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THE ENDLICH BAER SPLITTING PROPERTY

THEODORE G. FATICONI

It is well known that projective modules P are characterized by
the property that each surjection M —• P of modules splits. For
arbitrary modules A one can ask for conditions under which each
surjection A^ —» A^ will split where c and d are cardinals. Mod-
ules with this property are said to have the Baer splitting property. If
the surjection A{c) —• A^d) splits whenever d is a finite cardinal then
A is said to have the finite Baer splitting property. If the surjection
A^c) —• A^d) splits whenever c and d are finite cardinals then A is
said to have the endlich Baer splitting property. Albrecht generalizes
a theorem of Arnold and Lady by showing that if A satisfies mild
hypotheses, then A has the Baer splitting property iff IA Φ A for
each proper right ideal / C End(^4).

The goal of this paper is to organize what is known about the (fi-
nite, endlich) Baer splitting property by generalizing to pairs (A, P)
that have the (endlich) Baer splitting property. (See definitions be-
low.) As an application, we show that the torsion-free abelian group of
finite rank has the finite Baer splitting property iff it has the endlich
Baer splitting property. We cite examples to show that this result is
not true of countable modules.

1. Introduction. Throughout this paper, R denotes a fixed but oth-
erwise arbitrary associative ring, A is a right i?-module, and E =
Endjι(A) denotes the ring of i?-module endomorphisms of A. The
term module will mean right i?-module, ^R denotes the category
of modules, and J?E denotes the category of right l?-modules. Let
TA(-) = ®EA and let HA( ) = H o m ^ , •)• τ h e module G is
(finitely) A-generated if there is a (finite) subset H c HA(G) such
that G = Σ{f(A)\feH}.

Fix a pair (A, P) of modules, and consider the statements
(I) If g: G —> P is a surjection of modules such that G' + kerg = G

for some A -generated submodule G ; c G , then g is a split surjection.
(Io) If g: G -+ P is a surjection of modules such that G' + kerg =

G for some finitely ^4-generated submodule G ' c G , then g is a split
surjection.

Reinhold Baer has proved that if A is a subgroup of the abelian
group Q of rational numbers then (A, A) satisfies (I), [15, Propo-
sition 86.5]. This result, known as Baer's Lemma, has assumed an
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important role in the study of the transfer of properties between
abelian groups and their endomorphism rings.

For example, (I) is used to characterize the modules with Noetherian
hereditary endomorphism rings [3, 7, 13], (IQ) is used to characterize
the modules with semi-hereditary endomorphism rings, [13, 18], and
Hausen [18] uses (IQ) to study modules A with the finite summand
intersection property. See the references and 8.1 for more examples.

The module P is finitely A-projective if P is a direct summand
of A^ for some integer n. Following [4] we say that A has the
finite Baer splitting property if (A, P) satisfies (I) for each finitely A-
projective module P. We further specialize this concept as follows.
The pair {A, P) of modules has the (endlich) Baer splitting property
if it satisfies (I) (if it satisfies (Io)) Fix the module A. If (A, P)
has the endlich Baer splitting property for each finitely ^-projective
module P then we say that A has the endlich Baer splitting property.

Now consider the properties
(II) IA Φ A for each proper right ideal / c E,
(Πo) IAφ A for each proper finitely generated right ideal / c E.
Examples of modules that satisfy (II) and (ΠQ) include the torsion-

free abelian groups A of finite rank such that E is either (semi-)
hereditary, [3, 7, 13, 18], (sub-)commutative [7, 13], or local [13].
Arnold and Lady [7, Theorem 2.1] show that the torsion-free abelian
group A of finite rank has the finite Baer splitting property iff it sat-
isfies (II). Albrecht [2, Corollary 2.2] extends this result by showing
that the self-small module A has the finite Baer splitting property iff
A satisfies

(III) TA(M) Φ 0 for each nonzero finitely generated M e J?E
(A is a self-small module if for each cardinal c the canonical

imbedding Hom#(^4, A)W -* YLOVCIR(A, A^) is an isomorphism.) In
[13, Propositions 2.3, 2.4] we show that (A, P) has the endlich Baer
splitting property iff A satisfies (IIQ) iff KA Φ P for each finitely
v4-projective module P and proper finitely generated 2s-submodule
K c HA(P). It is then natural to consider the property

(IIIo) TA(M) Φ 0 for each nonzero finitely presented M e ^ .
Each of the aforementioned results is proved by passing to E via

the functors TA and HA. The use of the working hypotheses in [2]
and [7] leads us to believe that [2, Theorem 2.1] is true for a larger class
of modules. Furthermore, the properties (II), (IIQ) , (III), and (IIIo)
are torsion theoretic in nature, so the logical relationships among them
should be proved without invoking the Baer splitting property.
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The goal of this paper is to study the relationship between the above
six properties. Our approach will differ from those in [2], [7], and [13]
in that we discuss the splitting properties without passing to the endo-
morphism ring, and we discuss (II) through (IΠo) without explicitly
mentioning the splitting properties. This approach allows us to extend
the results from the literature by deleting unnecessary hypotheses.

A detailed description of the sections follows.
In §2 we prove that the endlich Baer splitting property is passed

onto finite direct sums. Thus, (A, A) has the (endlich) Baer splitting
property iff A has the finite (endlich) Baer splitting property 2.4, 2.6.
The proof avoids the endomorphism ring.

In §3 we prove (II) => (III) without referring to the Baer splitting
property. This extends [2, Corollary 2.2], [7, Theorem 2.1] by re-
moving the self-small hypothesis on A. We also prove (IIQ) => (IΠo)
which extends [13, Proposition 2.3] and [18, Theorem 2.2].

In §4 we prove that if P is an v4-projective module then (A, P) has
the Baer splitting property if KA Φ P for each proper 2s-submodule
K c HA{P), 4.2. Thus, (II) is generally a sufficient condition to imply
the finite Baer splitting property for A.

The pairs (A, P) of modules possessing the endlich Baer splitting
property are characterized in §5. We prove that if P is a finitely A-
projective module then {A, P) has the endlich Baer splitting property
iff TA(M) Φ 0 for each nonzero finitely 774(P)-presented M e ^E

In §6 we reintroduce the self-small hypothesis on A, and then ex-
tend [2, Corollary 2.2] and [7, Theorem 2.1] to include pairs of mod-
ules (A, P). We also give a new proof of [2, Corollary 2.2] in which
the use of the self-small hypothesis is minimized, 6.3.

Finally, in §7 we give an example of a class of modules for which
the endlich and finite Baer splitting properties are equivalent. If A is
a torsion-free abelian group of finite rank then A has the endlich Baer
splitting property iff A has the finite Baer splitting property, 7.2.

We greatfully acknowledge the assistance of Professor C. Vinson-
haler whose insights were used to produce the given proof of 2.3.

We use the notation and terminology given in [5] and [15]. Given
M G S€E and G e ^R there are natural homomorphisms ΦM ' M —•
HATA{M) and ΘG: TAHA(G) -> G given by [ΦM(m)](a) = m®a
and ΘG(f ® a) = f(a) for each m e M, f e HA(G), and a e A.
Furthermore, given a projective right ^-module Q and a subset X c
Q then we will identify X = ΦQ(X) C HATA(Q). We let AT* denote
the J5-dual Hom^(M, E) of the right iwnodule M. We also make
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use of

THEOREM 1.1 [7, Theorem 1.1]. Let A be a module.
(a) HA and TA restrict to inverse equivalences between the category

of finitely A-projective modules, and the category of finitely generated
projective right E-modules.

(b) θ p and ΦQ are isomorphisms for each finitely A-projective mod-
ule P and finitely generated projective right E -module Q. u

2. Direct sums and direct summands We show that the Baer split-
ting property is inherited by direct summands and passed onto direct
sums.

The first lemma appears in [2].

LEMMA 2.1. Let A and P be modules. The following are equivalent.
(a) (A, P) has the (endlich) Baer splitting property.
(b) Given a surjection g: G —• P in ^£R such that G is a {finitely)

A-projective module, then g is a split surjection.
(c) Given a surjection g: G -+ P in Λ€# such that G is a (finitely)

A-projective module, then ker g is a direct summand of G. D

LEMMA 2.2. Let A and P be modules and assume (A, P) has the
(endlich) Baer splitting property.

(a) If P is a (finitely) A-generated module then P is a (finitely)
A-projective module.

(b) If Pf is a direct summand of P then (A, P1) has the (endlich)
Baer splitting property.

Proof, (a) Is an easy exercise.
(b) Let g: G —• Pf be a surjection in ^R such that Gr + kerg = G

for some (finitely) ^4-generated submodule O c G. Write P = Pf®X
for some submodule X c P and let jP>: Pf —• P, pP>: P -+ P1 be
the canonical injection, projection. Then g ®\x: G® X -+ P is a
surjection in J£R such that (G'®X) + ker(gθ \x) = G®X. Observe
that X is a (finitely) ^4-generated module. Because (A, P) has the
(endlich) Baer splitting property there is a map j : P -» G® X such
that (g ® \χ)j = l p . The usual elementary argument shows that
j = f ®\χ for some map j f : Pr —• G. Then

gj' = Pp'(g θ lχ)(/ θ \χ)3pl = pP'(g ® lχ)33p' = Pp ipJp' = V

as required by (b). D
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PROPOSITION 2.3. Let A be a module and let {P\, . . . , Pn] be a
finite set of modules such that {A, Pi) has the endlich Baer splitting
property for each i = 1, . . . , n. Then {A, 0J j = 1 Pi) has the endlich
Baer splitting property.

Proof. Let g: G —• 0 " = 1 Pi be a surjection such that G is a finitely
^4-projective module. By 2.1 it suffices to show that kerg is a direct
summand of G.

We proceed by induction on n . By hypothesis (A, P\) has the end-
lich Baer splitting property. Assume we have shown that {A, 0 " r / Pi)
has the Baer splitting property. Let en: 0 ? = 1 Pi -+ 0 £ r / P/ be the
canonical projection, and let Gw = k e r ^ g . Because eng: G —>
0ί="/ Λ* i s a surjection, the induction hypothesis yields a direct sum
decomposition

(1) G = G'n®Gn

for some submodule G'n c G.
Notice that k e r ^ s = <?"1(P«)? so Pπ = g(Gn) = (1 - βπ)g(Gπ).

By hypothesis (A, Pn) has the Baer splitting property and by (1) Gn

is a finitely ^1-projective module, so we can write

(2) Gn =

for some submodule G'ή c Gn . Next, observe that

(3) Gπ

Finally, a combination of (1), (2), and (3) shows that G — G'n Θ G% θ
ker g , which completes the proof. D

Let P be an ^4-projective module. If in 2.3 we choose {P\, . . . , Pn}
to be distinct copies of P then using 2.2 we have proved

COROLLARY 2.4. Let A be a module.
(a) The pair (A, P) of modules has the endlich Baer splitting prop-

erty iff {A, ?W) has the endlich Baer splitting property for each integer
n>0.

(b) (A, A) has the endlich Baer splitting property iff A has the
endlich Baer splitting property. D

The same argument shows that the Baer splitting property is passed
onto direct sums.
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PROPOSITION 2.5. Let A be a module and let {P\, . . . , Pn} be a
finite set of modules such that (A, Pi) has the Baer splitting property
for each i = 1, . . . , n. Then {A, 0 " = 1 Pi) has the Baer splitting
property. u

COROLLARY 2.6. Let A be a module.
(a) {A, P) has the Baer splitting property iff (A, pM) has the Baer

splitting property for each integer n>0.
(b) (A, A) has the Baer splitting property iff A has the finite Baer

splitting property. D

REMARK 2.7. In the proof of [7, Theorem 2.1 ] the authors leave it to
the reader to prove that the torsion-free abelian group A of finite rank
has the finite Baer splitting property if (A, A) has the Baer splitting
property. In proving [2, Corollary 2.2] the author states that when A
is a self-small module, then this implication follows from an induction
on the A-mnk of P. (The v4-rank of P is the least cardinal number c
such that P is a direct summand of A^ .) In [18, Theorem 2.2] it is
stated that the proof given in [2] works equally well to prove that the
module A has the endlich Baer splitting property if (A, A) has the
endlich Baer splitting property. Thus 2.4 and 2.6 extend these results
and fill a small gap.

3. ^-compressed ^-modules. We use a divisibility property for
finitely generated projective left Is-modules to characterize the finitely
generated M G ̂  .

Let ^Ά denote the class of M e ^E such that TA(M) = 0, let
3f(A) denote the set of right ideals I c E such that IA = A. Let
K c M be an JF-submodule. If M/K e J~A then K is called ^J-
dense in M. Observe that / e 3f{A) iff / is ^-dense in E. If M
does not contain a proper (finitely generated) ^-dense Is-submodule
then M is {finitely) ^-compressed.

The following lemma contains some elementary facts that we will
use throughout this section. The proof is left to the reader.

LEMMA 3.1. Let A be a module, and let M e
(a) 9^ is closed under direct sums, homomorphic images, and ex-

tensions (i.e. ZΓA is a torsion class in J?E)
(b) Let K c Kf c M be E-submodules, and let K be SΓA-dense in

M. Then K' is J^-dense in M.
(c) If M is (finitely) ^-compressed and if N is a direct summand

of M then N is (finitely) ^-compressed. α
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The first result shows that (finite) ^-compression is passed onto
direct sums.

LEMMA 3.2. Let Q be a finitely generated projective right E-module.
(a) Q is finitely ^-compressed iff QW is finitely ^-compressed

for each integer n > 0.
(b) Q is ^-compressed iff QW is ^-compressed for each integer

n>0.

Proof, (a) Assume Q is finitely i^-compressed. This is the basis
for an induction on n. Assume that we have shown that Q(n~ιϊ is
finitely ^-compressed.

Let K c Q(n>) be a finitely generated ^-dense Jί-submodule, fix a
canonical direct sum decomposition Q@Q^n~ι>} = Q^ , let K' be the
projection of K into Q, and let K" = K n Q(n~^ . There is an exact
sequence

Q(n-l) Q{n) Q

of right ^-modules. By 3.1 (a) Q/K' € &Ά , so K! is a finitely gener-
ated ^-dense is-submodule of Q, and hence ϋΓ; = Q by hypothesis.
Then (4) implies that

Q{n~x) ^ Q{n)

κ» K '
so that K" is a ^-dense submodule of Q(n~ι). Inasmuch as K and
Q(n-i) a r e finitely generated, SchanueΓs Lemma shows that K" is a
finitely generated £-submodule of Q(n~ιK Then ΛΓ/; = (2 ( w" 1 } by
induction, and therefore K = Q^ . The converse is clear so the proof
is complete.

(b) is proved in an analogous manner. D

The following result shows that (finite) ^-compression is a gener-
alization of (III) and (IIIo). The right E-module iV is called finitely
M-generated if there is a surjection M^ -> N for some integer n.
The right JF-module N is called finitely M-presented if there is an
integer n > 0 and a finitely generated jE-submodule K c M^ such
that N

COROLLARY 3.3. Let Q be a finitely generated projective right E-
module.

(a) Q is finitely ^-compressed iff TA(M) Φ 0 for each nonzero
finitely Q-presented M e
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(b) Q is ^-compressed iff TA(M) Φ 0 for each nonzero finitely
Q-generated M e

Proof, (a) By 3.2(a) and the definitions, Q is finitely ^-compressed
iff Q(n) i s finitely ^-compressed for each integer n > 0 iff TA(M) Φ
0 for each nonzero finitely Q-presented M e J£E

(b) follows in a manner similar to (a) but appeal to 3.2(b) instead
of 3.2(a). α

The trace ideal of Q in E is XQ = Σ / ( Q ) where the sum is
indexed by / e Hom^(Q, E). Our characterization of the projective
finitely ^-compressed right ^-modules Q is in terms of XQ .

PROPOSITION 3.4. Let A be a module, and let Q be a finitely gen-
erated projective right E-module. The following are equivalent.

(a) Q is not finitely ^-compressed.
(b) There exists a finitely generated I e &(A) such that (E/I)XQ =

Ell.

Proof, (a) => (b) Assume there is a finitely generated J^-dense E-
submodule K c Q. Let { x i , . . . , ^ } c ι 2 map onto a minimal set
of generators for Q/Ky and let K' = K + Σn

i=2

χiE - T h ^ n Kf is a
finitely generated ^-dense jB-submodule of Q, 3.1(b), and because
{x\, . . . , xn} is a minimal set of generators of Q/K", Q/K1 e ^
is a nonzero cyclic right is-module. There is a right ideal / e 3ί(A)
such that Q/K' = E/I, and SchanueΓs Lemma shows that / is finitely
generated. Inasmuch as QXQ = Q we have (E/I)xQ = E/I, which
proves (b).

(b) => (a) Assume there is a proper finitely generated I e £?(A)
such that (E/I)xQ = E/I. Then £ / / = (xQ + I)/I so that there
is a cardinal c and a surjection / : (2^ —• E/I. Because E/I is a
cyclic right 2s-module we may assume that c is finite. Then ker/ is
finitely generated by SchanueΓs Lemma. Furthermore, Q^/kcτf =
E/I G ̂ , so that ker/ is a proper finitely generated ^-dense E-
submodule of Q^, and hence Q^ is not finitely ^-compressed.
Then by 3.1(c) Q is not finitely ^-compressed. D

In contrast to 3.4, the ^-compressed property in Q is character-
ized in terms of the dual Q* = H o m ^ Q , E) of Q. Let m^ denote
the set of maximal right ideals / e 2{A). The left Is-module L is
mΛ'divisible if IL = L for each / e mA .
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PROPOSITION 3.5. Let A be a module, let Q be a finitely generated
projective right E-module. The following are equivalent.

(a) Q is ^-compressed.
(b) τQ C / for each I emA.
(c) Q* is mA-divisible.

Proof, (a) =4> (b) We prove the contrapositive. Assume there is
an / E m^ such that XQ (£_ I, and let p: E -* E/I be the natural
projection map. There is a map f:Q—>E such that /(Q) £ / ,
and because / is a maximal right ideal of E, f(Q) + I = E. Hence
/?/: (2 —• E/I is a surjection. Furthermore, E/I e <9^, so ker/?/
is a proper i^-dense l?-submodule of Q, and hence Q is not ^ j -
compressed.

(b) o (c) It is well known that IQ* = Q* implies τ β * c / , and
that τ<2 = τ^*. (See e.g. [1].) Thus (b) is equivalent to (c).

(b) => (a) Again, we prove the contrapositive. Assume there is
an integer n > 0 and a proper ^-dense JE'-submodule K c Q.
Because Q is finitely generated there is a maximal right Zs-submodule
K c K' C Q, and by 3.1(b) A7 is ^-dense in Q. Since β/A7 φ 0
is a simple module there is a maximal right ideal / c E such that
Q/K' = E/I. Since / is then SΓA-dense in £ , / e mA. Finally,
QTQ = Q so (E/I)TQ = 2?// ̂  0. Hence TQ £ / , which completes
the proof. D

We are interested in when the projective modules of the form HA(P)
are finitely ^-compressed right Zs-modules. The next result shows
that the (finitely) ^-compressed property is a generalization of (II)
and (Πo).

PROPOSITION 3.6. Let A be a module and let P be a finitely A-
projective module. The following are equivalent.

(a) HA{P) is finitely ^-compressed.
(b) TA{M) Φ 0 for each nonzero finitely HA(P)-presented M e J^E
(c) KA Φ P for each proper finitely generated E-submodule K c

HA(P).

Proof, (a) <& (b) follows from 3.3 because HA(P) is a finitely gen-
erated projective right is-module, 1.1.

(a) & (c) Let K c HA{P) be an £-submodule, let 1: K -• HA(P)
be the inclusion map, and observe that ΘpTA(ι): TA(K) —• P has
image KA. Because Θ/> is an isomorphism, l.l(b), it follows that K
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is ^-dense in HA(P) iff 0 = TA(HA(P)/K) = coker TA(ι) iff TA(ι)
is a surjection iff KA = P . α

The ^-compressed is-modules of the form HA{P) are character-
ized in

PROPOSITION 3.7. Let A be a module and let P be a finitely A-
projective module. The following are equivalent.

(a) HA(P) is ^-compressed.
(b) TA(M) φ 0 for each nonzero finitely HA{P)-generated M e ^E
(c) KAφP for each proper E-submodule K c HA{P).
(d) YIOTΆR(P 9 A) is an mA~divisible left E-module.

Proof, (a) *> (b) is 3.3(b), and (a) <̂  (c) follows as in 3.6.
(a) & (d) By 3.5 it suffices to show that Hom^(P, A) is the E-dual

of HA(P). But this follows from the isomorphism TAHA(P) = P ,
l.l(b), and the adjoint isomorphism

Hom*(P, A) = HomR(TAHA(P),A)

= HomE(HA(P), ^ ( ^ ) ) = ̂ ( P ) * . D

If ^A is a hereditary torsion class, (i.e. if 3^ is closed under £*-
submodules), then 3^A — {0} iff A satisfies (III). Thus the following
is not without interest.

COROLLARY 3.8. Let A be a module.
(a) A satisfies (Πo) iff A satisfies (IIIo).
(b) A satisfies (II) if A satisfies (III).

Proof, (a) follows immediately from 3.6, (from 3.7), since each
finitely presented right is-module is finitely J^(^)-presented.

(b) is proved in a similar manner, but appeal to 3.7 instead of
3.6. D

4. Sufficient conditions. The ̂ -compressed condition provides a
test for the (endlich) Baer splitting property.

LEMMA 4.1. Let A be a module and let P be a finitely A-projective
module. If HA(P) is finitely ^-compressed then (A,P) has the
endlich Baer splitting property.

Proof. Let G be a finitely ^4-generated module, let g: G -* P be
an epimorphism in &A, and let M = cokerΛΓ^). By 2.1 it suffices
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to show that g is a split surjection. An application of TAHA to g
yields a commutative diagram

TAHA(G) > TAHA{P) > TA(M) > 0

l - l
G • P > 0

g

with exact rows in ^ . Now θ/> is an isomorphism, l.l(b), and
because G is a finitely ^4-generated module θ ^ is a surjection. Then
a diagram chase shows that ker0 = 0, and hence TA(M) = 0. Be-
cause HA(P) is finitely ^-compressed cokerHA(g) = M = 0, so that
HA(g) is a surjection. Since HA{P) is a projective right 2s-module,
1.1 (a), there is a map i: HA(P) -• //^(C) such that
Then

TAHA(g)TA(ι) = 7

and because the diagram commutes

[gBG]TA(ι)ΘJι = [ θ p Γ ^ J ^ ί ^ l ^ ^

Therefore, (A, P) has the endlich Baer splitting property. D

A similar argument proves

LEMMA 4.2. Let A be a module and let P bean A-projective module
such that HA(P) is a projective right E-module and such that θ/> is an
isomorphism. If HA(P) is ^-compressed then (A9P) has the Baer
splitting property. π

COROLLARY 4.3. Let A be a module.
(a) If A satisfies (IIQ) then A has the endlich Baer splitting property.
(b) If A satisfies (II) then A has the finite Baer splitting property.

Proof, (a) Let P be a finitely ^4-projective module, and let P@P' —
A^ for some module Pf and integer n > 0. Because IA Φ A for
each proper finitely generated right ideal / c E, HA(A^) is finitely
^-compressed, 3.6, so that HA(P) is finitely ^-compressed, 3.1(c).
Thus (A, P) has the endlich Baer splitting property, 4.1, and hence
A has the endlich Baer splitting property.

(b) Proceed as in part (a). D

5 The endlich Baer splitting property. Given a finitely ^4-projective
module P let τ/> be the trace ideal of the finitely generated projective
right j^-module HA{P) in E.
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THEOREM 5.1. Let A be a module, and let P be a finitely A-
projective module. The following are equivalent for the pair {A, P).

(a) (A, P) has the endlich Baer splitting property.
(b) HA(P) is finitely ^-compressed.
(c) // E φ I e 2!{A) is finitely generated then (E/I)τP φ E/I.

Proof, (b) & (c) is 3.4, and (b) =» (a) follows from 4.1.
(a) =>• (b) Let K c HA(P) be a finitely generated ^-dense E-

submodule, and choose a finitely generated projective module Q and
a map k: Q-> HA(P) such that Image k = K. Because

cokerl^fc) = 7Mcokerfc) = TA(HA(P)/K) = 0,

TA(k): TA(Q) -f TAHA(P) is a surjection in Λίfc. Furthermore, by
1.1 (a) TAHA(P) = P and TA(Q) is a finitely ^-projective module, so
(a) implies that TA(k) is a split surjection. Finally, an application of
HA to TA(k) yields a commutative diagram

Q - ^

> HATAHA{P)

in ^ £ whose bottom row is a (split) surjection. Inasmuch as ΦQ and
ΦHA(P)

 a r e isomorphisms, 1.1 (b), k is a surjection in ^E ? and hence
K = HA(P). This proves (b) and completes the proof. D

COROLLARY 5.2. The following are equivalent for a module A.
(a) (A, Λl) has the endlich Baer splitting property.
(b) A has the endlich Baer splitting property.
(c) A satisfies (Πo).
(d) ,4 satisfies (ΠI0).

Λro/. (a) & (b) is 2.4(b), (a) o (c) is 5.1, and (c) ^ (d) is
3.8(a). D

6. Self-small modules. We extend [2, Corollary 2.2] to include pairs
of modules (A, P).

Arnold and Murley [8] prove that ii A is a self-small module then
HA and TA restrict to inverse equivalences between the category of A-
projective modules, and the category of projective right 2s-modules.
Furthermore, Θ/> and ΦQ are isomorphisms for each ,4-projective
module P and projective right 2s-module Q.
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THEOREM 6.1. Let A be a self small module and let P be an A-
projective module. The following are equivalent for the pair (A, P).

(a) {A, P) has the Baer splitting property.
(b) HA(P) is ^-compressed.

Proof, (a) => (b) Let K c HA(P) be a ^-dense E-submodule.
Proceed as in 5.1 (a) => (d) to show that K = HA(P) but appeal to
[8] instead of 1.1 to prove that ΦHA(P) and ΦQ are isomorphisms.
(b) =» (a) is 4.2. A π

COROLLARY 6.2. Let A be a self small module, and let P be a
finitely A-projective module. Then (A, P) has the Baer splitting prop-
erty iff YLOΪΆR{P 9 A) is mA-divisible.

Proof. Because P is finitely ^4-projective, HomR(P, A) is
divisible iff HA(P) is ^-compressed, 3.7, iff (A, P) has the Baer
splitting property, 6.1. D

The next result is [2, Corollary 2.2]. The self-small hypothesis is
only used to prove (a) => (d).

COROLLARY 6.3. The following are equivalent for a self small mod-
ule A.

(a) {A, A) has the Baer splitting property.
(b) A has the finite Baer splitting property.
(c) A satisfies (II).
(d) A satisfies (III).

Proof, (d) => (c) is clear, (c) =* (a) is 4.3(b), and (a) => (b) is
2.6(b). (b) => (d) is 6.1 since each ME^E is //^(^-generated, π

7. Torsion-free Abelian groups. We show that for torsion-free
abelian groups of finite rank the endlich Baer splitting property and
the finite Baer splitting property are equivalent.

THEOREM 7.1. Let A be a torsion free abelian group of finite rank,
and let P be a finitely A-projective module. Then (A, P) has the
endlich Baer splitting property iff {A, P) has the Baer splitting prop-
erty.

Proof. Assume {A, P) has the endlich Baer splitting property and
recall that a torsion-free abelian group of finite rank is self-small. Let
/ G m^. Then [13, Lemma 3.1a] states that E/I is a finite group,
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so there is an integer n > 0 such that nE c / . Since E/nE is
bounded and since E has finite rank, E/nE is a finite group. Choose
representatives x\, . . . , x^ of the finitely many cosets in I/nE, and
observe that {x\, . . . , x^, n 1̂ } is a finite set of generators for / .

Now let τ/> denote the trace ideal of HA(P) in E and let £ ^
I emA. Because (A, P) has the endlich Baer splitting property and
because E φ I is finitely generated (E/I)τp Φ E/1,5.1. Then τp d
because / is a maximal right ideal of E. Thus 3.5 and 6.1 imply that
(A, P) has the Baer splitting property. The converse is clear so the
proof is complete. •

COROLLARY 7.2. The following are equivalent for the torsion-free
abelian group A of finite rank.

(a) A has the endlich Baer splitting property.
(b) A has the finite Baer splitting property.
(c) A satisfies (IΠo).
(d) A satisfies (III).

Proof. Use 5.2, 6.3, and 7.1. D

8. Examples.

REMARK 8.1. (a) Let c be an infinite cardinal and let A = R^.
Then A has the Baer splitting property, and by 5.2 A satisfies (IΠo)
However, let Δ be the ideal consisting of the / e E such that f(A)
is a finitely generated module. Then Δ is a proper ideal of E such
that AA = A. Thus the converse to 4.3 is not true in general.

(b) A = Q has the Baer splitting property, but A = Zp™ does not
have the endlich Baer splitting property.

(c) The main theorems in [10,11, 14] show that each cotorsion-free
(respectively, countable, reduced torsion-free finite rank) ring E is
the endomorphism ring of a cotorsion-free (respectively, countable,
reduced torsion-free finite rank) 2?-flat abelian group A that satisfies
(II), and hence satisfies (ΠQ) .

(d) In [14, Example 4.7] there is constructed an jE-flat torsion-free
abelian group A of rank 8 such that £ is a (noncommutative) do-
main, and such that the least right ideal Δ in {/ c E\IA — A) is a
proper idempotent ideal of finite index in E. Arnold and Lady [7]
give an example of a completely decomposable abelian group A of
rank 2 such that IA = A for some proper pure ideal I c E.

(e) Let Ω(2?) be the class of torsion-free abelian groups A of finite
rank such that E = End(Λl). [12, Theorem 7.1] characterizes the
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reduced torsion-free finite rank rings E such that each A e Ω(E)
satisfies (II).

(f) In [11] there is given an example of a reduced self-small torsion-
free abelian group A such that ZP[X] = E, (a countable commutative
Noetherian integral domain), A satisfies (II), but TA(M) = 0 for
some nonzero M G J^E The module M is not finitely generated.

(g) In [11] there is given an example of a reduced self-small torsion-
free abelian group A such that E is a countable commutative
Noetherian integral domain but IA = A for each of the infinitely
many maximal right ideals / c E.

REMARK 8.2. Statements (II) and (III) appear as working hypothe-
ses in many works concerning properties of endomorphism rings. For
example, Arnold [6] calls A finitely faithful if IA Φ A for each max-
imal right ideal / of finite index in E. The module A satisfying
statement (III) is called completely faithful by Fuller [16], a weak gen-
erator by Azumaya [9] and Sato [19], and fully faithful in [2]. Garcia
and Saorin [17] call A intrinsically projective if K = Hom^^, KA)
for each ls-submodule K of a finitely generated projective right E~
module, and Wisbauer [21] calls the module A an ideal module if the
assignment / \-> IA defines a bijection from the set of right ideals
of E onto the set of ^-generated submodules of A. These proper-
ties are equivalent to (II) when A is a flat left Zs-module, [13], or a
Σ-quasi-projective module, [17].
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