ε in {z : \z\ < δ}, we conclude that the
functions χμ_ converge uniformly to χμ on the compact subsets of this
disc. Thus £μ also converge uniformly to Sμ in some neighborhood
of zero.

Conversely, assume now that μt e J&i n ^#*, and Sμ, converge
uniformly to Sμ in some neighborhood of zero. The first part of
the argument and Lemma 2.1 show that the only limit point of the
sequence {//;} in the weak* topology is the measure μ. The desired
conclusion follows now from the weak*-compactness of Λ0J . D

One can prove analogous results for the function Σμ. Since the
proofs are very similar, we only give here the statements; the basic
additional observation needed is that \ψ~(z)\ < 1 for z in the unit
disc.

2.6. PROPOSITION. Let Σ(z) be a convergent power series. Then
Σ = Σμ for some μ e J%ι Π ̂ C if and only if the following conditions
are satisfied'.

(1)
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(2) there exists ε > 0 such that, given a natural number n and
points z\, Z2, . . . , zn G C with \ZJ\ < ε, j = 1,2, ... , n, the matrix

[l-ZjΣ(zj)zkΣ(zk)\jJζ=ι

is nonnegative definite.

IfΣ = Σμ then the number ε can be chosen to be the greatest with the
property that \χμ(z)\<l for \z\< ε.

2.7. LEMMA. Assume that μ G J%ι n ̂ C is a measure satisfying the
condition |Σμ(0)| = 1. Then μ = δa for some a G T.

2.8. COROLLARY. Let μt G JΐΊ ΠJf*, i=l,2, ..., be such that the
functions Σμ.(z) converge uniformly in some neighborhood of z = 0
to a function Σ(z). Then there exists μ e Jfc\ ϊλJf* such that Σ = Σμ.

2.9. PROPOSITION. Consider a measure μ e «^τ Π Jf*, and a se-
quence μt G ̂ T > i=l,2,.... If μι converge to μ in the weak*
topology, then μ, G M\ Π ̂  eventually, and the functions Σμ. con-
verge uniformly to Σμ in some neighborhood of zero. Conversely, if
μι G J£χ Π ̂  and Σμ converge uniformly to Σμ in some neigh-
borhood of zero, then the measures /// converge to μ in the weak*
topology.

3 The function Sμ for μ G «^ + . The analogues of the results
proved in the preceding section are somewhat more involved for mea-
sures in

3.1. PROPOSITION. Let S(z) be a convergent power series. Then
S = Sμ for some probability measure μ G *^R+ if and only if the
following conditions are satisfied:

(1) S can be continued analytically to a neighborhood of the interval
[-1,0];

(2) S'(z) <0 for ze [-1,0];
(3) S(z)>0for Z G [ - 1 , 0 ] ;

(4) S(z) = S(z)
(5) there is ε > 0 such that, given a natural number n, and points

z\, z>ι,... , zn G C with \ZJ\ < ε and δ z ; > 0, j = 1,2, ... , n, the
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j,k=l

is nonnegative definite.

If S = Sμ then the number ε can be chosen to be the greatest with the
property that %χμ(z) > 0 for \z\<ε, θ z > 0.

Proof, Start first with a measure μ G ̂ R . Observe that ψμ(z) is
defined for zeC\[η, l/η], where η is chosen so that t~ι e[η> l/η]
for every t G supp(μ). In fact ψμ is also analytic at oc because

t
M " = z-t

dμ{t)
__ r°° l

dμ{t)

Γndμ(t).

Hence ψμ(oό) = — 1 and ψμ is locally invertible at oo. Furthermore,
the derivative

r°° t
•dμ{ί)

= /
Jo

is positive if z < 0. We deduce from these facts that the inverse
function χμ to ψμ has a meromorphic continuation to a neighbor-
hood of [-1,0], with a simple pole at z = - 1 , a simple zero at
z = 0, χμ(z) < 0 and χμ(z) > 0 for z e ( - 1 , 0]. We see therefore
that Sμ(z) = (z + \)χμ(z)/z is analytic and nonzero in a neighbor-
hood of [-1, 0], and Sμ(z) > 0 for z e [-1, 0], while ^ ( z ) +
z(z + l)S (z) = (z + l ) 2 ^ ( z y > 0 if z G ( - 1 , 0). Since ^ ( z ) Λ

has the form 5i/(z) for some v G «^R , we also have Sμ(z)n +
z(z + \)nSf

μ{z)Sμ(z)n-λ > 0 for z G ( - 1 , 0) and n = 1, 2, . . . .
Letting w tend to oc we conclude that S'μ(z) < 0 for z G ( - 1 , 0).
Thus Sμ satisfies conditions (l)-(4) in the statement. In order to
verify (5) we calculate the imaginary part of ψμ :

and we see that ζ$ψμ(z) > 0 for δ z > 0. The Nevanlinna-Pick
theory for the upper half-plane shows that for any finite number of
points a\, aι, . . . , an with positive imaginary parts, the matrix

n
ψμjaj) - ψμ(ak)

aj - ak
JΛ=ι
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is nonnegative definite. Choose ε small enough that $tχμ(z) > 0 for
\z\ < ε, θ z > 0. In the above matrix we can replace a\, aι, . . . , an

by χμ(zι)9χμ(z2)9 . . . , χμ(zn) with θ z y > 0 and \zj\ < ε for j =
1,2, ... , n, and we see in this case that the matrix

Γ Λn

zj ~ zk

is nonnegative definite. This last condition is equivalent to (5).
Conversely, assume now that S is a function satisfying conditions

(l)-(5). Define χ(z) = zS(z)/(z + 1), and note that χ is meromor-
phic in a neighborhood of [-1, 0], it has a simple pole at z = - 1 ,
χ(z) < 0 for z e ( - 1 , 0], and χ'(z) > 0 for z e ( - 1 , 0]. Therefore
χ is locally invertible at every point of [-1, 0], and hence it has an
inverse function ψ defined in a neighborhood of (—oo, 0]U{oo} such
that ^(0) = 0 and ^(oo) = - 1 . Moreover, condition (v) imples that
the matrix

is nonnegative definite if a\, a2, ... , an have positive imaginary parts
and are sufficiently small. Using again the theory of the Nevanlinna-
Pick interpolation we see (as in the proof of Proposition 2.2) that ψ
has an analytic continuation in the upper half-plane. Thus in fact ψ
extends to the complement of some interval of the form [η, l/η], and
5Sψ(z) > 0 if θ z > 0. The function u(z) = ψ(l/z) then has negative
imaginary part in the upper half-plane, and u(oo) = 0, so that there
exists a positive measure v with suρp(z/) c [η, l/η] satisfying

u(z)= ΓJ-dv(t), zt[η,l/η].
Jo z -t

We define now a measure μ by dμ(t) = t~ιdv(t), and we see that

ψ(z)

for z φ [η, l/η]. Moreover, we have f™dμ(t) = -ψ{oo) = 1, so
that μ G C^R+ and S = Sμ.

To prove the last part of the statement assume that S = Sμ, and let
ε be such that $>χμ(z) > 0 if δ z > 0 and \z\ < ε. As in the proof
of Proposition 2.2 we see that ψ(χ{z)) = z for θ z > 0, \z\ < ε, and
thus condition (5) is satisfied in the required range. D

= u(l/z) =Γ τ i-dv{t) = Γ -*-dμ[t)
Jo \ - t Jo i — zt
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3.2. COROLLARY. Let μt e JtR , i = 1, 2, . . . , be such that the
functions Sμ converge uniformly in some neighborhood of z = 0 to
a function S(z). If S satisfies conditions (l)-(4) of Proposition 3.1,
then there exists μ e dfa such that S = Sμ.

Proof. We must show that S also satisfies condition (5) of Propo-
sition 3.1. Since S satisfies conditions (l)-(4), we deduce that the
function χ(z) = zS(z)/(z+l) is real for small, real z, and χ'(0) > 0.
Choose ε > 0 small enough so that χ(z) is one-to-one and χμt(z) —•
χ(z) uniformly for \z\ < ε . Then χμ.(z) must also be one-to-one for
\z\ < ε provided that / is large enough. We claim that for such /
we have SSχμ(z) > 0 if δz > 0 and \z\ < ε. Indeed, we know that
Qχμ (z) > 0 if θ z > 0 and z is sufficiently close to zero. If there
were z with \z\ < ε such that 3z > 0 and ζ$χμ(z) < 0, we would
deduce by connectedness the existence of such a z with ^ . ( Z ) G R .

But then χμ{z) — Xμι{z) = χμι{z), thus contradicting the injectivity
of χμι(z) for \z\ <ε'.

We are now ready to verify condition (5) as in the proof of Corollary
2.4. Let z\9 z 2 ? . . . , zn be such that | z ; | < ε and δz 7 > 0 for
j = 1, 2, . . . , n . By virtue of the last statement in Proposition 3.1,
the matrix

is nonnegative definite. We deduce that
n

j ~ *k
= lim

χ(zj)-χ{zk)_

is also nonnegative definite. D

In order to prove the analogue of Proposition 2.5, we remark that
weak*-convergence of probability measures supported in a fixed com-
pact interval of the real line makes sense, and it is equivalent to the
convergence of all the moments of the given measures. It will be
convenient to denote by [-00, 0] the subset (-00, 0] U {00} of the
extended complex plane.

3.3. PROPOSITION. Given a compact interval [a, b] cR+, there ex-
ist an open neighborhood U of [—00, 0] and an open neighborhood V
of[—ί, 0] with the following property: for every measure μ e ^ R with
support in [a, b], the function ψμ is invertible on U, and ψμ(U) D V.
Moreover, a sequence μt e Jfa , i = 1, 2, . . . , of measures supported
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in [a, b] converges in the weak" topology to a measure μ, if and only
if the functions Sμ. converge uniformly to Sμ on the compact subsets
ofV.

Proof. For every positive number M, the function t/(l - zt)2 is
positive and bounded away from zero for z e [-M, 0] and t e
[a, b]. It follows that there exists a convex neighborhood WM of
[-M, 0], and a positive number ε, such that 5R(ί/(l - zί)2) > ε for
all z e W^ and t e [a, b]. We conclude that |y^(zi) - ψμ(z2)\ >
ε\z\ - z2\ if z\, Z2 G ŴΛ/ and μ is supported in [α, b]. In an
analogous manner, we can choose δ, η > 0 such that \ψμ(l/z\) -
ψμ(l/z2)\ > η\l/zi - l/zi\ if \z\\> \z2\ < δ and μ is supported in
[a, b]. Clearly we can choose Λf and J such that M > ί/δ, and the
sets {ψμ(z): \z\ > M} and {ψμ{z): z e WM, \z\ < l/δ} are disjoint.
With such a choice we set U = ff^ U {z: \z\ > l/δ}, and we see that
^ is one-to-one on U if μ is supported in [a, b]. It is easy to see
now that the first assertion of the proposition is verified if we take
V = {z: dist(z, [-1, 0]) < a}, provided that a < min(ε, η).

Since the collection of probability measures supported in [a, b]
is compact in the weak* topology, while the corresponding family of
functions Sμ is a normal family of analytic functions on V, it suffices
to show that the weak* convergence of the measures μ, to μ implies
the uniform convergence of Sμ. to Sμ in some neighborhood of zero.
This last fact is proved as in Proposition 2.5. D

3.4. PROPOSITION. Let μ, e Jfa , / = 1, 2, . . . , be a sequence
such that the functions Sμ. converge uniformly in a neighborhood of
{0}U{-l} to a function1 S such that S(0) φ 0 and S(-l) φ 0.
Then the measures μ/ are supported in some compact interval and
they converge in the weak* topology to some measure μ.

Proof. It follows immediately from Proposition 3.3 that it suffices
to prove that the supports of the measures μ/ are bounded away
from 0 and oo. Observe that the derivatives χ'μ{z) converge uni-
formly in a neighborhood of zero to a function which does not van-
ish. We conclude that there exist ε, δ > 0 such that χ'μ{z) > δ
for z G [-ε, ε] and all /. Therefore χμ.(ε) — ̂ χ'μ{z)dz > eδ for
all /. We conclude that the inverse ψβt of χμ. extends analytically
to the segment [0, εδ], and hence the support of μ, lies to the left
of l/εδ. In an analogous manner, there exist εr, δ1 > 0 such that
d(\/χμi{z))/dz < δ' for z e [-1 - e ;, - 1 + ε'], and this implies
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that ψμ{\jz) can be continued analytically to [0? ε'δ']. This in turn
implies that the support of //,- lies to the right of ε'δ'. D

We record for future reference the corresponding results for the
function Σμ.

3.5. PROPOSITION. Let Σ(z) be a convergent power series. Then
Σ = Σμ for some probability measure μ e Jfa if and only if the
following conditions are satisfied'.

(1) Σ can be continued analytically to a neighborhood of the interval
[-oo?0];

(2) Σ'(z)<0for ze (-oo,0];
(3) Σ(z)>0Jor ze [-oc,0];
(4) Σ(z)=Σ(z);
(5) there is ε > 0 such that, given a natural number n, and points

Z I , Z 2 , . . . , Z Π E C with \ZJ\ < ε and δz7- > 0, j = 1, 2, . . . , n, the
matrix

_zjΣ(zj)-zkΣ(zk)\jJς=ι

is nonnegative definite.

IfΣ = Σμ then the number ε can be chosen to be the greatest with the
property that Sχμ(z) > 0 for \z\ < ε, Sz > 0.

3.6. COROLLARY. Let μι e ^ R , / = 1, 2, . . . , be such that the
functions Σμ converge uniformly in some neighborhood of z = 0 to a
function Σ(z). IfΣ satisfies conditions (l)-(4) of Proposition 3.5 then
there exists μ e Jti&+ such that Σ = Σμ.

3.7. PROPOSITION. Given a compact interval [a, b] c R+, there
exist open neighborhoods U and V of [-oo, 0] with the following
property: for every measure μ e J£^ with support in [a, b], the func-
tion ψμ is invertible on U, and ψμ{U) D V. Moreover, a sequence
μι e ^ R + , / = 1, 2, . . . , of measures supported in [a, b] converges
in the weak* topology to a measure μ, if and only if the functions Σμ,
converge uniformly to Σμ on the compact subsets of V.

3.8. PROPOSITION. Let μz e Λ0R+, / = 1, 2, . . . , be a sequence
such that the functions Σμ converge uniformly in a neighborhood of
{0} U {oo} to a function Σ such that Σ(0) φ 0 and Σ(oo) Φ 0. Then
the measures μ, are supported in some compact interval, and they
converge in the weak* topology to some measure μ.
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4. Some examples. All the basic examples of S-infinitely divisi-
ble probability measures will come from limits of multiplicative free
products of atomic measures. In fact, our analogues of the Gaussian
and Poisson distributions are completely analogous with de Moivre's
theorem (for the normal law) and the usual limiting process for the
Poisson law. The following calculation is useful here.

4.1. LEMMA. (1) Let a, b e C, ab Φ 0, and α , j ? E ( 0 , l ) be
such that a + β = 1 and aa + βb Φ 0. Then μ = aδa + βδb e ^#*,
and

e ( \ __aa + βb + az + bz - yj(aa + βb + az + bz)2 - 4abz(z + 1)
Sμ{2) ~ ϊάbz

= 2(z+l)

aa + βb + az + bz + y/{aa + βb + az + bz)2 - 4abz(z + 1) ?

for z close to zero, where the branch of the square root is determined
such that the numerator of the first expression above vanishes for z = 0.

(2) // a φ 0, b = 0, a e (0, 1], and β = 1 - α, then μ =
aδa + βδb e ΛC , and

(3) // a Φ 0, \a\ < 1, αtfd Pα e ^τ is defined as in §2, then
Pa^^* and Sp (z) = a~ι.

a

Proof. (1) We have / / G 4 because Jc dμ = aa + βb Φ 0. We

now calculate

αz Λ 6z

To calculate χμ{z) we use the equation ψμ(χμ(z)) = z which be-
comes, after obvious modifications,

ab{z + l)χμ(z)2 - (aa + βb + az + bz)χμ(z) + z = 0.

The formula for Sμ(z) = (z+ ί)χμ(z)/z is simply obtained by solving
this quadratic equation, keeping in mind the fact that χμ(0) = 0.

(2) This is even easier since ψμ(z) = aaz/(l - az).
(3) We saw earlier that Spa = S# so that (3) follows readily from

(2) if we take a = 1. D
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4.2. COROLLARY. We have Pa^Pb = Pab for \a\ < 1, \b\ < 1.

Proof, lΐ ab φθ then Sp Sp = Sp and the corollary follows from
a b ab

Lemma 1. If ab = 0 and μ = Pa$HPb, then we have / τ z
n dμ{z) =

0 = JΎzn dP0, so that μ = Po by Lemma 2.1. D
5. A result about free convolution semigroups. In this section we

consider a IΞI-semigroup {μt : t > 0} (that is, μt+s = βt^ fls) s u c h
that Σμ (z) = exp(ί«(z)) in some neighborhood (depending on t) of
zero, where u(z) is some convergent power series. If we denote

ψ(t, z) = ψ~(z), χ(t, z) = χ~(z), t > 0,

then we have χ(t, z) = zexp(ίw(z)), and ψ(t, χ(t, z)) = z for t >
0. It is clear that the function ψ can be extended analytically to some
neighborhood of C x {0}, such that the identity

ψ(t, zexp(ίw(z))) = z

holds. Differentiation in t of this identity yields the following partial
differential equation which ψ must satisfy:

, zexp(ίi/(z))) = 0.

s μ .
We note that this equation was first proved in [7] for the functions

5.1. PROPOSITION. For z in some neighborhood of zero we have

Proof. Setting ί = 0 in the partial differential equation satisfied by
ψ we get

or, equivalently since ψ(0, z) = z,

Using the relation ^ = ψμ/(l + ψμ) and the fact that ψμQ(z) =
z/(l — z) we deduce that
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ε-0

l i n Ϊ 7 / ( τ ^ i Γ - 7 - ^ τ ) dμ€(τ).

An easy algebraic manipulation concludes now the proof of the propo-
sition. D

6. Infinite divisibility on the circle. In this section we give a com-
plete characterization of E-infinitely divisible measures in ^ . First
we will see that all of these measures, with the exception of normalized
arclength measure PQ , belong to ΛC .

6.1. LEMMA. If μe ^j \ ^ is ^-infinitely divisible then μ = PQ .

Proof. We can write μ = v C3 v with 1/ e ^#τ and, since ( ^ , M)
is a group, we must have v e ^ \ ^ . By property (3) in §1 we
have Jτζ

ndμ(ζ) = 0 for n = 1, 2, . . . , and the result follows from
Lemma 2.1. D

6.2. COROLLARY. For every μ G JKΊ we have PQMμ = PQ.

Proof. We have Po ^ μ = -Po E (̂ b ^ A) = v\ El z/2 with 1/1,1/26
J%ι \ Jί*. The conclusion follows exactly as in the proof of Lemma
6.1. α

We concentrate now on measures μ e ^ T Π ΛC , and we start by
generating a few interesting probability measures on the circle. The
following result generates a measure analogous to the Gaussian distri-
bution on the line.

6.3. LEMMA. For every γ > 0, the function

is of the form S = Sμ for some μ e ^ T Π Jf*.

Proof. Given e e (0, 1/10), consider the measure με e J%ι Π ̂ C
defined by με = (δζ + δζ)/2, where ζ = y/\—ε + iy/ε. By Lemma
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4.1, we have

Sμ.(z) =
2z)

2z)

+ 2z) + 1 - (β/2)(l + 2z)2 + 0(ε 2)

2(z + l)

0(ε 2)

where the (9(ε2) estimate is uniform for |z| < 1/2. Set εn = y/n and
note that

uniformly for |z| < 1/2. Since

our lemma follows from Corollary 2.4. D

Next we consider an analogue of the Poisson distribution on the
line.

6.4. LEMMA. Fix γ > 0 αm/ t eR, and set

Then there exists μ € Λ0χ n ^C ^MCΛ ί^βί S = Sμ.

Proof. Choose ( e T such that 1/(1 - ζ) = 1/2 + it, and for
ε G (0, 1/10) define μ ε = (1 - ε)δχ + εδζ. We have

s (z)

" e 1 + z + ζz + β(C - 1) + V(l + z + ^ + e(ζ - I))2 - 4ζz(z

by Lemma 4.1. Note that the polynomial

p(z) = (l + z + ζz + ε(ζ- I)) 2 - 4Cz(z + 1)
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does not vanish for \z\ < 1/100, and

+ z + ζz)2- 4ζz(z + 1 ) + 2ε(ζ - 1)(1 + z + ζz)+O(ε2)

- ζz)2
ζz)2 + 2ε{ζ - 1)(1 + z + ζz) + O(ε2)

uniformly for \z\ < 1/100. We deduce that

s (z) = 2QΓ+1)
*Λ 2 ( ) ( C ) ( C

= l+ε. l ~ ζ , +O(ε2)
l+z-ζz v

= 1 + ε — ί - ^ + O(ε2)
+ k

uniformly for \z\ < 1/100. The conclusion follows now as in the
proof of Lemma 6.3. •

Lemmas 6.3 and 6.4 have the following analogue for the functions

V
L E M M A 6.5. For every γ>0, and every ζ e T , the function

Σ(z) = exp

is of the form Σ = Σμ for some μ € ^ T Π ^*.

Proof. It suffices to show that the function S(z) = Σ(z/(z+1)) has
the form S = Sμ for some μ € ./#r Π ̂ C If C = 1 then 5"(z) =
exp(2y(z + 1/2)), and the result follows from Lemma 6.3. If ζ Φ 1
then an easy calculation, using the fact that l/ζ = ζ, shows that

C + z/(l + z) -2C C + l
l) + C) C l

+ £±!
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Note now that ζ/(ζ- 1) = 1/2 +it and (ζ+ l)/(ζ- 1) = ia for some
real numbers 1, a, so that

S(z) = exp(ια) exp ί / jy j ,

with / = 2γ/\ζ - 1|2. The lemma follows now from Lemma 6.4. D

We are now ready to study the El-infinitely divisible measures in
J?Ί n ^ C . First we relate them with free convolution semigroups.
The following lemma has an obvious analogue for the function Σμ .

6.6. LEMMA. For every μ e jfΎ n ^ there exists a function v(z),
analytic with nonnegative real part in a neighborhood of z = 0, such
that Sμ(z) = exp(v(z)). If μ is ^-infinitely divisible, then for every
t > 0 there exists μt E <S\ Π ΛC swc/z //zatf Sμt(z) = exp(ίv(z)) ybr
sufficiently small \z\.

Proof. If 1^(0)1 = 1, we have // = £eχp(i0) f° r some 6 G R . In this
case ^ ( z ) = exp(—z'0), μt = δexp^tβ), and the lemma is obvious. If
|«Sμ(O)| > 1 then | ^ ( z ) | > 1 in a neighborhood of z = 0, whence the
existence of the function v(z) in such a neighborhood. Of course, the
function v(z) is not unique since it can be replaced by v(z) + Ikπi,
keZ.

Assume now that

μ = v El z/ ia El z/v,

w times

and choose w(z) such that *S (̂z) = exp(tϋ(z)) for \z\ small. We
have then Sv{z)n = Sμ(z), and therefore nw(z) = v{z) + 2kπi for z
in some neighborhood of zero, and A: e Z. It is easy to see now that
the measure v1 = v El 5 α , where α = exp(2kπi/n), satisfies

= exp ίw(z) -pJ = expί ~^(^)J -
Assume now that // is E-infinitely divisible. The previous argument
shows that exρ(υ(z)/n) has the form SVn for some vn G ^ T Π ^ ,
and hence exp(ίv(z)) = SMf(z) for some μt G Λίj Π ̂  provided that
ί is positive and rational. The conclusion of the lemma follows now
from Corollary 2.4. D

The preceding lemma shows that for every IΞI-infinitely divisible
measure μ e ^ Π ̂  there exists a one-parameter El-semigroup
{μt:t> 0} (i.e., μtMμs = μt+s) such that μ\= μ.
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We are now able to give a complete characterization of the H-
infinitely divisible measures in Jfa n ΛC, as well as an analogue of the
Levy-Hincin formula from the classical theory of infinitely divisible
distributions on the line. We formulate the result both in terms of Sμ

and Σμ.

6.7. THEOREM. (I) A measure μ e^τ n Jt% is ^-infinitely divis-
ible if and only if there exists a function v(z), analytic in {z : IStz >
-1/2}, such that

®v(z) > 0 j / s R z > - i

and Sμ(z) = exp(v(z)).
(2) A measure / i G / τ f l 4 is ^-infinitely divisible if and only if

there exists a function u(z), analytic in D, such that

Mu(z) > 0 ifzeΌ,

and Σμ(z) = exp(w(z)).
(3) Ifv(z) is an analytic function in {z:$tz > -1/2}, such that

>~,

then the function S(z) = exp(v(z)) has the form S — Sμ for some
^-infinitely divisible measure μ e Jh Π ^ .

(4) If u{z) is an analytic function in D, such that

$tu(z)>0 ifzeΌ,

then the function Σ(z) = exp(w(z)) has the form Σ = Σμ for some
^-infinitely divisible measure μ e *£j Π ^ζ,.

(5) Lei / / G / τ ί Ί / * 6e α ^-infinitely divisible probability mea-
sure, let u(z) be an analytic function with nonnegative real part in D
such that Σμ(z) = exp(w(z)), and let {μt: t > 0} c ^Ύ ΓΊ ̂  satisfy
Σμt{z) = exp(ίM(z)) αnrf μ\ = μ. Then the positive measures uε de-
fined by dvε(ζ) = (l/ε)(l-$tζ)dμe(ζ) converge in the weak" topology
to a measure v as e -> 0, the limit a = limε_+0(l/ε)/τ%ζdμε(ζ)
exists, and

u(z) = -ia + I \^β- du(ζ) ifz e D.
JΎ 1 - ςz

Proof. The equivalence between (1) and (2), and between (3) and
(4), is seen by the change of variable u(z) = υ(z/(l — z)). Therefore it
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will suffice to prove (2), (4), and (5). We start with (4), and we remark
that it suffices to show that Σ(z) = exp(w(z)) has the form Σ = Σμ for
some μ £ «/#r Π Jf* such a μ must then be infinitely divisible since
Σ(z) = Σn(z)n , where Σn(z) = exp(u(z)/n). A theorem of Herglotz
concerning analytic functions with nonnegative real part in the unit
disc shows that a function u with nonnegative real part in D can be
written as

/
Jτ
/

Jτ s - z

for some finite measure v on T, and some real number a. Since
finite measures on T can be approximated in the weak* topology
by measures with finite support, and since the family of functions
with nonnegative real part in D is normal, we deduce that u can be
approximated uniformly on compact subsets of D by functions of the
form ua y , where i/ has finite support. By Corollary 2.4, it suffices
to prove (4) in the particular case when v has finite support. In this
particular case the conclusion follows immediately from Lemma 6.5.

Assume next that μ e Jfγ n ΛC is Kl-infinitely divisible, and let
{μΓ t > 0} C J^i Π ̂  satisfy Σβt(z) = exp(ίw(z)) and μ\ = μ,
where u(z) is a convergent power series. We would like to apply now
Lemma 5.1, but we observe first that

for ζ e T. Then Lemma 5.1 implies that

for z sufficiently close to zero. Taking z = 0, we see that the mea-
sures uε remain bounded as ε —• 0. If v is any cluster point of vz

as ε —• 0, we must have

This formula shows that in fact v is unique, and hence it is the limit
of the vE as ε —> 0. Now, the formula in Lemma 5.1 can be written
as

u(z) = lim / - — — dvε(ζ) —

and the above considerations show that

ζz
lim

I - ζz
f l +

= / I—JΎ 1 -
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It follows now immediately that the limit a = limε_+o( l/s)/ τ $C dμε{ζ)
exists, and

for z close to zero. It is clear now that u has an analytic continuation,
with nonnegative real part, to the entire disc D. This concludes the
proof of (2) and (5). D

We conclude this section with a description of some properties of
E-infinitely divisible measures in Λ#Γ n Λ& .

6.8. PROPOSITION. Let μ e Jtj n Jt^ be a ^-infinitely divisible
probability measure, and let {μt\ t > 0} c Jti Π Jΐ* be such that
μ\ = μ and Σβt(z) = exp(ίw(z)), where u is analytic with nonnegative
real part in Ό. Denote

ψ(t, z) = ψ~(z)9 χ{t9 z) = χ~(z), t>0;

note that ψ(t9 z) and χ(t, z) are defined for all Z E D .

(1) The map t •-• μt is continuous for t > 0 when J£γ is endowed
with the weak" topology.

(2) For all t>0 and z eΌ we have χ(t, ψ(t, z)) = z.
(3) For all t>0 we have

{ψ(t,z):\z\<l} = {z:zeΌ9

Proof. (1) This assertion follows immediately from Proposition 2.9.
(2) We know that \ψ(t9 z)\ < 1 for all t > 0 and z eΌ. Therefore

the expression χ(t, ψ(t, z)) makes sense for all such t and z. For
fixed t, we have χ(t9 ψ{t9 z)) = z for small z, and (2) follows
because of the uniqueness of analytic continuation.

(3) Fix t > 0, and note that the inclusion

{ψ(t, z): \z\ < 1} c {z: z e D, \χ(t, z)\ < 1}

follows immediately from (2). To prove the opposite inclusion take
any z eΌ such that \χ(t9 z)\ < 1. It suffices to show that for such a
point z we have ψ(t9 χ(t, z)) = z. Since

χ ( ί , z ) = zexρ(ίw(z))/(z + l ) ,

it follows that \χ(s, z)\ < 1 for all j e [ 0 , ί ] . The set A = {s e [0, t]:
ψ(s, χ(s, z)) = z) is closed and 0 e A. We conclude the proof by
showing that A is open in [0, t], and hence ί e 4̂ by connectedness.
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Indeed, if SQ G A then z belongs to the range of ψ(so,w). Since
ψ(so, w) = linis-^ ψ(s,w) uniformly for w in a compact subset of
the unit disc, z must belong to the range of ψ(s,w) for s close to
SQ , and hence by (2) we have ψ(s, χ(s, z)) = z for 5 close to so. •

7. Infinite divisibility on the positive axis. In this section we char-
acterize the El-infinitely divisible probability measures in ^ R + . Re-
call that the measures in Jfa have compact supports, contained in
(0, +00). We begin with analogues of Lemmas 6.3, 6.4, and 6.5.

7.1. LEMMA. For every γ > 0 the function

is of the form S = Sμ for some μ €

Proof. Given ε e (0, 1/10), consider the measure με = (δa+δb)/2,
where a = 1 + \fΐi and & = I/a. Since #Z> = 1 and a + b =
2 + 2ε + o(e), we see that

ε)(2z + 1) + y/(l + ε)2(2z + I) 2 - 4z(z + 1) + o{ε)

ε)(2z +l) + Λ/ί+2ε(2z+l)2 + o(ε)

(1 + ε)(2z + 1) + 1 + ε(2z + I) 2 + o(e)

uniformly for sufficiently small z . The proof is completed as in
Lemma 6.1, using Corollary 3.2 in place of Corollary 2.4. D

7.2. LEMMA. Fix γ>0 and t e R\ [0, 1], and set

Then there exists μ e ^ R + such that S = Sμ.

Proof. Choose ζ e R+ such that / = 1/(1—f), and for ε sufficiently
small define με = (1 - ε)δ\ + εδζ. The rest of the proof is virtually
identical with that of Lemma 11, except that one must use Corollary
3.2 in place of Corollary 2.4. D
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7.3. LEMMA. For every γ > 0 and every ί e R + , the function

Σ(z) = exp (-yγ^

is of the form Σ = Σμ for some μ e Jt^ .

Proof. It suffices to show that the function S(z) = Σ(z/(1 + z))
is of the form S = Sμ for some μ € C^R . When t = 1 we have
5'(z) = exp(-yz), and the result follows from Lemma 7.1. When
t Φ 1 an easy calculation shows that S(z) = αexp(//(z + /')), where
α = exp(-y/(l - t)), t1 = 1/(1 - t), and / = y/(l - ί) 2 . In this case
the results follow from Lemma 7.2. D

The analogue of Lemma 6.6 is easier to prove for measures in ^ R + .
Again, we do not give the obvious statement for the function Σμ .

7.4. LEMMA. For every μ e Λ^R there exists a function v(z), an-
alytic for z in a neighborhood of [—1, 0] such that v(z) = υ(z),
v'{z) < 0 for z G [-1, 0], and Sμ{z) = exp(υ(z)). // μ w H-
infinitely divisible\ then for every t > 0 ίA^re exwte //̂  € ^ R ŴCΛ that
Sμt{z) = exp(ίυ(z)) ybr z m wme neighborhood of [-1, 0]. More-
over, ybr every Γ > 0, ίλe measures {μt: 0 < ί < Γ} Λαve supports
bounded away from zero and infinity.

Proof. The existence of the function υ(z) is immediate from Propo-
sition 3.1. Assume that

μ = y Eg v ElI -13 v^

n times

for some natural number n, and choose tϋ(z) such that w(z) = tϋ(z)
and JS^(z) = exp(w(z)). We have then Sv{z)n = Sμ(z), and therefore
w(z) = v(z)/n in some neighborhood of [-1,0] . The existence of
μt for all t > 0 follows as in Lemma 6.6, with Corollary 3.2 in place
of Corollary 2.4. The last assertion of the lemma is a consequence of
Proposition 3.4. D

We are now ready for the main result of this section.

7.5. THEOREM. (1) A measure μ e Jfa is ^-infinitely divisible if
and only if there exists a function v(z), analytic in a neighborhood of
( C \ R ) U [ - 1 , 0], such that υ(z) = ΰ(z), SSυ(z) < 0 for θ z > 0, and
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(2) A measure μ e JtR is ^-infinitely divisible if and only if
there exists a function u(z), analytic in a neighborhood of (R \ R+) u
{00}, such that u(z) = u(z), δw(z) < 0 for θ z > 0, and Σμ(z) =
exp(w(z)).

(3) If υ(z) is an analytic function in a neighborhood of (C \ R) U
[-1,0], such that υ(z) = v(z), and SSυ(z) < 0 for Sz > 0, then the
function S{z) = exp(v(z)) has the form S = Sμ for some ^-infinitely
divisible measure μ € ^ + .

(4) If u(z) is an analytic function in a neighborhood of (R\R+) U
{00}, such that u(z) = u(z), and θw(z) < 0 for δ z > 0, then the
function Σ(z) = exp(w(z)) has the form Σ = Σμ for some ^-infinitely
divisible measure μ e ^ + .

(5) Let μ e ^ R be a ^-infinitely divisible probability measure,
let u(z) be an analytic function in a neighborhood of (R\ R+) U {00},
satisfying u{z) = u(z), and θi/(z) < 0 for δ z > 0, such that Σμ(z) =
exp(w(z)), and let {μt: t > 0} c ^ + satisfy Σμt(z) — exp(ίw(z))
and μ\ = μ. Then the positive measures vz defined by dvε(t) =
(l/e)(l — t)2dμε(t) converge in the weak" topology to a measure v as
ε —• 0, the limit a — limε_^0(l/ε) /R(1 ~ 0 dμε(t) exists, and

u(z) = a- t -J—dv(t)9 Z E R \ R + .
JRI -tz

Proof. As in the proof of Theorem 6.7, it suffices to prove (2), (4),
and (5). We prove first (4); assume that the function u satisfies the
assumptions of (4). Then the Herglotz theorem can be transferred to
the upper half plane to show the existence of a positive measure v ,
with compact support in R+ , and of a real number a, such that

= a- / Z dv(t), Z E R \ R + .
JR ! - tz

Proposition 3.4 allows us to consider only the case in which the mea-
sure v has finite support, and in that particular case the conclusion
follows from Lemma 7.3.

Assume next that μ e ^ R is Kl-infinitely divisible, and let {μt: t >
0} c Λ€R+ satisfy Σμ(z) = exp(ίw(z)) and μ\ = μ, where u(z) is
analytic in some neighborhood of [-00, 0]. Observe that

( l - Q ( l - z ) ( 1 - Q 2 z
l-tz " A Γ + l-tz '
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which shows by Lemma 5.1 that

Lemma 7.4 shows that the measures ue have supports bounded away
from zero and infinity as e —• 0, and the preceding formula is seen
to imply the existence of the weak*-limit of vε as in the proof of
Theorem 6.7. The interested reader will have no difficulty completing
the proof of (2) and (5). D

We conclude the section with an analogue of Proposition 6.8.

7.6. PROPOSITION. Let μ e ^R+ be a ^-infinitely divisible prob-
ability measure, and let {μt: t > 0} c «^R be such that Σ^(z) =
exp(tu(z)) and μ\=μ. Denote

ψ(t, z) = ψ~(z), χ(t, z) = χ~(z), t > 0;

note that ψ(t9 z) and χ(t, z) are defined in a neighborhood of
(R \ R+) U {oo} which may depend on t.

(1) The map t *-> μt is continuous for t>0 when Jt& is endowed
with the weak* topology.

(2) For all t>0 and z e C \ R + we have χ(t, ψ(t, z)) = z.
(3) For all t>0 the set {ψ(t, z): z e C, %z > 0} is a connected

component of {z : z e C, δ z > 0, %χ(t, z) > 0}.

Proof (1) This assertion follows immediately from Proposition 3.4.
(2) We have $$ψ{z, t) > 0 if Sz > 0, and therefore the expression

χ(t, ψ(z, t)) makes sense for such values of z . The conclusion fol-
lows from the uniqueness of analytic continuation, as in the proof of
Proposition 6.8(2).

(3) The set {ψ(t, z): z eC, δ z > 0} is connected, and by (2) it
is contained in {z: z e C, δ z > 0, θ/( ί , z) > 0}. The equality
ψ(t, χ(t9 z)) = z holds for every z e {ψ{t, z): z e C, δ z > 0}, and
by analytic continuation it holds for all z in the connected component
of {z: z G C, Sz > 0, 9tf(ί, z) > 0} containing {ψ(t, z): z e
C, δ z > 0}. The result follows at once from these remarks. D

8. Infinite divisibility for additive free convolution. The structure of
EB-infinitely divisible distributions on the real line was described in
[6], and it was showed in [9] why this characterization is an analogue
of the classical Levy-Hincin formula. In this section we provide a
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simpler derivation of these results, and we show how to obtain the
analogue of the Levy-Hincin measure by a limiting process. We will
make the exposition as self-contained as possible.

We start by reviewing certain basic facts from [6]. Given a com-
pactly supported probability measure μ on R, one constructs first
the Cauchy transform Gμ(z) = JR l/(z - t)dμ(t), and a meromor-
phic function Kμ(z) such that Gμ(Kμ(z)) = z in a neighborhood of
z = 0. Finally, one considers the function έ%μ{z) = Kμ(z) - z~x. It
was shown in [6] that 3ίμ = &μχ + 3%H if μ = μx EB μ2. We recall
that ê R denotes the collection of compactly supported probability
measures on R.

8.1. PROPOSITION. Given a compact interval [-a, a] c R, there
exist a neighborhood U of oo and a neighborhood V of zero with
the following property: for every μ G ^ R with supp(μ) c [—a, a],
the function Gμ is one-to-one on U, and Gμ(U) D V. Thus <9lμ is
defined on V, and Kμ(V) c U.

Proof. Let μ e JίR be supported in [-α, a], and consider the
function f(z) = Gμ(l/z). Since /'(z) = /^fl 1/(1 - tz)2dμ(t), it is
easily seen that there exists a positive number ε, independent of μ,
such that 9i/;(z) > 0 for |z| < ε. For such an ε, the function /(z)
is one-to-one for \z\ < e. Furthermore,

/(*)-*= /
J-a

tz2/(l-tz)dμ(t),

and this implies the inequality | / ( z ) - z | < |z|/2 for \z\ < e provided
that ε is sufficiently small. For such a value of ε we have {/(z):
\z\ < ε} D {z : |z| < ε/2}. The proposition follows now with U =
{z: |z| > ε}u{oo} and V = {z: |z| < ε/2}. D

In the following proof we use the elementary fact that an analytic
function / in a convex set, such that 3U/;(z) > 0 for all z , is one-to-
one. This is immediately seen from the formula

(f(b) - f(a))/(b - a) = f f\a + t(b - a)) dt.
Jo

8.2. PROPOSITION. Given a sequence {μn : n > 1} c Λ£R, the fol-
lowing assertions are equivalent:

(1) The supports of the measures μn are contained in a compact
interval and the sequence {μn: n > 1} converges in the weak* topology
to a measure μ G Jt^.
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(2) The sequence {&μn: n > 1} converges uniformly in some neigh-

borhood of zero to a function 31.

If (I) and (2) are satisfied, then £Z = £gμ.

Proof. Assume first that (1) is satisfied. Proposition 8.1 implies
the existence of open sets U and V such that Kμn(V) c U for all
n. We deduce immediately that the family {Kμ :n > 1}, and hence
the family {&μn: n > 1} is normal in V. To prove (2) it suffices
therefore to show that the Taylor coefficients of 31 μ converge to the
corresponding coefficients of 31 μ . This last assertion is verified as in
the proof of Proposition 2.5.

Assume now that (2) is satisfied. It suffices to show that the mea-
sures {μn: n > 1} are supported in a compact interval; the conver-
gence assertion follows from the weak*-compactness of the collec-
tion of measures supported in a fixed compact interval, and from
the first part of the proof. To do this we consider the functions
gn(z)=l/Kμn(z). We have g'n{z) = (1 - z 2 ^(z))/(l + z^(z))2,
and we deduce the existence of ε > 0 such that Ug'n(z) > 0 for \z\ < ε
and for all n. Moreover, gn(z) - z = -z23?μn(z)/(l + z3ίμn{z)), and
we see that for ε small enough gn has an inverse function defined for
\z\ < ε/2. We conclude that the function Gμn(z) can be continued
analytically to \z\> 2/e, and therefore supp(μw) c [—2/e, 2/ε] for
all n.

The last assertion of the proposition follows from the first part of
this proof. D

The following calculations can be found in [9]. We present them
here for the sake of completeness. They provide the free additive
convolution analogues of the Gaussian measure (obtained by the
de Moivre procedure), and of the Poisson measures.

8.3. LEMMA. For every γ > 0, the function 31 (z) = yz is of the
form 31 = 3&μ for some μ e

Proof. Set εn = γ/y/ή9 and consider the measures

μn = (β_ε + δε )/2, n > 1.

A straightforward calculation shows that

3ίμn{z) = (-1 + J1 + 4u>2ε2)/2ii; = t(;ε2 + O(ε*),

and therefore n3ίμ converge uniformly in some neighborhood of zero
to 3ί. The lemma follows from the preceding proposition. D
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8.4. LEMMA. For every γ > 0, and every / G R , t Φ 0, the function
z) = γz/(l - tz) is of the form & = <9ίμ for some μ e dfa.

Proof. Set εn = γ/n , and consider the measures μn = (1 — εn)δo +

tδt, n > 1. A calculation shows that

1 - ί z
so that n3ίμn converge uniformly in some neighborhood of zero to
«$?. " D

We can now turn to the study of ffl-infinitely divisible measures in
«^R . The following result is analogous to Lemma 7.4, and the reader
will have no difficulty to verify it using Proposition 8.2.

8.5. LEMMA. Let μ e Jί^ be an ^-infinitely divisible measure.
For every t > 0 there exists a measure μt e Jt# such that 3%μ =
t3ίμ. Moreover, for every T > 0, the measures {μt: 0 < t < T} have
uniformly bounded supports.

The following theorem is the main result of this section.

8.6. THEOREM. (1) A measure μ e Λ€R is ^-infinitely divisible if
and only if the function 3ίμ can be continued analytically to a neigh-
borhood of (C \ R) U {0}, such that %3?μ(z) > 0 for θ z > 0.

(2) Let M be an analytic function in a neighborhood of (C\R)u{0}
such that SίiXj = <92{z), and δ ^ ( z ) > 0 forδz > 0. Then 3? = 31 μ

for some ^-infinitely divisible measure μ e Jt^.
(3) Let μe^R be B-infinitely divisible, and let {μt: t>0} CJtR

be such that 3lβt{z) = t3ίμ{z). Then the positive measures uε defined
by dvε{t) = (l/ε)t2 dμε(t) converge in the weak* topology to a measure
v as ε —• 0, the limit

/
JR

/ tdμε(t)
R

exists, and

[ ±du(t)

for all zε(C\R)U{0}.
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Proof. The proof of (2) follows from Lemmas 8.3 and 8.4, and
Proposition 8.2. Indeed, any function t%, satisfying the hypotheses
of (2), can be written as

for z e (C \ R) U {0}, where a is real and v G Jfa . Approximating v
in the weak* topology with measures with finite support, we see that
& = 3tμ for some μ. The ffl-infinite divisibility of μ follows from
the same argument applied to &/n, n = 2,3, ... .

Assume now that μ e ^R is EB-infinitely divisible, and {μt: t > 0}
C CJR are such that 3ίμt{z) = tέ%μ(z). Let us denote G(t, z) =
Gμ(z). It was shown in [6] that

for z close to zero. Since G(0, z) = 1/z, we have (dG/dz)(09 l/z)
= ~ z 2 , and therefore

Ί i m -
ε->0 8

[β(..I)-C(o.I)l

= lim 7 / τ^—dμ^
ε-»0 β J R 1 — tZ

l im-

Now, we have

1 -tz

t2z
l-tz'

and we see that

By Proposition 8.5, the measures με, and hence uε as well, have
bounded supports as ε —* 0. The rest of the proof is virtually identical
with that of Theorems 6.7 and 7.5. D
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