# KLOOSTERMAN INTEGRALS FOR SKEW SYMMETRIC MATRICES 

Hervé Jacquet and Stephen Rallis


#### Abstract

If $G$ is a reductive group quasi-split over a number field $F$ and $K$ the kernel of the trace formula, one can integrate $K$ in the two variables against a generic character of a maximal unipotent subgroup $N$ to obtain the Kuznietsov trace formula. If $H$ is the fixator of an involution of $G$, one can also integrate $K$ in one variable over $H$ and in the other variable against a generic character of $N$ : one obtains then a "relative" version of the Kuznietsov trace formula. We propose as a conjecture that the relative Kuznietsov trace formula can be "matched" with the Kuznietsov trace formula for another group $G^{\prime}$. A consequence of this formula would be the characterization of the automorphic representations of $G$ which admit an element whose integral over $H$ is non-zero: they should be functorial image of representations of $G^{\prime}$. In this article, we study the case where $H$ is the symplectic group inside the linear group; we prove the "fundamental lemma" for the situation at hand and outline the identity of the trace formulas. This case is elementary and should serve as a model for the general case.


1. Introduction. Let $F$ be a local field. We will denote by $G^{\prime}$ the group $\mathrm{GL}(m)$, regarded as an algebraic group over $F$, by $N^{\prime}$ the group of upper triangular matrices with unit diagonal, by $A^{\prime}$ the group of diagonal matrices and by $W^{\prime}$ the Weyl group of $A^{\prime}$ identified to the group of permutation matrices. Let $\psi$ be a non-trivial additive character of $F$ and $\theta^{\prime}$ the character of $N^{\prime}$ defined by:

$$
\begin{equation*}
\theta^{\prime}(n)=\psi\left(\sum_{1 \leq i \leq m-1} n_{i, i+1}\right) . \tag{1}
\end{equation*}
$$

The group $N^{\prime}$ operates on $G^{\prime}$ by

$$
\begin{equation*}
g^{\prime} \mapsto^{t} n_{1}^{\prime} g^{\prime} n_{2}^{\prime} \tag{2}
\end{equation*}
$$

We say that the orbit of $g^{\prime}$ under $N^{\prime} \times N^{\prime}$ on $G^{\prime}$ is relevant (with respect to $\theta^{\prime}$ ) if $\theta^{\prime} \otimes \theta^{\prime}$ is trivial on the fixator of $g^{\prime}$ in $N^{\prime} \times N^{\prime}$. If $f^{\prime}$ is a smooth function of compact support of $G^{\prime}$, we define for every relevant element $g^{\prime}$ an orbital integral:

$$
\begin{equation*}
I\left(g^{\prime}, f^{\prime}\right)=\int f^{\prime}\left({ }^{t} n_{1}^{\prime} g^{\prime} n_{2}^{\prime}\right) \theta^{\prime}\left(n_{1}^{\prime} n_{2}^{\prime}\right) d n_{1}^{\prime} d n_{2}^{\prime} \tag{3}
\end{equation*}
$$

The integral is taken over the quotient of $N^{\prime} \times N^{\prime}$ by the fixator of $g^{\prime}$. At the moment, we do not specify the choice of the Haar measures. This type of integral is a "Kloosterman integral," the local analogue of a Kloosterman sum (see [G] and the references therein).

Now let $S$ or $S_{F}$ be the space of skew symmetric matrices of size $2 m \times 2 m$ and rank $2 m$. The group $G=\mathrm{GL}(2 m, F)$ operates on $S$ by:

$$
\begin{equation*}
s \mapsto^{t} g s g \tag{4}
\end{equation*}
$$

We denote by $N$ the group of upper triangular matrices with unit diagonal, by $A$ the group of diagonal matrices and by $W$ the group of permutation matrices in $G$. In particular, the group $N$ operates on $S$ and its orbits are easily described: each orbit has exactly one representative in the normalizer of $A$. More precisely, every orbit has a representative of the form $w a$ where $w \in W, a \in A, w^{2}=1$ and $w a w=-a$. We let $\theta$ be the character of $N$ defined by:

$$
\begin{equation*}
\theta(n)=\theta^{\prime}\left(n_{1}\right) \theta^{\prime}\left(n_{2}\right) \tag{5}
\end{equation*}
$$

if

$$
n=\left(\begin{array}{cc}
n_{1} & u  \tag{6}\\
0 & n_{2}
\end{array}\right)
$$

In particular, $\theta$ is a degenerate character. We define again the notion of a relevant orbit (with respect to the character $\theta$ ). If $\Phi$ is a smooth function of compact support on $S$ we will denote by $I(s, \Phi)$ its orbital integrals:

$$
I(s, \Phi)=\int \Phi\left({ }^{t} n s n\right) \theta(n) d n
$$

the integral is over $N$ divided by the fixator $N_{s}$ of $s$; by definition, the character $\theta$ is trivial in $N_{s}$, so that the integral makes sense. We think of this integral as a relative Kloosterman integral. Remarkably, the two kinds of Kloosterman integrals lead to the same kind of functions.

Let $w_{0}$ be the following matrix:

$$
w_{0}=\left(\begin{array}{cc}
0 & 1_{m}  \tag{7}\\
1_{m} & 0
\end{array}\right)
$$

We will first show that every relevant orbit has a representative of the form

$$
s=w_{0}\left(\begin{array}{cc}
g^{\prime} & 0  \tag{8}\\
0 & -{ }^{t} g^{\prime}
\end{array}\right)
$$

where $g^{\prime}$ is in $G^{\prime}$ and the orbit of $g^{\prime}$ under $N^{\prime} \times N^{\prime}$ is relevant for $\theta^{\prime}$; furthermore, the orbit of $g^{\prime}$ determines the orbit of $s$ under $N$. Next, we will prove that given $\Phi$ there is $f^{\prime}$ such that the orbital integrals of $\Phi$ and $f$ match in the sense that:

$$
I(s, \Phi)=I\left(g^{\prime}, f^{\prime}\right)\left|\operatorname{det} g^{\prime}\right|^{(m-1) / 2}
$$

if $s$ and $g^{\prime}$ are as above. Although $f^{\prime}$ is not unique, there is a canonical choice for $f^{\prime}$ in terms of $\Phi$ : we will use the notation $\Phi \mapsto$ $f^{\prime}$ for this canonical choice.

Now let $\varepsilon$ be the following skew matrix:

$$
\varepsilon=\left(\begin{array}{cc}
0 & 1_{m}  \tag{9}\\
-1_{m} & 0
\end{array}\right)
$$

and let $H$ be the fixator of $\varepsilon$ in $G$. For any smooth function of compact support $f$ on $G$, the function $\Phi_{f}$ on $S$ defined by:

$$
\Phi_{f}\left(^{t} g \varepsilon g\right)=\int_{H} f(h g) d h
$$

is smooth of compact support. Moreover, if $g$ is relevant, we have:

$$
\iint f(h g n) d h \theta(n) d n=I\left({ }^{t} g \varepsilon g, \Phi_{f}\right),
$$

the integral on the left is for $h \in H$ and $n$ in the quotient of $N$ by the fixator of ${ }^{t} g \varepsilon g$ in $N$, that is, the group

$$
N \cap g^{-1} H g
$$

Consider now the function $f^{\prime}$ associated to $\Phi_{f}$. We will write

$$
f \mapsto f^{\prime} .
$$

If furthermore $f$ is a Hecke function then $f^{\prime}$ is also a Hecke function; we will show the map $f \mapsto f^{\prime}$ is an homomorphism of Hecke algebras. There is a dual correspondence on the set of unramified representations that we now describe: let $\pi^{\prime}$ be an unramified representation of $G^{\prime}$; consider then the parabolic subgroup of $P=M U$ of type $(m, m)$ in $G$ and the representation $\sigma$ of $G$ induced by the representation

$$
\left(\begin{array}{cc}
g_{1} & u  \tag{10}\\
0 & g_{2}
\end{array}\right) \mapsto \pi^{\prime}\left(g_{1}\right)\left|\operatorname{det} g_{1}\right|^{1 / 2} \otimes \pi^{\prime}\left(g_{2}\right)\left|\operatorname{det} g_{2}\right|^{-1 / 2}
$$

Let $\pi$ be its unique unramified constituent. We will show that the Satake transforms of these functions (see (19) below) are related by:

$$
\hat{f}(\pi)=\hat{f}^{\prime}\left(\pi^{\prime}\right) .
$$

Once these results are established, we can write down a global trace formula: let $F$ be a number field, and $f$ a smooth function of compact support on $G\left(F_{\mathrm{A}}\right)$; we will assume that $f$ is a product of functions $f_{v}$; for each place $v$, we will denote by $\Phi_{v}$ the corresponding function on $S_{v}$ and by $f_{v}^{\prime}$ the corresponding function on $G_{v}^{\prime}$ : thus $f_{v} \mapsto f_{v}^{\prime}$. We will denote by $f^{\prime}$ the product of the functions $f_{v}^{\prime}$. Now we can form the geometric kernels $K$ and $K^{\prime}$ attached to $f$ and $f^{\prime}$ respectively:

$$
K(x, y)=\sum_{\xi \in G(F)} f\left(x^{-1} \xi y\right), \quad K^{\prime}(x, y)=\sum_{\xi^{\prime} \in G^{\prime}(F)} f^{\prime}\left(x^{-1} \xi^{\prime} y\right) .
$$

Then we have the following identity

$$
\begin{align*}
& \iint K(h, n) d h \theta(n) d n  \tag{11}\\
& \quad=\iint K^{\prime}\left(n_{1}, n_{2}\right) \theta^{\prime}\left(n_{1}\right)^{-1} d n_{1} \theta^{\prime}\left(n_{2}\right) d n_{2} ;
\end{align*}
$$

here

$$
h \in H(F) \backslash H\left(F_{\mathrm{A}}\right), \quad n \in N(F) \backslash N\left(F_{\mathrm{A}}\right), \quad n_{i} \in N^{\prime}(F) \backslash N^{\prime}\left(F_{\mathrm{A}}\right) .
$$

The right-hand side is the Kuznietsov trace formula and the left-hand side the relative Kuznietsov trace formula.

Indeed, the left-hand side can be written as:

$$
\sum_{\xi} \int f(h \xi n) \theta(n) d n
$$

where $h$ is in $H\left(F_{\mathrm{A}}\right), \xi$ in $H(F) \backslash G(F), n$ in $N(F) \backslash N\left(F_{\mathrm{A}}\right)$. Let $\Phi$ be the product of the functions $\Phi_{v}$. Then this expression can be expressed in terms of $\Phi$ as follows:

$$
\sum_{\sigma} \int \Phi\left({ }^{t} n \sigma n\right) \theta(n) d n
$$

Here $\sigma$ is $S_{F}$ and $n$ is as before. We can also rewrite this integral with $\sigma$ in a set of representatives for the orbits of $N(F)$ on $S_{F}$ and $n$ in $N_{\sigma}(F) \backslash N\left(F_{\mathrm{A}}\right)$. For each $\sigma$ the integral factors through an integral

$$
\int_{N_{\sigma}(F) \backslash N_{\sigma}\left(F_{\mathrm{A}}\right)} \theta\left(n_{\sigma}\right) d n_{\sigma}
$$

and is thus zero unless $\theta$ is trivial on $N_{\sigma}$, that is, $\sigma$ is relevant. Thus we can rewrite our expression as

$$
\sum_{\sigma} \int \Phi\left({ }^{t} n \sigma n\right) \theta(n) d n
$$

where now $\sigma$ is in a set of representatives for the relevant orbits of $N(F)$ and $n$ in

$$
N_{\sigma}\left(F_{\mathbb{A}}\right) \backslash N\left(F_{\mathrm{A}}\right)
$$

This can be written also as a sum of global orbital integrals:

$$
\sum_{\sigma} I(\sigma, \Phi)
$$

each of which is a product of local ones. Next, we choose for $\sigma$ elements of the form:

$$
\sigma=w_{0}\left(\begin{array}{cc}
\tau & 0 \\
0 & -t \\
\hline
\end{array}\right),
$$

where $\tau$ is in a set of representatives for the relevant orbits of $N^{\prime}(F) \times$ $N^{\prime}(F)$. Then our expression can be written also

$$
\sum_{\tau} I\left(\tau, f^{\prime}\right)
$$

since $|\operatorname{det} \tau|=1$. In turn, this is equal to the right-hand side of (11) and the identity (11) is proved.

It would be more difficult to prove a spectral version of this identity where $K$ and $K^{\prime}$ are replaced by the discrete spectrum kernels. Dual to this formula, would be a functorial map from the automorphic cuspidal representations of $G^{\prime}$ to the automorphic representations of $G$. The image would consist of automorphic representations of $G$ which are distinguished with respect to $H$, that is, which admit a vector $\phi$ such that the integral is non-zero:

$$
\int_{H(F) \backslash H\left(F_{\mathrm{A}}\right)} \phi(h) d h
$$

is non-zero. Moreover, if $\pi^{\prime}$ corresponds to $\pi$, then, for almost all $v$, the representation $\pi_{v}$ and $\pi_{v}^{\prime}$ are unramified and $\pi_{v}$ is the unramified component of the induced representation $\sigma_{v}$ (see (10)) determined by $\pi_{v}^{\prime}$. In fact, the image consists of residues of Eisenstein series and it is more convenient to study directly the above integral as in [J-R].

Our motivation for studying this question is that we expect similar results for any symmetric space. For instance in [J-Y], we begun to study the case where $S$ is the space of Hermitian matrices with respect to a quadratic extension $E$ of $F$ : in this case, $G=\mathrm{GL}(n, E)$, the character $\theta$ is generic and $G^{\prime}=\mathrm{GL}(n, F)$. The correspondence $\pi^{\prime} \mapsto \pi$ is the quadratic base change. The case at hand is much simpler, in fact elementary, and should serve as a model for the general case.
2. Relevant orbits in $G^{\prime}$. We first recall the classification of relevant orbits for the action of $N^{\prime} \times N^{\prime}$ on $G^{\prime}$ (see [G]). Let $\Delta^{\prime}$ be the set of roots which are simple with respect to $A^{\prime} N^{\prime}$. Let $W^{\prime}$ be the Weyl group of $A^{\prime}$. We identify $W^{\prime}$ to the group of permutation matrices. For each root $\alpha$, we denote by $X_{\alpha}$ the corresponding root vector. Thus if $\alpha(a)=a_{i} / a_{j}, X_{\alpha}$ is the matrix with 1 in the $i$ th row and $j$ column entry and 0 in all other entries.

Suppose $w a$ is relevant. Let $\Theta^{\prime}$ be the set of simple roots $\alpha$ such that $w \alpha<0$ and let $\Theta^{\prime \prime}$ be the set of positive roots of the form $-w(\alpha)$ with $\alpha \in \Theta^{\prime}$. Then $\Theta^{\prime \prime}$ is contained in $\Delta^{\prime}$. Indeed, if $\beta=-w(\alpha)$ is not simple, we consider a pair ( $n_{1}, n_{2}$ ) with

$$
n_{1}=1+y X_{\beta}, \quad n_{2}=1+x X_{\alpha} .
$$

The relation

$$
{ }^{t} n_{1} w a n_{2}=w a
$$

is equivalent to

$$
y+\alpha(a) x=0 .
$$

Choose $x$ such that $\psi(x) \neq 0$ and then determine $y$ by the above equation. The pair ( $n_{1}, n_{2}$ ) is then in the fixator of $w a$ and yet $\theta^{\prime}\left(n_{1}\right) \theta^{\prime}\left(n_{2}\right)=\psi(x) \neq 1$, a contradiction.

Thus $\Theta^{\prime \prime}$ is contained in $\Delta^{\prime}$. Next, exchanging the roles of $w$ and $w^{-1}$ we see that $\Theta^{\prime \prime}$ is the set of simple roots $\alpha$ such that $w^{-1}(\alpha)<0$. We now appeal to a simple lemma that we will use again.

Lemma 1. Let $w \in W^{\prime}$ and $\Theta^{\prime}\left(\right.$ resp. $\left.\Theta^{\prime \prime}\right)$ the set of simple roots $\alpha$ such that $w \alpha<0$ (resp. $\left.w^{-1} \alpha<0\right)$. Suppose $w\left(\boldsymbol{\Theta}^{\prime}\right)=-\Theta^{\prime \prime}$. Then, in fact $\Theta^{\prime}=\Theta^{\prime \prime}$ and $w^{2}=1$. Furthermore, let $P^{\prime}=M^{\prime} U^{\prime}$ be the standard parabolic subgroup determined by $\Theta^{\prime}$. Then $w$ is in $M^{\prime}$ and is the longest element of $W \cap M^{\prime}$.

Here standard means that $P^{\prime}$ contains $A^{\prime} N^{\prime}$; the Levi-factor $M^{\prime}$ is the one containing $A^{\prime}$; thus $M^{\prime}$ is determined by the condition that the roots $\alpha$ in $\Theta^{\prime}$ be "contained" in $M^{\prime}$ (i.e. the root group $N_{\alpha}$ is contained in $M^{\prime}$ ). For the proof, we introduce also the parabolic subgroup $P^{\prime \prime}=M^{\prime \prime} U^{\prime \prime}$ determined by $\Theta^{\prime \prime}$. Clearly, $w M^{\prime} w^{-1}=M^{\prime \prime}$. Next we claim any root $\gamma$ in $U^{\prime}$ is transformed into a positive root in $U^{\prime \prime}$ by $w$. Indeed, $\beta=w \gamma$ cannot be in $M^{\prime \prime}$. Otherwise, applying $w^{-1}$ to $\beta$ we would find that $\gamma$ is in $M^{\prime}$. Now suppose $\beta$ is in $\bar{U}^{\prime \prime}$. Then

$$
\beta=-\sum_{\alpha \in \Delta} n_{\alpha} \alpha
$$

with $n_{\alpha} \geq 0$ for all $\alpha$ and $n_{\alpha}>0$ for at least one $\alpha \notin \Theta^{\prime \prime}$. On the other hand,

$$
\gamma=\sum_{\alpha \in \Delta} m_{\alpha} \alpha,
$$

with $m_{\alpha} \geq 0$ for all $\alpha$ and $m_{\alpha}>0$ for at least one $\alpha \notin \Theta^{\prime}$. Applying $w$ to this relation we get

$$
\beta=w \gamma=-\sum_{\alpha \in \boldsymbol{\Theta}^{\prime}} m_{\alpha}(-w \alpha)+\sum_{\alpha \notin \Theta^{\prime}} m_{\alpha} w \alpha .
$$

Since $\alpha \mapsto-w \alpha$ is a bijection of $\Theta^{\prime}$ onto $\Theta^{\prime \prime}$, we get that

$$
\sum_{\alpha \notin \Theta^{\prime}} m_{\alpha} w \alpha=\sum_{\alpha \in \Theta^{\prime \prime}} n_{\alpha}^{\prime} \alpha-\sum_{\alpha \notin \Theta^{\prime \prime}} n_{\alpha} \alpha,
$$

for suitable $n_{\alpha}^{\prime}$. The left-hand side is a non-zero sum of positive roots, hence a linear combination of simple roots with positive coefficients, one of which is strictly positive. However, this is not the case for the right-hand side and we get a contradiction. We conclude that $w \gamma$ is in $U^{\prime \prime}$ for $\gamma$ in $U^{\prime}$. Hence $w$ transforms $P^{\prime}$ into $P^{\prime \prime}$. Since both are standard we must have $P^{\prime}=P^{\prime \prime}$ and $\Theta^{\prime}=\Theta^{\prime \prime}$. Thus $w$ is in $M^{\prime}$ and $w \boldsymbol{\Theta}^{\prime}=-\Theta^{\prime}$. In other words, $w$ is the longest element of $W \cap M^{\prime}$. This concludes the proof of the lemma.

The lemma being proved, we apply it to our relevant element wa. Thus $w$ is the longest element in $W \cap M^{\prime}$, where $P^{\prime}=M^{\prime} U^{\prime}$ is determined by $\Theta^{\prime}$. It remains to see that $a$ is in the center of $M^{\prime}$. Let $\alpha$ be a root in $\Theta^{\prime}$ and set $\beta=-w \alpha$. Consider elements ( $n_{1}, n_{2}$ ) with

$$
n_{1}=1+y X_{\beta}, \quad n_{2}=1+x X_{\alpha} .
$$

The relation

$$
{ }^{t_{n_{1}} w a n_{2}}=w a
$$

is again equivalent to

$$
y+\alpha(a) x=0
$$

but now

$$
\theta^{\prime}\left(n_{1} n_{2}\right)=\psi(x+y) .
$$

We see that

$$
y+\alpha(a) x=0,
$$

must imply $\psi(x+y)=1$. This means that $\alpha(a)=1$. Thus $a$ is indeed in the center of $M^{\prime}$.

In conclusion, we have proved the following result:

Proposition 1. Let $M^{\prime}$ be a standard parabolic subgroup of $G^{\prime}, w$ the longest element in $W \cap M^{\prime}$ and $a$ in the center of $M^{\prime}$. Then $w a$ is relevant. All relevant elements have this form.
3. Relevant orbits in $S$. We first describe all orbits of $N$ on $S$ :

Lemma 2 ([S]). Every $s \in S$ can be written in the form

$$
s={ }^{t} n w a n
$$

with $n \in N, a \in A, w \in W, w^{2}=1$ and $w a w=-a$.
Indeed, every element can be written in the form

$$
s={ }^{t} n_{1} w a n_{2}
$$

with $n_{i} \in N$. Since ${ }^{t} s=-s$ and $w$ and $a$ are uniquely determined, we have ${ }^{t}(w a)=-w a$. Since ${ }^{t} w=w^{-1}$ we get the condition of the lemma for $w a$. Next, we let $N^{+}$(resp. $N^{-}$) be the group generated by the root groups $N_{\alpha}$ with $\alpha>0$ and $w \alpha>0$ (resp. $w \alpha<0$ ). We have $N=N^{+} N^{-}=N^{-} N^{+}$. Let us write

$$
n_{1}=n_{1}^{-} n_{1}^{+}, \quad n_{2}=n_{2}^{+} n_{2}^{-} .
$$

Replacing $s$ by ${ }^{t}\left(n_{2}^{-}\right)^{-1} s\left(n_{2}^{-}\right)^{-1}$, we may assume $n_{2} \in N^{+}$. We have then

$$
s=-{ }^{t} s={ }^{t} n_{2} w a n_{1}^{-} n_{1}^{+}
$$

and so $n_{1}^{+}=n_{2}$. Replacing $s$ by an element of the same orbit, we see we may assume $n_{2}=1, n_{1}^{+}=1$. In other words:

$$
s={ }^{t} n_{1} w a
$$

with $n_{1} \in N^{-}$. Writing once more that $s$ is skew symmetric we find:

$$
{ }^{t} n_{1}=w a n_{1} a^{-1} w^{-1} .
$$

For $n \in N^{-}$, let us write

$$
\xi(n)=w a^{-1}\left({ }^{t} n^{-1}\right) a w^{-1} .
$$

Since $w^{2}=1, \xi(n)$ is again in $N^{-}$and $\xi^{2}=1$. Thus $\xi$ is an automorphism of $N^{-}$of order 2. Now the above condition reads $\xi\left(n_{1}\right)=n_{1}^{-1}$. Since $N$ is nilpotent there is $n \in N^{-}$such that

$$
n_{1}=\xi(n)^{-1} n .
$$

This condition reads

$$
s={ }^{t} n w a n
$$

and we are done.
We first consider the case of a generic character. Thus we temporarily define $\theta$ by formula (1) with $m$ replaced by $2 m$. Then:

Proposition 2. Suppose $\theta$ is a generic character of $N$. Then there are no relevant orbits for $\theta$ in $S$.

We first observe the following: if $\alpha$ is a simple root and $w \alpha$ is negative, then $w \alpha=-\beta$ with $\beta \in \Delta$. Indeed, suppose $\beta$ is not a simple root. We choose root vectors $X_{\gamma}$ in the usual way but agree that $X_{\alpha+\beta}=0$ if $\alpha+\beta$ is not a root. Define

$$
\begin{equation*}
n=1+x X_{\alpha}+y X_{\beta}+z X_{\alpha+\beta} . \tag{12}
\end{equation*}
$$

Then

$$
\begin{aligned}
{ }^{t} n w a n a^{-1} w^{-1}= & 1+(x+y \beta(a)) X_{-\alpha}+(y+x \alpha(a)) X_{-\beta} \\
& +(z(1+\alpha(a) \beta(a))+u) X_{-\alpha-\beta}
\end{aligned}
$$

where $u$ depends only on $(x, y)$ but not on $z$. We have

$$
\theta(n)=\psi(x) .
$$

On the other hand,

$$
\beta(a)=(w \alpha(a))^{-1}=\alpha\left(w a w^{-1}\right)^{-1}=\alpha(-a)^{-1}=\alpha(a)^{-1} .
$$

Thus, if

$$
\psi(x) \neq 1, \quad y=-\alpha(a) x, \quad z=-\frac{u}{2}
$$

then $n$ is in the fixator of $w a$ and yet $\theta(n) \neq 1$, a contradiction. Thus $\beta$ is in $\Delta$. Let $\Theta$ be the set of simple roots $\alpha$ such that $w(\alpha)<0$. Then $w(\boldsymbol{\Theta})=-\Theta^{\prime}$, with $\Theta^{\prime}$ contained in $\Delta$. Since $w^{2}=1$, we have $\Theta^{\prime} \subseteq \Theta$ and thus $\Theta^{\prime}=\Theta$. Let $P=M U$ be the parabolic subgroup determined by $\Theta$. Then, by Lemma 1, $w$ is the longest element in $W \cap M$.
Finally, we consider again a root $\alpha$ in $\Theta$ and the root $\beta=-w \alpha$. Consider $n$ as in (12), then

$$
\theta(n)=\psi(x+y) .
$$

Thus $\psi(x+y)=1$ if $y=-x \alpha(a)$; this implies $\alpha(a)=1$.
We now derive a contradiction. It will be convenient to identify $W$ to the group or permutations of the set $[1,2 m]$; for each $i$ we will denote by $\alpha_{i}$ the simple root $a \mapsto a_{i} / a_{i+1}$. Since $w$ is the longest element of $W \cap M$, there is an index $i$ such that $w i=i$ or $w i=i+1$. In the first case, the relation $w a=-a$ implies $a_{i}=-a_{i}$ or $a_{i}=0$, a contradiction. In the second case, we get $a_{i}=-a_{i+1}$, that is, $\alpha_{i}(a)=-1$. However, we also have $w \alpha_{i}=-\alpha_{i}$ so $\alpha_{i}$ is in $\Theta$; then $\alpha_{i}(a)=1$, a contradiction. Thus there is no relevant orbit in this case. An essentially equivalent result is the following:

Proposition 3. If $\theta$ is a generic character of $N$ then there is no non-zero distribution on $G$ which is invariant on the left under $H$ and transforms on the right under $\theta$.

We sketch a proof. Any distribution on $G$ invariant under $H$ may be viewed as a distribution on $S$. Thus we have to prove there is no distribution $\mu$ on $S$ such that

$$
\int f\left(t^{t} n s n\right) d \mu(s)=\theta(n) \int f(s) d \mu(s) .
$$

For each $w$ in $W$ with $w^{2}=1$, let $S_{w}$ be the set of matrices of the form ${ }^{t} n w a n$ with waw $=-a$. We can write $S$ as a finite union of an increasing sequence of open subsets $X_{i}$ such that each difference $X_{i+1}-X_{i}$ is one of the sets $S_{w}$. We prove by induction on $i$ that there is no non-zero distribution on $X_{i}$ which transforms under $\theta$. Assuming our assertion proved for $i$, we prove it for $i+1$. Consider the space $V$ of distributions on $X_{i+1}$ which transform under $\theta$. The restriction of such a distribution to $X_{i}$ is zero by assumption. Thus, we may view $V$ as the space of distributions on the manifold $S_{w}$ which transform under $\theta$. Let $T$ be the set of $a$ in $A$ such that $w a w=-a$. Then $T$ is a manifold and there is a projection map

$$
p: S_{w} \rightarrow T
$$

defined by:

$$
p\left({ }^{t} n w a n\right)=a .
$$

We use it to regard the space of distributions on $S_{w}$ as a module over the space of smooth functions on $T$. In particular, $V$ is a submodule. By the localisation principle of Gel'fand-Kazhdan (see [B]), the elements of $V$ which are supported by a fiber form a total subspace in $V$, that is, their linear combinations are dense in $V$ for the weak topology. However, a fiber may be identified to the quotient of $N$ by the fixator $N_{s}$ of a point $s \in S$. A distribution supported by the fiber may be viewed as a distribution on this quotient. Since $\theta$ is non-trivial on $N_{s}$, a distribution on $N_{s} \backslash N$ which transforms under $\theta$ is necessarily 0 and we are done.

We note that, in turn, this implies that a generic representation of $G$ does not have a symplectic model, that is, does not imbed into the space of functions on $H \backslash G$ ([H-R]).

We now turn to the case of the degenerate character $\theta$ determined by formula (5).

Proposition 4. Among the elements of the system of representatives of Lemma 2, the ones relevant for $\theta$ are those of the form

$$
s=w_{0}\left(\begin{array}{cc}
w^{\prime} a^{\prime} & 0 \\
0 & -w^{\prime} a^{\prime}
\end{array}\right)
$$

where $w^{\prime}$ is in $W^{\prime}, a^{\prime}$ in $A^{\prime}$ and $w^{\prime} a^{\prime}$ is relevant in $G^{\prime}$ for $\theta^{\prime}$.
First, we check that such an element is indeed relevant. Suppose that

$$
n=\left(\begin{array}{cc}
n_{1} & u \\
0 & n_{2}
\end{array}\right)
$$

fixes $s$. Then $\left(n_{1}, n_{2}\right)$ fixes $w^{\prime} a^{\prime}$. Hence

$$
\theta(n)=\theta^{\prime}\left(n_{1}\right) \theta^{\prime}\left(n_{2}\right)=1
$$

So $s$ is relevant.
Conversely, let us show that every relevant element $w a$ has this form. We first observe the following: if $\alpha$ is a simple root not equal to $\alpha_{m}$ and $w \alpha$ is negative, then $w \alpha=-\beta$ with $\beta \in \Delta-\left\{\alpha_{m}\right\}$. Indeed, since $\theta$ is trivial on $N_{\alpha_{m}}$ and non-trivial on any $N_{\alpha}$ with $\alpha \neq \alpha_{m}$, the proof is the same as before. Moreover, just as before, $\alpha(a)=1$ for such a root. Let $\Theta_{1}$ be the set of simple roots $\alpha \neq \alpha_{m}$ such that $w \alpha<0$. Then $w \Theta_{1}=-\Theta^{\prime}$ where $\Theta^{\prime}$ is a suitable subset of $\Delta-\left\{\alpha_{m}\right\}$. Since $w^{2}=1$, we have $\Theta^{\prime} \subseteq \Theta_{1}$ and thus $\Theta^{\prime}=\Theta_{1}$ or

$$
w \Theta_{1}=-\Theta_{1}
$$

Now suppose that $w \alpha_{m}>0$. Then $\Theta_{1}$ is the set of simple roots $\alpha$ such that $w \alpha<0$. Let $P_{1}=M_{1} U_{1}$ be the parabolic subgroup attached to $\Theta_{1}$. Then by Lemma $1 w$ is the longest element of $W \cap M_{1}$. As before, this gives a contradiction: either there is an $i$ such that $w i=i$ or there is a root $\alpha$ in $\Theta_{1}$ such that $w \alpha=-\alpha$. In the first case, we get $a_{i}=0$; in the second case, we get $\alpha(a)=-1$. In either case, we get a contradiction.

Thus $w \alpha_{m}<0$. Let $\Theta$ be the set $\Delta-\left\{\alpha_{m}\right\}$ and $\Theta_{2}$ be the set $\Delta-\Theta_{1}-\left\{\alpha_{m}\right\}$. Let $P=M U$ be the parabolic subgroup attached to $\Theta$. Suppose $w \alpha_{m}$ is in $M$. Then:

$$
w \alpha_{m}=-\sum_{\Theta_{1}} n_{\alpha} \alpha-\sum_{\Theta_{2}} n_{\alpha} \alpha
$$

with $n_{\alpha} \geq 0$. Applying $w$ to this formula, we get:

$$
\alpha_{m}+\sum_{\Theta_{2}} n_{\alpha} w \alpha=\sum_{\Theta_{1}} n_{\alpha}(-w \alpha)
$$

Since $\alpha \mapsto-w \alpha$ is a bijection of $\Theta_{1}$ onto itself, and $w \alpha>0$ for $\alpha \in \Theta_{2}$, this implies $\alpha_{m} \in \Theta_{1}$, a contradiction. We conclude $w \alpha_{m}$ is in $\bar{U}$.

Next, let $\alpha_{i}$ be a root in $\Theta_{2}$. Thus $w \alpha_{i}>0$. We are going to show that $w \alpha_{i}$ is in $M$. Suppose it is in $U$. Then if $i+1 \leq m$, we have $w i \leq m$ and $w(i+1)>m$. If $m<i$, then $w i \leq m, w(i+1)>$ $m$. Let us show that the first case will lead to a contradiction. The argument would be similar for the second case. We have found the existence of an integer $j$ such that $j<m$ and $w j \leq m$; let us assume $j$ is the least such integer. Then $j=1$. Otherwise, we would have $w(j-1)>m$ and the root $\alpha_{j-1}$ would be changed by $w$ into a negative root in $\bar{U}$. However, by definition of $\Theta_{1}, \alpha_{j-1}$ would be in $\Theta_{1}$ and $w\left(\alpha_{j-1}\right)$ would be in $M_{1} \subseteq M$, a contradiction. We thus have $k=w 1 \leq m$. We now claim that $w$ transforms the interval [ $1, k]$ into itself and reverses its order, that is, for $1 \leq i \leq k$, we have $i+w i=k+1$. We have just proved this for $i=1$. Assume it is true for $1,2, \ldots, l$ with $2 l \leq k$; if $2 l=k$ or $2 l+1=k$ we are done. So we assume this is not the case and we prove our assertion for $l+1$. We have in particular, $w l=k-l+1$. Consider $w(k-l)$. Then $w(k-l)>l=w(k-l+1)$. Thus $w \alpha_{k-l}$ is a negative root; it follows that $\alpha_{k-l}$ is in $\Theta_{1}$ and $w \alpha_{k-l}$ is the opposite of a simple root. This implies that $w(k-l)=l+1$. Thus we obtain our assertion by induction on $l$. Now if $k$ is odd, we get $w((k+1) / 2)=(k+1) / 2$ and $a_{(k+1) / 2}=0$, a contradiction. If $k$ is even then $w \alpha_{k / 2}=-\alpha_{k / 2}$ and $\alpha_{k / 2}$ is in $\Theta_{1}$ with $\alpha_{k / 2}(a)=-1$. Again, this is a contradiction. We conclude that $w \alpha_{i}$ is in $M$.

At this point, we have

$$
w \Theta_{1}=-\Theta_{1}, \quad w \Theta_{2}>0, \quad w\left(\Theta_{2}\right) \subseteq M, \quad w\left(\alpha_{m}\right) \in \bar{U}
$$

Now consider the element $w_{1}=w_{0} w$, where $w_{0}$ is defined in (7). Since $w_{0}$ takes $\Theta$ to itself and $U$ to $\bar{U}$, we have

$$
\begin{aligned}
& w_{1} \Theta_{1}=-\Theta^{\prime}, \quad \text { with } \Theta^{\prime} \subseteq \Theta \\
& w_{1} \Theta_{2}>0, \quad w_{1}\left(\Theta_{2}\right) \subseteq M
\end{aligned}
$$

On the other hand,

$$
w_{1} \alpha_{m} \in U
$$

Let $P^{\prime}=M^{\prime} U^{\prime}$ be the parabolic subgroup determined by $\Theta^{\prime}$. Recall $P_{1}$ is the one determined by $\Theta_{1}$. We have $w_{1} M_{1} w_{1}^{-1}=M^{\prime}$. Next, if $\beta$ is in $U_{1}$, then

$$
\beta=\sum_{\Delta} n_{\alpha} \alpha
$$

with $n_{\alpha} \geq 0$ for all $\alpha$ and $n_{\alpha}>0$ for $\alpha=\alpha_{m}$ or some $\alpha \in \Theta_{2}$. This implies that $\gamma=w_{1} \beta$ is positive. Indeed:

$$
\gamma+\sum_{\Theta_{1}} n_{\alpha} w_{1}(-\alpha)=\sum_{\Theta_{2}} n_{\alpha} w_{1} \alpha+n_{\alpha_{m}} w_{1} \alpha_{m} .
$$

The right-hand side is a sum of positive roots. Moreover $\alpha \mapsto w_{1}(-\alpha)$ is a bijection of $\Theta_{1}$ onto $\Theta^{\prime}$. Thus if $\gamma$ is negative it must be in $M^{\prime}$. Applying $w_{1}^{-1}$ to $\gamma$, we would find $\beta$ is in $M_{1}$, a contradiction. Thus $\gamma$ is positive and in fact in $U^{\prime}$. We conclude that $w_{1} P_{1} w_{1}^{-1}$ is contained in $P^{\prime}$, hence equal to it. Since $P_{1}$ and $P^{\prime}$ are standard parabolic subgroups, it follows that $P_{1}=P^{\prime}, \Theta_{1}=\Theta^{\prime}$ and $w_{1}=w_{0} w$ transforms $\Theta_{1}$ into $-\Theta_{1}$. Thus $w_{1}$ is in fact the longest element of $W \cap M_{1}$. We have also $w_{0} \Theta_{1}=\Theta_{1}$. This means that there is a Levisubgroup $M^{\prime}$ of $G^{\prime}=\mathrm{GL}(m)$ such that $M_{1}$ is the group of matrices of the form

$$
\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)
$$

with $m_{i} \in M^{\prime}$ and

$$
w_{1}=\left(\begin{array}{cc}
w^{\prime} & 0 \\
0 & w^{\prime}
\end{array}\right)
$$

where $w^{\prime}$ is the longest element of $W^{\prime} \cap M^{\prime}$. Finally, the conditions $\alpha(a)=1$ for $\alpha$ in $\Theta_{1}$ and $w(a)=-a$ mean that $a$ has the form:

$$
\left(\begin{array}{cc}
a^{\prime} & 0 \\
0 & -a^{\prime}
\end{array}\right)
$$

where $a^{\prime}$ is in the center of $M^{\prime}$. So

$$
w a=w_{0}\left(\begin{array}{cc}
w^{\prime} a^{\prime} & 0 \\
0 & -w^{\prime} a^{\prime}
\end{array}\right)
$$

and the proposition is completely proved.
4. Matching orbital integrals. Let $\Phi$ be a smooth function of compact support on $S$. We will set

$$
f^{\prime}(g)=\int \Phi\left[w_{0}\left(\begin{array}{cc}
g & v  \tag{13}\\
0 & -t g
\end{array}\right)\right] d v|\operatorname{det} g|^{(1-m) / 2}
$$

Here $v$ is integrated over the vector space $\mathrm{Sk}(m \times m)$ of skew $m \times m$ matrices. The Haar measure is self dual when we identify that vector space to its dual, via

$$
\left(v, v^{\prime}\right) \mapsto \frac{1}{2} \operatorname{Tr}\left(v v^{\prime}\right)
$$

We will write $\Phi \mapsto f^{\prime}$. Clearly, $f^{\prime}$ is a smooth function of compact support on $G^{\prime}$. We claim that $\Phi$ and $f^{\prime}$ have matching orbital integrals:

Proposition 5. Let $g$ be a relevant element in $G^{\prime}$ and set

$$
s=w_{0}\left(\begin{array}{cc}
g & 0  \tag{14}\\
0 & -t
\end{array}\right)
$$

Then

$$
I(s, \Phi)=J\left(g, f^{\prime}\right)|\operatorname{det} g|^{(m-1) / 2}
$$

The proof of the proposition will indicate the correct choice of the Haar measures. Consider the orbital integral

$$
I(s, \Phi)=\int \Phi\left({ }^{t} n s n\right) \theta(n) d n .
$$

Let us write:

$$
n=\left(\begin{array}{ll}
1 & u  \tag{15}\\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
n_{1} & 0 \\
0 & n_{2}
\end{array}\right)
$$

Then

$$
{ }^{t} n s n=w_{0}\left(\begin{array}{cc}
{ }^{t} n_{2} g n_{1} & { }^{t} n_{2} A_{g}(u) n_{2}  \tag{16}\\
0 & -{ }^{t} n_{1} t g n_{2}
\end{array}\right)
$$

where we have set:

$$
\begin{equation*}
A_{g}(u)=g u-{ }^{t} u^{t} g \tag{17}
\end{equation*}
$$

Note that the image of $A_{g}$ is the space $\operatorname{Sk}(m \times m)$. We see that $n$ is in the fixator $N_{s}$ of $s$ if and only if $u$ is in the kernel of $A_{g}$ and the pair $\left(n_{1}, n_{2}\right)$ in the fixator $N_{g}^{\prime}$ of $g$ in $N^{\prime} \times N^{\prime}$. Moreover, $N_{s} \backslash N$ is isomorphic to the product

$$
\left(N_{g}^{\prime} \backslash N^{\prime} \times N^{\prime}\right) \times\left(\operatorname{ker} A_{g} \backslash M(m \times m)\right)
$$

Let us choose a measure on the quotient $N_{g}^{\prime} \backslash N^{\prime} \times N^{\prime}$ and use $A_{g}$ to transport the measure on $\mathrm{Sk}(m \times m)$ to

$$
\operatorname{ker} A_{g} \backslash M(m \times m)
$$

We obtain then a measure on $N_{S} \backslash N$. For that measure, we get:

$$
=\iint \Phi\left[w_{0}\left(\begin{array}{cc}
{ }^{t} n_{2} g n_{1} & { }^{t} n_{2} v n_{2}  \tag{18}\\
0 & -{ }^{t} n_{1}{ }^{t} g n_{2}
\end{array}\right)\right] d v \theta^{\prime}\left(n_{1} n_{2}\right) d n_{1} d n_{2} .
$$

Here $v$ is integrated over $\operatorname{Sk}(m \times m)$. After changing $v$ to ${ }^{t} n_{2} v n_{2}$, we obtain

$$
I(s, \Phi)=\iint \Phi\left[w_{0}\left(\begin{array}{cc}
{ }^{t} n_{2} g n_{1} & v \\
0 & -{ }^{t} n_{1}{ }^{t} g n_{2}
\end{array}\right)\right] d v \theta^{\prime}\left(n_{1} n_{2}\right) d n_{1} d n_{2}
$$

or

$$
\begin{aligned}
I(s, \Phi) & =\int f^{\prime}\left({ }^{t} n_{1} g n_{2}\right) \theta^{\prime}\left(n_{1} n_{2}\right) d n_{1} d n_{2}|\operatorname{det} g|^{(m-1) / 2} \\
& =J\left(g, f^{\prime}\right)|\operatorname{det} g|^{(m-1) / 2}
\end{aligned}
$$

Thus, we have proved the proposition.
Now we discuss orbital integrals for Hecke functions. We assume $F$ is non-Archimedean of odd residual characteristic. Let $R$ be the ring of integers of $F$. We choose a character $\psi$ with conductor $R$ and set $K=\operatorname{GL}(2 m, R), K^{\prime}=\operatorname{GL}(m, R)$. Suppose that $f$ is a Hecke function, that is, a function of compact support, bi-invariant under $K=\operatorname{GL}\left(2 m, R_{F}\right)$. As in the introduction, define:

$$
\Phi_{f}(t g \varepsilon g)=\int f(h \varepsilon g) d h
$$

where $H$ is the fixator of $\varepsilon$ in $K$. It is easy to see that $K \cap S$ is one orbit of $K$. Because $f$ is $K$-invariant on the left, we could replace $\varepsilon$ by any other element of $K \cap S$ in this definition and yet arrive at the same function $\Phi_{f}$. On the other hand, the invariance of $f$ under $K$ on the right implies that $\Phi_{f}$ is invariant under $K$. For the function $f^{\prime}$ corresponding to $\Phi_{f}$, this implies that $f^{\prime}$ is bi- $K^{\prime}$-invariant.

We claim that the map $f \mapsto f^{\prime}$ is an homomorphism of the Hecke algebras. First suppose that $f$ is the characteristic function of $K$. Then $\Phi_{f}(s)=0$ unless $s$ is in the orbit of $\varepsilon$ under $K$, that is, is in $K \cap S$. For such an $s$, we have $\Phi_{f}(s)=1$. Thus $\Phi_{f}$ is the characteristic function of $K \cap S$. This implies that the function $f^{\prime}$ is the characteristic function of $K^{\prime}$.

Now let $\pi^{\prime}$ be an unramified irreducible representation of $G_{m}$. Let $V^{\prime}$ be its space, $\omega^{\prime}$ the corresponding spherical function. Denote by $f^{\prime} \mapsto \hat{f}^{\prime}\left(\pi^{\prime}\right)$ the corresponding character of the Hecke algebra:

$$
\begin{equation*}
\int_{G^{\prime}} f^{\prime}\left(g^{\prime}\right) \omega^{\prime}\left(g^{\prime}\right) d g^{\prime}=\hat{f}^{\prime}\left(\pi^{\prime}\right) \tag{19}
\end{equation*}
$$

Recall that the representation $\pi^{\prime}$ is contragredient to the representation

$$
g \mapsto \pi^{\prime}\left({ }^{t} g^{-1}\right)
$$

In other words, there is a linear form $\beta \neq 0$ on the space $V^{\prime} \otimes V^{\prime}$ such that

$$
\beta\left(\pi^{\prime}(g) \otimes \pi^{\prime}\left({ }^{t} g^{-1}\right) v\right)=\beta(v)
$$

We choose a $K^{\prime}$-invariant vector $\phi_{0}^{\prime}$ in the representation such that

$$
\beta\left(\phi_{0}^{\prime} \otimes \phi_{0}^{\prime}\right)=1
$$

We use $\pi^{\prime}$ to construct a representation $\sigma$ of $G$ induced from the parabolic subgroup $P$ of type ( $m, m$ ). Its space is the space $V$ of smooth functions $\phi$ on $G$ with values in the space $V^{\prime} \otimes V^{\prime}$ such that

$$
\phi\left[\left(\begin{array}{cc}
g_{1} & x  \tag{20}\\
0 & g_{2}
\end{array}\right) g\right]=\left|\frac{\operatorname{deg} g_{1}}{\operatorname{det} g_{2}}\right|^{(m+1) / 2} \pi^{\prime}\left(g_{1}\right) \otimes \pi^{\prime}\left(g_{2}\right) \phi(g) .
$$

Let $\phi_{0}$ be the function in that space such that

$$
\phi_{0}(k)=\phi_{0}^{\prime}, \quad k \in K .
$$

In particular, $\phi_{0}$ is $K$-invariant. We let $\pi$ be the irreducible component of $\sigma$ containing the unit representation of $K$. Our aim is to prove the following result:

Proposition 6. With the above notations,

$$
\hat{f}(\pi)=\hat{f}^{\prime}\left(\pi^{\prime}\right) .
$$

In particular, the map $f \mapsto f^{\prime}$ is a morphism of the Hecke algebras.
Before proving the proposition, we remark it is the fundamental lemma for the case at hand: we could define $f^{\prime}$ by this property. Then the proposition states that the orbital integrals of $f$ and $f^{\prime}$ match:

$$
\begin{aligned}
& \int f(h g n) d h \theta(n) d n \\
& \quad=\left|\operatorname{det} g^{\prime}\right|^{(m-1) / 2} \iint f^{\prime}\left(n_{1} g^{\prime} n_{2}\right) \theta^{\prime}\left(n_{1}\right) \theta^{\prime}\left(n_{2}\right) d n_{1} d n_{2}
\end{aligned}
$$

where $g^{\prime}$ is relevant for $\theta^{\prime}$ in $G^{\prime}$ and $g$ is such that

$$
{ }^{t} g \varepsilon g=w_{0}\left(\begin{array}{cc}
g^{\prime} & 0 \\
0 & -t g^{\prime}
\end{array}\right) .
$$

As in $[\mathbf{H}-\mathbf{R}]$, we construct a linear form $\gamma$ on $V$ which is invariant under translation by $H$. The group $P \cap H$ is a parabolic subgroup in $H$. A Levi factor consists of all matrices of the form

$$
m=\left(\begin{array}{cc}
g & 0 \\
0 & { }^{t} g^{-1}
\end{array}\right) .
$$

The unipotent radical consists of all matrices of the form

$$
\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)
$$

where ${ }^{t} u=u$. The module of $P \cap H$ is given by:

$$
\delta_{P \cap H}(m)=|\operatorname{det} g|^{m+1} .
$$

Thus the function $g \mapsto \beta(\phi(g))$ satisfies

$$
\beta(\phi(p g))=\delta_{P \cap H}(p) \beta(\phi(g)),
$$

for $p \in P \cap H$. In particular, the linear form

$$
\begin{equation*}
\gamma(\phi)=\int_{K \cap H} \beta(\phi(k)) d k \tag{21}
\end{equation*}
$$

has the required invariance property:

$$
\gamma(\sigma(h) \phi)=\gamma(\phi), \quad h \in H
$$

Moreover

$$
\gamma\left(\phi_{0}\right)=1
$$

Now suppose $f$ is in the Hecke algebra $G$. Then we have:

$$
\int \phi_{0}(g x) f(x) d x=\phi_{0}(g) \hat{f}(\pi)
$$

Let us apply the linear form $\gamma$ to both sides. We obtain

$$
\begin{equation*}
\hat{f}(\pi)=\beta\left[\iint \phi_{0}(k x) f(x) d x d k\right] \tag{22}
\end{equation*}
$$

the integral over $G \times(K \cap H)$. After a change of variables, the integral on the right can be written

$$
\begin{equation*}
\hat{f}(\pi)=\beta\left[\iint \phi_{0}(x) f(k x) d x d k\right] \tag{23}
\end{equation*}
$$

Set

$$
x=\left(\begin{array}{cc}
g & 0 \\
0 & t \\
g^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & u \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & v \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
g^{\prime} & 0 \\
0 & 1
\end{array}\right) k_{1}
$$

where $u$ is symmetric, $v$ skew symmetric and $k_{1} \in K$. Then

$$
d x=d g d g^{\prime} d u d v d k_{1}\left|\operatorname{det} g^{\prime}\right|^{-m}
$$

Our integral becomes

$$
\begin{aligned}
& \int f\left[k\left(\begin{array}{ll}
g & 0 \\
0 & { }^{t} g^{-1}
\end{array}\right)\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
g^{\prime} & 0 \\
0 & 1
\end{array}\right)\right] \\
& \quad \cdot \beta\left[\pi^{\prime} \otimes \pi^{\prime}\left(\begin{array}{ll}
g^{\prime} & 0 \\
0 & 1
\end{array}\right) \phi_{0}\right]\left|\operatorname{det} g^{\prime}\right|^{(1-m) / 2}|\operatorname{det} g|^{m+1} d g d g^{\prime} d u d v d k
\end{aligned}
$$

We recognize the Haar measure $d h$ on $H$ and we get:

$$
\int f\left[h\left(\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
g^{\prime} & 0 \\
0 & 1
\end{array}\right)\right] \beta\left(\pi^{\prime}\left(g^{\prime}\right) \phi_{0}^{\prime} \otimes \phi_{0}^{\prime}\right)\left|\operatorname{det} g^{\prime}\right|^{(1-m) / 2} d h d g^{\prime} d v .
$$

Now

$$
\beta\left(\pi^{\prime}\left(g^{\prime}\right) \phi_{0}^{\prime} \otimes \phi_{0}^{\prime}\right)
$$

is the spherical function $\omega^{\prime}$ attached to $\pi^{\prime}$. In terms of $\Phi_{f}$ the previous integral can be written as

$$
\begin{gathered}
\int \Phi_{f}\left[\left(\begin{array}{cc}
g^{\prime} & 2 v \\
0 & -t g^{\prime}
\end{array}\right)\right] \omega^{\prime}\left(g^{\prime}\right)\left|\operatorname{det} g^{\prime}\right|^{(1-m) / 2} d v d g^{\prime} \\
=\int f^{\prime}\left(g^{\prime}\right) \omega^{\prime}\left(g^{\prime}\right) d g^{\prime}=\hat{f}^{\prime}\left(\pi^{\prime}\right)
\end{gathered}
$$

Thus, we find the right-hand side of $(22)$ is equal to $\hat{f}^{\prime}\left(\pi^{\prime}\right)$, as required.

## References

[B] J. Bernstein, P-invariant distributions on $\mathrm{GL}(N)$ and the classification of unitary representations of $G l(N)$ (non-archinedean case), in Lie Group Representations II, Springer Verlag Lecture Notes in Mathematics, vol. 1041, pp. 50-102.
[F] S. Friedberg, Poincaré series for GL(n): Fourier expansion, Kloosterman sums, and algebreo-geometric estimates, Math. Zeitschrift, 196 (1987), 165188.
[G] D. Goldfeld, Kloosterman zeta functions for $\mathrm{GL}(n, \mathbf{Z})$, Proc. Intern. Cong. Math., Berkeley, 1 (1986), 417-424.
[H-R] M. Heumos and S. Rallis, Symplectic-Whittaker models for GL( $n$ ), to appear in Pacific J. Math.
[H-L-R] G. Harder, R. R. Langlands and M. Rapoport, Algebraische Zyklen auf Hilbert-Blumenthal Flächen, J. für Math., 366, 53-120.
[J] H. Jacquet, On the nonvanishing of some L-functions, Proc. Indian Acad. Sci. (Math. Sci.), 97 (1987), 117-155.
[J-R] H. Jacquet and S. Rallis, Symplectic periods, to appear in J. Reine Angew. Math.
[J-Y] H. Jacquet and Y. Ye, Une remarque sur le changement de base quadratique, to appear in the Comptes Rendus de l'Académie des Sciences.
[K] A. A. Klyachko, Models for the complex representations of the groups $\mathrm{GL}(n, g)$, Math. USSR Sbornik, 48 (1984).
[M-W] C. Meglin and J. L. Waldspurger, Le spectre résiduel de GL(n), Ann. Scien. Ec. Norm. Sup., 22 (1989), 605-674.
[S] T. A. Springer, Some results on algebraic groups with involutions, in Algebraic Groups and Related Topics, Advanced Studies in Math., 6, Tokyo (1984), 323-343.
[W I] J. L. Waldspurger, Correspondence de Shimura, J. Math. Pure Appl., 59 (1980), 1-113.
[W II] __, Sur les coefficients de Fourier des formes modulaires de poids demientier, J. Math. Pure Appl., 60 (1981), 375-484.
[Y] Y. Ye, Kloosterman integrals and base change for GL(2), J. Reine Angew. Math., 400 (1989), 57-121.

Received February 11, 1991 and in revised form May 1, 1991. The first author was partially supported by NSF grant DMS-88-01759. The second author was partially supported by NSF grant DMS-87-04375.

Columbia University
New York, NY 10027

AND
The Ohio State University
Columbus, OH 43210

