
PACIFIC JOURNAL OF MATHEMATICS

Vol. 158, No. 2, 1993

ANY KNOT COMPLEMENT COVERS
AT MOST ONE KNOT COMPLEMENT

SHICHENG WANG AND YING-QING WU

It follows from Culler, Gordon, Luecke and Shalen's Cyclic Surgery
Theorem that any knot complement is covered by at most two knot
complements. Gonzales-Acuna and Whitten proved a result on the
other direction: A given knot complement can cover at most finitely
many knot complements. This paper is to show that the best possible
result in this direction holds: A given knot complement can nontriv-
ially cover at most one knot complement. Moreover, if the knot is not
a torus knot, then the covering map is unique up to equivalence.

Given a 3-manifold M, there are genetically infinitely many man-
ifolds which cover M. However, if we are restricted to the category
of knot complements, the situation is quite different. It can be shown
(see Lemma 1 and below) that if the complement E(K) of a knot
K is n-ΐo\ά covered by some knot complement, then the covering is
cyclic, and K admits a cyclic surgery, i.e. a Dehn surgery such that
the fundamental group of the resulting manifold is a cyclic group Zπ .
It follows from the Cyclic Surgery Theorem of [CGLS] that if K is
not a torus knot, then there are at most two such coverings. The situ-
ation is also clear iϊ K is a torus knot: By a theorem of Moser [M], a
Dehn surgery on a (p, q) torus knot T(p, q) is a cyclic surgery if and
only if the surgery coefficient is (kpq ± \)/k for some k. Now the
kpq ± 1 fold cyclic covering of the complement E{K) of K is always
homeomorphic to E(K) itself, with possibly an orientation reversing
homeomorphism. So E(K) is only covered by one knot complement,
although there are infinitely many different covering maps.

In this paper we will study a closely related problem: How many
knot complements are nontrivially covered by a given knot comple-
ment E(K) ? The problem was studied by Gonzales-Acuna and Whit-
ten in [GW], where they proved that a knot complement covers at
most finitely many knot complements up to homeomorphism. The
main result of this paper is

THEOREM 1. The complement E(K) of any knot K can nontrivially
cover at most one knot complement E(Kr) up to homeomorphism.
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REMARK 1. We say two coverings p\, /?2 * M —• N are equivalent
if there is a homeomorphism h: M —• M such that p\ = p2o h. If
K is a torus knot, then as we have seen above, there are infinitely
many nonequivalent covering maps p: E(K) —• E(K). In the proof
of Theorem 1 we will actually show that if K is not a torus knot,
then the degree of the covering map p: E(K) —> E(K') is unique. It
follows that p is unique up to equivalence, because a cyclic covering
is determined by its degree if the first homology group of N is cyclic.

REMARK 2. A generalization of Gonzales-Acuna and Whitten's The-
orem was proved in [W3]: Any aspherical 3-manifold with nonempty
boundary covers only finitely many 3-manifolds.

All notations not defined in the paper are standard, see [G], [H],
[BM], [S] and [T].

DEFINITIONS. For a knot K in S3, N(K) denotes the regular neigh-
borhood of K E(K) denotes the knot complement S3 - Int N(K)
(K, n/r) denotes the 3-manifold obtained by surgery on K with co-
efficient n/r, where n and r are coprime integers; L{n) denotes
a lens space L(n, * ) . A strong inversion on K is a π-rotation of
S3 which leaves K invariant and has axis meeting K at exactly two
points. Finally, in this paper the terms cover and covering always
mean nontrivial ones (i.e., of degrees greater than 1).

The first lemma reduces coverings between knot complements to
cyclic coverings.

LEMMA 1. If p: E(K) —» E(K\) is a covering between knot comple-
ments, then p is a cyclic covering.

Proof. This is Theorem 1.1 of [GW]. α

LEMMA 2. Suppose f is a nontrivial {i.e. not the identity) periodic
map on a torus T. Then f is isotopic to the identity if and only if f
is fixed point free and orientation preserving.

Proof. Let Af be the induced matrix of / on H\(T). By 12.4 of
[H], under a suitable basis of H\(T), Af is one of the seven matrices
on p. 123 of [H]. If / is fixed point free and orientation preserving,
then we have d e t ^ = 1, and the Lefschetz number L(f) = 2 -
tr Af = 0. These conditions force Af to be the identity matrix. Hence
/ is isotopic to the identity.
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Conversely, if / is isotopic to the identity, then / is orientation
preserving and L(f) = 0. Then it is an elementary fact that / is the
identity or is fixed point free. D

The next lemma is quoted from [Wl]. It builds up a connection
between coverings of knot complements and cyclic surgeries on knots.
The first part is also in [GW] with somewhat different proof.

LEMMA 3. Let K be a nontrivial knot.
(1) If E(K) is n-fold cyclic covered by E(K) for some knot K, then
( / )

(2) If(K, n/r) = L(n), then E(K) is n-fold cyclic covered by E(K)

for some knot K.
(3) If K is not a torus k n o t , then r = 1 in (I) and ( 2 ) .

Proof. (1) If E{K) —» E(K) is an n-ϊolά cyclic covering, then the
action of deck transformation group Π = (τ\τn = 1) on E(k) is
orientation preserving and fixed point free. Let T = d(N(K)). Then
τ\χ > the restriction of τ on T, is an orientation preserving and fixed
point free periodic map. By Lemma 2, τ\τ is isotopic to the identity.
In particular it sends meridian to meridian. So we can use the standard
disk extention to extend τ\τ over the solid torus N(k) in a periodic
way, getting an action of Π on S3 which has no fixed point in S3-K.
As the action isjcyclic and orientation preserving, the fixed point set
of Π is either K or the empty set. Now K is knotted because K is,
so by Smith Conjecture it cannot be the fixed point set of Π. Hence
Π acts freely on S3 = E(K) u N{K), and

S3/U = (E(K)/U) U (N(K)/U) = E{K) U (S1 x D1) = (K, n/r)

where the surgery coefficient is of the form n/r because Π = Zn .
(2) If (K, n/r) = L(n), then we have an rc-fold cyclic covering

q: S3 —> L(N). the meridian m of K represents a generator of
H\((K, n/r)) = π\((K, n/r)) = Zn so q~ι(m) is connected. It im-
plies that q~ι(N(K)) is a single solid torus. Let K be the central
curve of q~ι(N(K)). Then q~ι(N(K)) is a regular neighborhood of
K, and q restricting to E(K) = S3 - q~ι(N(K)) is a cyclic covering
onto E(K).

(3) follows from [CGLS]. D

By a hyperbolic structure (or metric) we mean one which is complete
and has finite volume. A hyperbolic 3-manifold M is a manifold
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whose interior admits such a hyperbolic structure. We use Mp to
denote IΏXM together with a given hyperbolic metric p.

LEMMA 4. Let h be a map on a hyperbolic ^-manifold Mp. Then
the following two statements are equivalent:

(1) h is conjugate to an isometry on Mp

(2) there exists a hyperbolic metric p\ on M under which h is an
isometry.

Proof. Suppose g is a self-homeomorphism of M such that ghg~ι

is an isometry on Mp. Let px = g*p be defined by p\(x,y) =
p(g(χ) > S(y)) for all x, y € M. Then we have

Pi(h(x),h(y)) = p(gh(x)k, gh(y)) = p(ghg'ιg(x)9 ghg~ιg(y))

i.e., h is an isometry on Mp .
Conversely, suppose (2) is true. By Mostow's Rigidity Theorem [T?

5.7.2], id: π\{Mp) —• π\{MPχ) can be realized by a unique isometry
g: Mp -» MPι. So we have

p{x, y) = px (g(x), g(y)) =

i.e., g~ιhg is an isometry on Mp. D

The next two lemmas are used to prove Theorem 1 for hyperbolic
knots.

LEMMA 5. Suppose E = E{K) is hyperbolic, and Πi = {τ\\τp

χ — 1)
and Π2 = (τ2|τ| = 1) act freely on E. Then there is a hyperbolic
metric p on iτAE and a homeomorphism g on E such that G =
(?i 5 gΐig~ι) is a finite abelian group.

Proof. Let /?/: E —• J5/Π/ be the covering map. Since E is hyper-
bolic, E/Πi is homotopic to a hyperbolic manifold [T, 6.7.3]. Since
E/Πi is a P2-irreducible 3-manifold (by [MSY, Theorem 3]) with a
torus boundary component, it is a Haken manifold. So E/Πi itself
admits a hyperbolic structure. For any given hyperbolic metric ~p on
E/Πi, let pi = jp*/? be the pullback metric on E. Then τz is an
isometry on Ep .

Now fix a metric /?i on E under which τ\ is an isometry. We have
just shown that t2 is an isometry under certain hyperbolic metric.
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So by Lemma 4 it is conjugate to an isometry with respect to p\
i.e., there is a homeomorphism g such that gτig~x is an isometry
on EPι. Thus G = (τ\, gτig~x) is a group of isometries. By the
Mostow-Thurston Theorem [T, 5.7.4], G is a finite group.

It remains to show that G is abelian. Let Eε be the submani-
fold of Int is consisting of points contained in some hyperbolic ball
of radius a. Choose ε small enough so that Ee is homeomorphic
to E (see 5.10.2 and 5.11.1 of [T]). Since the elements of G are
isometries on E, Eε is invariant under the G action. Especially,
T = dEε is invariant under the G action. As τ\\τ and τι\τ are
fixed point free orientation preserving periodic maps on T, they both
induce the identity map on π\(T) by Lemma 2. Thus every element
in G induces identity on τt\{T). Again by Lemma 2, except the iden-
tity, every element in G\τ is a fixed point free orientation preserving
periodic map. In other words, G\τ is a free action. So we can con-
sider T as a covering space over T/(G\τ), and G\τ as the covering
transformation group. Since T/(G\τ) is a torus, the quotient group
G\τ = m(T/(G\T))/ni(T) is abelian. D

LEMMA 6. If a non-torus knot K admits a symmetry which is not a
strong inversion, then E(K) cannot be covered by a knot complement

Proof. In [WZ], Wang and Zhou proved that if a non-torus knot K
admits a symmetry which is not a strong inversion, then there is no
cyclic surgery on K. Lemma 6 then follows from Lemma 3(2). α

We use K(p, q) to denote the (p, #)-torus knot, and K(p, q\r, s)
to denote the (r, s)-cable of K(p, q). Without loss of generality we
may assume p > q > 0 (otherwise change the orientation of 5 3 ) .
The next two lemmas are used to prove the theorem for satellite knots.
Recall that (K>n) denotes the manifold obtained from S3 by Dehn
surgery on K with slope n.

LEMMA 7. Suppose K is a satellite knot Then (K, ή) is a lens
space if and only if K = K(p, q 2, 2pq ± 1) and n = Apq ± 1.

Proof. This is a result of Bleiler-Litherland [BL] and Wu [Wu]. D

Let M be the complement of K(p, q 2, 2pq^h 1), let JV be the
complement of K(p, q 2, 2pq - 1). Denote by M the 4pq + 1 fold
cyclic covering of M , and by N the Apq - 1 fold covering of N.
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LEMMA 8. M is not homeomorphic to N.

Proof, Let T be a torus which divides M into two maximal Seifert
pieces M\ and Mi, where M\ = E(k(p, #)), and M2 is a cable space
C(2,2pq+l) (see e.g. [G] for definition of cable spaces). Consider T
as the boundary of the knot complement M\. Choose a pair of simple
closed curves m and / on T so that they represent the homology of
the standard meridian-longitude pair of K{p, q) (rather than that of
K(p,q;2,2pq+l))^ _

Denote by fh, I\ M{, Mi , T the lifting (preimage) of m, /, M\,
Mi, T, respectively. It is easy to show that if c is a simple closed
curve in M representing an element k in Z = H\M, then its lifting
c in an n-fold cyclic covering M of M has gcd(/c, n) components.
Since homologically m is 2 times a meridian of #(/?, ̂  2, 2p^ + 1)
and since 2 is coprime with Apq + 1, m is connected. Especially,
M\, Mi, T are all connected. Since / is null-homologous, / consists
of 4pq + \ parallel simple closed curves. Let /; be one of these curves.
Then [/] = (4pq + 1)[/']. Note that m intersects / transversely at
4pq + l points (because m intersects / at one point), so rh intersects
/' exactly once. Thus the simple closed curves fh and /' generate
Hx(f).

It is well known that Seifert fibrations of both M\ and M 2 are
unique up to isotopy (see Theorem 3.9 of [S] and its refinement). Let
α/ be the simple closed curve on T representing a fiber of Mi. One
can check that [a{] =pq[m] + [l], and [a2] = (2pq+l)[m] + 2[l], Let
ά| be the lift of α/. Since both pq and 2pq + 1 are coprime with
^PQ + 19 the^α,- 's are connected; so each άz is a fiber of the lifted
fibration of M z . We have

[άι]=pq[m] + [ϊ]=pq[m] + (4pq

[α2] = {2pq + l)[m] + 2[ϊ] =

Since [fh], [V] generates H\{T), we can compute the intersection
number of [ά\] and [α^] by

d

PQ 4pq+
2pq+l Spq + 22)

= 4pq + 1.

Construct in asimilar way a decomposing torus V which divides
Λ̂  into N\ and Nι, and simple closed curves β\, βι which represent
fibers of h\ and Nι respectively. By a similar computation we have
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If M and N are homeomorphic, by the Torus Decomposition The-
orem of Jaco-Shalen-Johannson (see [J]) and the uniqueness of fibra-
tion of Mi (see e.g. [J, Theorem VI. 18]), there is a homeomorphism
φ: M -> N such that φ(f) = V and φ(άi) = # , / = 1, 2, so
[άi][ά2] = [β\\[βi\ But this contradicts the above computation. D

LEMMA 9. Suppose E(K\) —> E{Ki) is a cyclic covering between
knot complements. If one of the Kι is a torus knot K(p, q), then both
E{K\) and E{K2) are homeomorphic to E(K(p, q)), and the covering
degree is rpq ± 1 for some r.

Proof. If Ki is a torus knot, then it is a Seifert manifold. Hence
both E(K\) and E{K2) are Seifert manifolds. It implies that both
K\ and Kι are torus knots (see [J, IX 22]). So we may assume
K2 = K(p,q).

By the work of Moser [M], π\(k(p, q), n/r) is cyclic if and only
if n = rp# ± 1. Thus E{K\) is an rpq ± 1 fold cyclic cover-
ing of E(k(p, #)). But such a covering space is homeomorphic to
E(K{p, #)), because T(p, q) is a fibered knot with holonomy a pe-
riod map of order pq (see e.g. [R]). D

With Lemma 9 in hand, we need only to prove Theorem 1 for
hyperbolic knots and satellite knots.

Proof of Theorem 1 for hyperbolic knots. Suppose the complement
E(K) of a hyperbolic knot K covers two knot complements E(K\)
and E{Ki). By Lemma 1, these coverings are cyclic. Let Πi =
(τi|τ^ = 1) and Π2 = (T2|τ^ = 1) be the deck transformation groups.
For any homeomorphism g of E(K), E(K)/(τi) is homeomorphic to
E(K)/{gTig~l). So by Lemma 5, after replacing τ 2 by some gτιg~ι

if necessary, we may assume that X\, τ 2 and the hyperbolic metric
on E{K) have been chosen so that the action of G = (τi, τ2) is the
action of a finite abelian group.

Claim. G = (τi) = <τ2).
Otherwise, suppose (τi) = (τ 2 ) , say, is a proper subgroup of G.

As G is abelian, (τi) is a normal subgroup; so the non-trivial group
G/{x\) acts on E(K)(τ\) = E(K\). Since the restriction of G on
dE(K) is a free action, it follows from covering space theory that the
restriction of G/(τ\) on dE{K\) is a free action; so the action of
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G/(τ\) on E{K\) is not a strong inversion. By Lemma 3 E(K\) ad-
mits a cyclic surgery, but by Lemma 6 it cannot admit such a surgery,
a contradiction. So we have G = (τ\) = {τ2).

Therefore, E(K\) and E{K2) are homeomorphic. D

Proof of Theorem 1 for satellite knots. Suppose the complement
E(K) of a satellite knot K covers two non-homeomorphic knot com-
plements E(K\) and E{K2), with degree n\ and «2 respectively.
By Lemma 3, £(#;) admits a cyclic surgery with coefficient n,-/r/.
By Lemma 7, we must have K\ = K(pt, qι? 2, 2pz#/ + β/) and n/ =
^PiQi + β| > where εz = ±1 so E{K) is a 4/?/#; + ε* fold cyclic cov-
ering of E(Ki). Use the notations in the proof of Lemma 8, and
write E(Kt) = M[i] U M^ = E(K(Pi, qi)) U C(2, 2Piq{ + eή. It
was implied in the proofs of Lemmas 8 and 9 that the preimage
M[ι) of M| z ) in E(K) is homeomorphic to M[ι) itself, while by the
uniqueness of torus decomposition of E(K) we must have M[ ' =

M[2). Therefore, E(K(puqι)) = M[1) = fhψ = E(K(p2, q2)). It
is well known that torus knots are determined by their complements,
so we have (p\, q\) = fa, Qi) = (p, q) for some p, q. Now if
K\ = K(p, q 2, 2pq + ε θ and K2 = ^(^p, q 2, 2/?̂  + ε2) are not
the same, then εi = - ε 2 , and E(K) is a Apq + ε fold covering of
K{p, q\2y2pq + e) for both ε = ± 1 , which is impossible by Lemma
8. D
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