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SURFACES IN THE 3-DIMENSIONAL
LORENTZ-MINKOWSKI SPACE SATISFYING
Ax=Ax+ B

Luis J. ALiAs, ANGEL FERRANDEZ AND PASCUAL Lucas

In this paper we locally classify the surfaces M? in the 3-dimen-
sional Lorentz-Minkowski space 1> verifying the equation Ax =
Ax + B, where A is an endomorphism of L> and B is a constant
vector.

We obtain that classification by proving that AM? has constant
mean curvature and in a second step we deduce M? is isoparametric.

0. Introduction. In [FL90] the last two authors obtain a classifica-
tion of surfaces M? in the 3-dimensional Lorentz-Minkowski space
satisfying the condition AH = AH , for a real constant A, where H is
the mean curvature vector field. That equation is nothing but a system
of partial differential equations, so that the problems quoted in [FL90]
can be framed in a more general situation: classify semi-Riemannian
submanifolds by means of some characteristic differential equations.
In this line, the technique of finite type submanifolds, created and
developed by B. Y. Chen, has been shown as a fruitful tool to inquire
into not only the intrinsic configuration of the submanifold, but also
the extrinsic one, because the Laplacian of the isometric immersion is
essentially the mean curvature vector field of the submanifold.

Following Chen’s idea, Garay [Gar88] has obtained a characteri-
zation of connected, complete surfaces of revolution in E3 whose
component functions in E3 are eigenfunctions of its Laplacian with
possibly distinct eigenvalues. In a second step, in [Gar90], Garay
found that the only Euclidean hypersurfaces whose coordinate func-
tions are eigenfunctions for its Laplacian are open pieces of a minimal
hypersurface, a hypersphere or a generalized circular cylinder.

More recently, in [DPV90], Dillen-Pas-Verstraelen pointed out that
Garay’s condition is not coordinate invariant as a circular cylinder
in E3 shows. Then they study and classify the surfaces in E3 which
satisfy Ax = Ax + B, where A is the Laplacian on the surface, x
represents the isometric immersion in E3, 4 € E3*3 and B € R3.

It is well known that when the ambient space is the 3-dimensional
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Lorentz-Minkowski space L3, then the surface M? can be endowed
with a Riemannian metric (spacelike surface) or a Lorentzian metric
(Lorentzian surface) and therefore, as we pointed out in [FL90], a
richer classification is hoped. So, the following geometric question
seems to be coming up in a natural way:

“Which are the surfaces in L3 satisfying the condition
Ax = Ax + B, where A is an endomorphism of 13 and
B is a constant vector?”

To solve this question we follow the same way of reasoning as
in [FL90], which is quite different than that used by Dillen-Pas-
Verstraelen in [DPV90]. We would like to remark that our proof also
works in the Riemannian case, so that the Theorem in [DPV90] can
be obtained as a consequence of our main result.

1. Some examples. Let f: L3 — R be a real function defined by
fx,y,2)==61x*+y* + 6,27,
where J; and J, belong to the set {0, 1} and they do not vanish
simultaneously. Taking r > 0 and ¢ = %1, the set f~!(er?) is a
surface in L3 provided that (J;, 65, ¢&) # (0, 1, —1).
A straightforward computation shows that the unit normal vector

field is writtenas N = (1/r)(d1x, y, 6,z) and the principal curvatures
are

pr=—01/r and py=-d/r.
Then the mean curvature is given by
a=(&/2)(ur + H2) = (—&/2r)(d1 + 62)

and by using the well-known formula Ax = —2H = —2aN we obtain

Ax = Ax, where
0 0 0
A=M(O 1 0),

2
r 0 0 &

The adjoint table collects all the above possibilities.
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TABLE 1
Equation Surface A
0 0 0
yVizt=r Lx S'(r) 0o 1”4 0
0o o 1/
-1* 0 0
-x*+yt=-r* | H'(nxR 0 -1 o
0 0 0
1yr 0 o0
2 2 1 2
X"ty =r S(r) xR 0 1yr* o
0 0 0
-2/ 0 0
R HA(r) 0o -2/ o0
0 —2/r2
2/ 0 0
JVC JIVC R S2(r) 0 2//4 0
0 0 2/7

2. Setup. Let M? be a surface in L3 with index s=0, 1. Through-
out this paper we will denote by o, S, H, V and V the second fun-
damental form, the shape operator, the mean curvature vector field,
the Levi-Civita connection on M? and the usual flat connection on
L3, respectively. Let N be a unit vector field normal to M? and let
a be the mean curvature with respect to N, ie., H =aN.

Let x: M? — L3 be an isometric immersion satisfying the equation

(2.1) Ax = Ax + B,

where A4 is an endomorphism of L3 and’ B is a constant vector in
3. If we take a covariant derivative in (2.1) and use the well-known
equation Ax = —2H , by applying the Weingarten formula we have

(2.2) AX = 208X - 2X(a)N,

for any vector field X tangent to M2. From here and the self-
adjointness of S one easily gets

(2.3) (AX,Y) = (X, AY),

for any tangent vector fields X and Y.
The covariant derivative in (2.3) yields

(2.4) (Ao(X, Z),Y) - (4o(Y, Z), X)
=(a(X, Z), AY) — (a(Y, Z), AX).
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Now, by applying the Laplacian on both sides of (2.1) and taking
into account the formula for AH obtained in [FL90], we have

(2.5) AH = 28(Va) + 2eaVa + {Aa + ea|S|*}N,

where Va stands for the gradient of @ and ¢ = (N, N).

As for the structure equations we would like to set the notation
that will be used later on. Let {E;, E;, E3} be a local orthonormal
frame and let {w!, ?, w3} and {w!}; ; be the dual frame and the
connection forms, respectively, given by

o'(X)=(X,E), ol(X)=(VxE;, E)).

Then we have
3 3
L ) J J_ _ J k
do' ==Y g e, dol=-> go,Aof.
j=1 k=1

3. The characterization theorem. All exhibited examples in §1 have
constant mean curvature. It seems reasonable to ask for surfaces in
I3 satisfying (2.1) having non constant mean curvature. The answer
is negative as the following proposition shows.

PROPOSITION 3.1. Let x: M} — L3 be an isometric immersion sat-
isfying Ax = Ax + B. Then M? has constant mean curvature.

Proof. Let us start with the open set % = {p € M? : Va?(p) # 0}.
We are going to show that % is empty. Otherwise, we have
o(X,Y)= e(S—Xa’——QH s
for any tangent vector fields on 7% . Then from (2.5) we obtain

(3.6) (Ado(X,Y), Z) = 2(—SXa’—Y>(£SZ(a) +aZ(a)).

Now, by applying (2.2), (2.4) and (3.6) we get
(3.7) TX(a)SY =TY(a)SX,
where T is the self-adjoint operator given by 77X = 2aX + &S X .

Case 1. T(Va) # 0 on % . Then there exists a tangent vector
field X such that 7X(a) # 0, which implies by using (3.7) that S
has rank one on % . Thus we can choose a local orthonormal frame
{E\, E,, E5} with SE| = 2eaE;, SE, =0 and E3 = N. From here
and again from (3.7) we have E>(a) = 0. Let {0', »?, w*} and
{w!}; ; be the dual frame and the connection forms, respectively. It
is easy to see that
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(3.8) w} = —2eaw!,
(3.9) w3=0,
(310) da=81E1(a)wl.

Taking exterior differentiation in (3.8) and using (3.10) and the struc-
ture equations we obtain dw' = 0 and therefore we locally have w! =
du, for a certain function u. Now, from (3.10) we get daAdu =0
and then o depends on u, a = a(u), and therefore E|(a) = &1a'(u).

Taking into account (3.9) and dw! = 0 we deduce w) = 0. Then
we have

(3.11) Aa= —Zsi{EiEi(a) — Vg Ei(@)} = -6 E Ey(0) = —£10" .

On the other hand, from (2.2), (2.5) and (3.11) the associated ma-
trix to the endomorphism A with respect to {E;, E;, N} is given

by
4ea® 0 6ea’
( 0 0 0 ) .
—2e1a/ 0 —81%, + dea’?

By considering the invariant elements of 4, we obtain the following
differential equations:

(3.12) g0 = 8ea’ — A0,
(3.13) —deejaa” + 160* + 12e¢; (') = A,

where A; and A, are two real constants.
Let us take B = (o/)?. Then df/da = 2a” and from (3.12) we
have

(3.14) B = deeia* — Aigja? + C,

where C is a constant.
Now, from (3.12) and (3.13) we get

(3.15) 128 = Ayeey + 16ee10* — 44,8102
Finally, we deduce from (3.14) and (3.15) that « is locally constant
on % , which is a contradiction.
Case 2. There exists a point p in Z such that 7(Va)(p) = 0. Thus
from (2.2) and (2.5) we have
(A4H , X)(p) = —2¢ea(p)X(a)(p) = (H, AX)(p),

which implies, jointly with (2.3), that A4 is a self-adjoint endomor-
phism in L3. Then the above equation remains valid everywhere on
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7% and therefore we get
(3.16) S(Va) = -2eaVa.

Since —2ea is an eigenvalue of S and tr S = 2¢a then S is diago-
nalizable and we can choose a local orthonormal frame {E,, E;, E3}
such that E3 = N, SE, = —2eaE; with E, parallel to Vo and
SE; = 4eaE,. Let {0', 0?, »*} and {w!}; ; be the dual frame
and the connection forms, respectively. Then

(3.17) w} = 2eam!,
(3.18) w3 = —deaw?,
(319) da = 81E1(Oj)0)1 .

Taking again exterior differentiation in (3.17) and using the structure
equations we have dw! = 0. Therefore one locally has w! = du,
for some function #, and thus o depends on %, a = a(u) and
E 1 (Ot) =& 1al .

By exterior differentiation in (3.18) and using again the structure
equations we obtain

(3.20) 3ejaw) = 2d/w?.

A straightforward computation from (3.20) leads to

(3.21) 3ao” = 5(a’)* — 36ee,0*.

If we put f = (/)% then the last equation can be rewritten as

3 dp

—_)— = pa— 4
(3.22) >~ 58 —36¢eg1a”,
whose solution is given by
(3.23) B = Cal%3 - 36e¢,0*,

where C is a constant.
On the other hand, from the definition of Ac«, the fact that E, is
parallel to Va and (3.20) we obtain

(3.24) aAa = —gjaa” + %(a')z.

Now, from (2.2) and (2.5) it is easy to get
alAa = a? — 24eat, A=tr(4), w
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that jointly with (3.24) yields
(3.25) 3aa” = T2ee10* — 3Ae10? + 2(a)?.

Finally, a similar reasoning as in Case 1 by using now (3.21), (3.23)
and (3.25) leads to « is locally constant on %/, which is again a
contradiction with the definition of % .

Anyway, we deduce % is empty and then M? has constant mean
curvature. O

Now, we are ready to show the main theorem of this paper.

THEOREM 3.2. Let x: M? — L3 be an isometric immersion. Then
Ax = Ax + B if and only if one of the following statements holds true:

(1) M2 has zero mean curvature everywhere.
(2) M2 is an open piece of one of the following surfaces: L x S(r),
HY(r) xR, S}(r)x R, HX(r), S¥(r).

Proof. Let M? be a surface in L3 such that Ax = Ax + B. From
Proposition 3.1 we know M? has constant mean curvature «. If
a = 0 there is nothing to prove. So, suppose a # 0. Then from (2.2)
and (2.5) we get

AX = 208X,
(3.26) { *

AN = ¢|S|>’N
and therefore
tr(A) = 2atr(S) + &|S|? = 4ea® + ¢|S|?,

from which we deduce |S|?> is constant and then M? is an isopara-
metric surface. If s =0, M is an open piece of H?(r) or H!(r)xR.
When s = 1, it follows from [Mag85] that M is an open piece of one
of the following surfaces: SZ(r), S}(r)xR, LxS!(r) anda B-scroll.
However a straightforward calculation shows that the B-scroll does
not satisfy the condition Ax = Ax + B. O

As we have pointed out in the Introduction, our proof also works
when the ambient space is E3. Then the Theorem of Dillen-Pas-
Verstraelen in [DPV90] can be viewed as a consequence of our Theo-
rem:

COROLLARY 3.3. Let x: M?> — E3 be an isometric immersion.
Then M satisfies Ax = Ax + B if and only if it is an open piece
of a minimal surface, a sphere or a circular cylinder.
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