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CURRENTS, METRICS AND MOISHEZON MANIFOLDS

SHANYU JI

A compact complex manifold M is Moishezon if and only if there
exists an integral closed positive ( 1 , l)-current ω such that ω > εσ
and ω is smooth outside an analytic subvariety.

l Introduction. Given a Moishezon manifold M, it is welΠαiown
(cf. [Mo], [W]) that there is a bimeromorphic morphism π: M -> M
such that the manifold M is j>rojective algebraic. Let ώ be Kahler
form on M with [ώ] £ H2(M, Z). Then the pushforward current
ω = π*ώ is a ^-closed current on M such that

(i) [ ω ] e i / 2 ( M , Z ) ;
(ii) ω is smooth on M-S , where S is some proper analytic subset

in M
(iii) ω > εσ in the sense of currents, where ε > 0 is some real

number and σ is a fixed positive definite (1, l)-form (not necessarily
d-closed) on M.

Conversely, we shall prove the following

THEOREM 1.1. Let M be a compact complex manifold of dimension
n. Then M is Moishezon if and only if there exists a d-closed (1, 1)-
current ω on M such that the conditions (i), (ii) and (iii) above are
satisfied.

In fact, the above theorem is a weak version of a general conjecture
of Shiffman [J] which asked: whether a compact complex manifold N
is Moishezon if and only if there exists a rf-closed (1, l)-current satis-
fying the conditions (i) and (iii) above. The conjecture is to generalize
the well-known Kodaira embedding theorem in terms of currents and
it is still unknown. Some partial results have been obtained [J]: if M
is complex torus, Shiftman's conjecture is true; if S is a set of isolated
points, Theorem 1.1 follows from an extension theorem of Miyaoka
[M]; if S is special in some sense, Theorem 1.1 is also true. All of
these results are proved by smoothing of currents technique, and de-
pends on a fact that the top degree Chern number (c\ ([ω])n, M) > 0.
However, it is easy to find an example of a current ω satisfying (i), (ii)
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and (iii) but its top degree Chern number is negative. So the method
of smoothing currents cannot prove Theorem 1.1.

Recently, Demailly introduced a very useful notion of singular Her-
mitian metric on a holomorphic line bundle [D2] and he proved many
interesting results. One of them [D2, Proposition 4.2 (b)] is that if M
is a projective algebraic manifold of w-dimension with a Kahler form
σ and if L is a holomorphic line bundle over M, then L admits a
singular Hermitian metric with c(L) > eσ if and only if the Kodaira
dimension κ(L) = n. We observed that this result is in fact the spe-
cial case of Shiffman's conjecture in which M is projective algebraic
(Lemma 2.1). Thus we want to modify Demailly's idea to prove The-
orem 1.1. The Demailly's proof is based on the standard L2-estimate
of Ί) over Stein or projective algebraic manifolds. However, in our
problem, M is only a compact complex manifold. By observing that
M — S is complete Kahler (Lemma 4.1), instead of using the standard
ZΛestimate of d, we then prove Theorem 1.1 by using a deep gener-
alization of the L2 estimate theorem by Demailly [Dl] on complete
Kahler manifolds with non-complete Kahler metric and with singu-
lar metric on the line bundle. By a similar method, a special case of
Shiffman's conjecture when M is Kahler is also proved.

THEOREM 1.2. Let M be a compact Kahler manifold of dimension
n. Then M is projective algebraic if and only if there exists a d-
closed (1, \ycurrent ω on M such that the conditions (i) and (iii)
are satisfied.

We also study a class %? of compact complex manifolds as sug-
gested by Harvey and Lawson [HL, §5, problem 2]. We prove the
following result.

THEOREM 1.3. Let I G / . Then X is a Moishezon manifold iff it
is projective algebraic. In particular, this holds for any analytic compact
smooth family X of curves with Kahler base space.

Finally we point out an interesting fact below. Its proof is easy from
[K], [NS], [N].

THEOREM 1.4. Let M be any compact complex manifold. Then the
statements are equivalent:

(i) M is a Moishezon manifold;
(ii) there is a proper analytic subset S c M such that M-S admits

a complete Kάhler-Einstein metric with negative Ricci curvature;
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(iii) There is a proper analytic subset S c M such that M - S
admits a complete Kάhler-Einstein metric with negative Ricci curvature
and with finite volume;

(iv) There is a proper analytic subset S c M such that tM - S
admits a complete Kάhler metric g with Ricci(#) < -g.

The author wishes to thank Professor B. Shiffman for encourage-
ment for this work and wishes to thank Professor J.-P. Demailly for
very stimulating conversation during the JAMI conference at The
Johns Hopkins University 1991.

2. Singular metric on line bundles. Let L be a holomorphic line
bundle over a complex manifold M. A singular Hermitian metric
h on L [D2] is a metric which is given in any local tnvialization
θ:L\u->UxC by

\\ξ\\ = \θ(ξ)\e-hvW, xeU,ξeLx,

where hjj e L\0C{U) is an arbitrary function, called the weight of the
metric with respect to the tnvialization θ. If θf: L\v> —• U' x C
is another trivialization with the associated weight h!υ, and if p e
0*{U Π £/') is the transition function, then θ'(ξ) = p(x)θ(ξ) for
ξ € Lx, and h'v = hu + log \p\ on U n U'. The curvature form of
L is then given by the d-closed (1 , l)-current c(L, h) = ^^-ddhu
on U, which is independent of the choice of local trivialization. The
de Rham cohomology class of c(L, h) is the image of the first Chern
class cχ{L) e H2(X, Z) in H%R(X, R).

In order to relate any integral of-closed positive (1, l)-current to
singular Hermitian metric, we need to have the following lemma in
the type of Lefschetz' (1, 1)-theorem.

LEMMA 2.1. Let M be a complex manifold of dimension n and
let ω be a d-closed positive (1, l)-current on M. If the de Rham
class [ω] e H2(M, R) is integral, then there exists a holomorphic line
bundle L with a singular Hermitian metric h such that

ω = c(L, h).

Proof. Choose an open cover % = {Ua} of M such that Ua are
geometrically convex and then all finite intersections of the sets in ^
are contractible. Also assume that each Ua is chosen small enough so
that there exists a plurisubharmonic function hua on Ua satisfying

ω = ̂ Ξλddhu = ̂ - ddchυ on Uan In
where dc = V^ϊ(d -d); hence ddc = 2χ/^ϊdyf^ldd .
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It is sufficient to find transition functions {paβ} €
defining a holomorphic line bundle such that

(2.2) hUβ = hUa + log\paβ\.

In this case, hu is the weight of the singular metric.
a

Put Uj = j%hua and wα^ = Uβ - ua. Because Uβ - ua is pluri-
harmonic on UaΓ\Uβ , it implies that Uβ - Uj must be smooth; thus

By exactly the same argument as in [SS, Lemma 2.36, p. 38], we
can construct a family of transition functions {paβ} satisfying (2.2).
Here we only sketch the proof: since ddcuaβ = 0, we can choose
vaβ = QtiUaΠUβ) such that dvaβ = dcuaβ . Then caβγ = vβγ-vaγ +
vaβ defines an element {caβγ} e Z 2 ( ^ , R ) . By Leray isomorphism,
{caβγ} corresponds to the cohomology class [ω]. Since {caβγ} is
integral, there is a 1-cochain {baβ} e Cι(%S, R) such that

Caβy + bβγ - baγ + baβ = maβγ G Z .

Let ^ ^ = uaβ + \f--ϊ(uaβ + 6αjj), which is a holomorphic function
such that

fβγ - fay + faβ = ^ % ^ y

Let />β, = exp(2π/α^). Such { ^ } e Z 1 ^ , ^ * ) satisfies (2.2).
Thus the lemma is proved. α

From the proof above, by the standard regularity theorem for ellip-
tic operators, it is easy to obtain the following

COROLLARY 2.3. Let M, ω be as in Lemma 2.1 and let ω be
smooth on M-S for some proper analytic subset S c M. Then there
exists a holomorphic line bundle L over M with a singular metric h
such that

and h\M~s is smooth, i.e., for any point in x e M, there is a neigh-
borhood U of x in M such that the weight hu of the singular metric
h is smooth on U - S.

Let L be a holomorphic line bundle over M admitting a singular
metric h such that the curvature current c(L, h) > 0. For any x e
M, let hu be the weight of the metric on a neighborhood U of x,
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we define the Lelong number with respect to the singular metric by
(cf. [D2])

(2.4) υ (hv, x) = lim inf Λ

 h ^
v J ι ; z+x llog|z -x\

Equivalently,

where

v(hU9x) = l i m v ( c ( L , h)9x9r)
r—>0

υ(c(L, h),x, r) = (2πrψ-i JBJB x r
So we can denote v(hjj, x) to be v(c(L, h), x). We define a set

Ec(c(L, h)) = {xeM; υ(c(L, h),x)> c}

which is an analytic subset by a well-known theorem of Siu [Si].

LEMMA 2.5 (cf. [D2, Lemma 2.8]). If φ is a plurisubharmonicfunc-
tion on M, then e~2φ is integrable in a neighborhood of x e M if
v(φ, x) < 1, and e~2Ψ is non-integrable on any neighborhood of x if
υ(φ, x ) > n .

3 I? estimate for ~d over complete Kahler manifolds. In this sec-

tion we review some results of Demailly [Dl] and state a general L2

estimate for <9 for line bundles with singular metric.
Let M be a complex manifold of dimension n with a Kahler metric

ω. We shall use the same notation ω to denote the associated Kahler
form. Denote dVω = ωn/n\ to be the volume form of (X, ω). The
form ω defines an operator on /\p'q T*M by

ω(a) = ω Λ a e /\ T*M

and its adjoint operator Λ is defined by

(Aa,β) = (a,ω(β))

for all a e t\p>q T*M, β e /\P-1>«-1 T*M. Here ( , ) is the inner
product given by ω.

Let L be a holomorphic line bundle over X. Then these operators
ω and Λ can be extended to the space of L-valued (p, q)-forms,
l\p>q T*M ® L, by the identity map id^ . In additional we suppose
that (L, h) is a line bundle over M with a positive C2 Hermitian
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metric h, i.e., its first Chern class C\(L, h) > 0. For each integer q,
1 < q < n, we define a bilinear form c(L, Λ)̂

c(L, h)g(a9 β) = (2πci(L, λ)Λα, j9)

for all α, β e (\n>qT*M ® L. Since Ci(L, A) > 0, it is known
that c(L, Λ)̂  is positive, for all q [Dl, Lemma 3.1]. For any forms
a e l\n>q T*M ® L, one defines

Hc(L^) t = s u p | c ( L ^ ^ |

where 0 Φ β runs through Λ"'* T*M ® ̂  Notice that the number
Mc(L,/*) m a Y ^ e equal to infinity. In practice, in order to estimate
the term \a\c^L^) , we have the following result. If c(L, h) > λω®
Id^, where λ > 0 is a measurable function on M, then for a e
f\n>q T*M ® L, one has [Dl, Lemma 3.2]

LEMMA 3.2 [Dl? Theorem 4.1]. Le^ M be a complete Kάhler mani-
fold of dimension n. Let ω be a Kάhler metric which is not necessarily
complete. Let (L, h) be a holomorphic Hermitian line bundle over M
with a C2 positive Hermitian metric h. Then for any smooth L-valued
(n, q)'form g on M with

dg = 0, I \g\2dVω <oo and I \g\2

c{L h) dVω < oc,
JM JX

 y ' )q

there exists a smooth L-valued (n, q - \)-form f on M such that

df=g, and I \f\2dVω < f \g\2

c{L h) dVω.
JM JX V )q

Notice that M is complete Kahler, i.e., M admits a complete
Kahler metric g, but ω may not be equal to g. The norm | | is
defined with respect to ω and h.

Let M be a complete Kahler manifold of dimension n . Again let
ω be a Kahler metric which is not necessarily complete. Let L be
a holomorphic line bundle over M with a C2 Hermitian metric h .
Let φ be a function on M such that for any point x e M, there is a
neighborhood U of x in M such that the restriction of φ on U

(3.3) φ\v = φx +φ2
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where φ\ is a C2 function on U and φi is a plurisubharmonic
function on U. The Lebesgue decomposition of the 0-order current
\Γ-iddφ gives

where the singular part y/^Λ{ddφ)s is a positive (1, l)-current, and
the absolute continuous part \f^Λ{ddφ)c is a semipositive (1, 1)-
form with L\QC coefficients.

We define

c(L, e-+h) = c(L9 h)

LEMMA 3.4 [Dl, Theorem 5.1]. Let M be a complete Kάhler mani-
fold of dimension n. Let ω be a Kάhler metric which is not necessar-
ily complete. Let L be a holomorphic line bundle over M with a C2

Hermitian metric h. Let φ be a function which is locally the sum of
a C2 function and a plurisubharmonic function as in (3.3). Suppose
c(L, e~φh) > 0. Then for any smooth L-valued (/i, q)-form g on M
with

dg = 0 and

there exists a smooth L-valued (n, q — \)-form f on M such that

df=g and f \f\2e~2Uvω < ί \g\2 , e~2Uvω.

where \ \ is defined with respect to h and ω.

The above lemma leads to a general L2-estimate for <9 for any
holomorphic line bundle with singular metric as follows.

Let M, ω be as in Lemma 3.4 above. Let L be a holomorphic
line bundle over M with a singular Hermitian metric h . Suppose

c(L,h)>0

in the sense of currents. Now take and fix any smooth Hermitian
metric ho and L; then on each open subset U such that L\u is
trivial, the weight Ao,t/ of ΛQ is a smooth function on U. Define on
each such U a function

(3.5) <Pu = hu-ho,u.

It is easy to see that we have in fact defined a function ψ on M
globally such that

<P\u = Ψu
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Since c(L, h) > 0, by the proof of Lemma 2.1, we see that any weight
hu of the metric h is plurisubharmonic, then the function φ is obvi-
ously locally a sum of a C2-function and a plurisubharmonic function.
Then from Lemma 3.4 we obtain

COROLLARY 3.6. Let M, ω be as in Lemma 3.4. Let L be a
holomorphic line bundle over M with a singular Hermitian metric h
such that c(L9 h) > 0. Suppose that ho is any smooth Hermitian
metric on L and denote φ to be the function on M defined by (3.5).
Then for any smooth L-valued (n, q)-form g on M with

dg = 0 and

there exists a smooth L-valued (n9 q - \)-form f on M such that

df=g and ! I/I2 dVω < I \g\2

 e-Ψh e-2* dVω,
JM JM

 { ' °j«

where \ \ is defined by h and ω.

Proof. Apply Lemma 3.4 to (L, ho) and φ , we know that for any
g with dg = 0 and JM\g\2

c(L -,h) e'1^dVω < oo? there exists /
v ' QJ q

such that

S and ljf\lωe-2φdVω<jjg\^^^̂

Notice that | / | ^ ω ^ " 2 ^ = | / | ^ ω by (3.5), and the corollary fol-

lows. D

REMARK 3.7. Suppose that the line bundle L has a singular metric
h such that c(L, h) > εω, for some constant ε > 0, i.e.,

c(L, h)(v , v) > εω(v, v),

for any test form υ . Since

c{L, e-*ho)(v, υ) = \c(L, h0) +

= c(L, h)(v, υ ) ,

we see that
c(L, e~φho){v , v) > εω(v , v).
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Therefore by (3.1) we have the estimate

for any ae f\n>q T*M®L.

4. Complete Kahler metric on M - S. In order to prove Theorem
1.1, we wish to apply Lemma 3.4 to X - S. In general, X — S may
not be complete Kahler, but together with the ^-closed (1, 1)-current
ω satisfying (ii) and (iii), we can construct a complete Kahler metric
on M - S. The proof is analogous to [Dl, Proposition 1.6].

LEMMA 4.1. Let M be a compact complex manifold and S c M a
proper analytic subset Let ω be a d-closed (1, ί)-current satisfying
the conditions (ii) and (iii) in §1. Then M - S admits a complete
Kahler metric.

Proof. By [Dl, Proposition 1.4], for any complex manifold M and
any analytic subset S c M, there exists a locally integrable function
ψ on M such that ψ is smooth on M — S\ ψ{x) < — 1, for any
x e M - S and ψ(x) -* -oo as x goes to S, and there exists a real
continuous (1, l)-form γ on X such that

(4.2) V^Λddψ > γ
(4.3) if a > 0 is a real number, e~aψ is non-integrable on a neigh-

borhood of a point s G S where the codimension of the germ Ss

satisfies

codimSy > α.

Put ώ = Cω - \ΓΛddsJ-ψ, which is a smooth form o n M - S
and is a current on M. We claim that we can choose the constant
C > 0 large enough such that

(4.4) (C-l)ω+ "f^βv >o

In fact, since y is continuous on Λf and ω > εσ on M (cf. (iii) in
§1), and since X is compact, we can find a constant number C > 0
such that

( C - l ) β σ > - x - J = o n M .

Then
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on M in the sense of currents. Thus (4.4) is proved. From (4.4), it
yields

(4.5) ώ > ω + 4V^ϊd(-ψ)1'4 Λ d{-ψ)χl*

because

Then ώ is complete Kahler by the same argument of [Dl, proof of
Proposition 1.6]. For the reader's convenience, we still give the proof:
let δ (resp. δ) be the geodesic distance associated to ω (resp. ώ).
For any two z\, z2 £ M,

, z2) = inf

(similarly one defines δ(z\, z2)) where u runs through the set of all
C1 curves w: [0, l]-+M-S with the ending points z\ and Z2 By
(4.5),

du du\ /rfwλ 2

U J U J
du d(ψ o u)

dt

because

Thus

d(ψ ou)
It

, Z2) > , Z 2 ) ,

Since ^ is exhaustive, and since a manifold admits a complete metric
ώ if and only if the closed balls defined by geodesic distance δ are
always compact, we know that ώ is complete Kahler on M - S. α

5. Proofs of Theorems 1.1 and 1.2.

LEMMA 5.1 [Dl, Lemma 6.9]. Let Ω c C " &e an open subset, and
let Y c Ω £e α« analytic subset If w is a (jp9 q)-form with L/oc

coefficients on Ω, and v is a (p, q — \)-form with Lfoc coefficients on
Ω such that Ί)υ = w on Ω-Y in the sense of currents, then Ί)v = w
on Ω in the sense of currents.

Proof of Theorem 1.1. By Lemma 2.1 and Corollary 2.2, there exists
a holomorphic line bundle L over M with a singular metric h such
that ω = c(L, h) and A is smooth on U - S.
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By Lemma 4.1, M - S is a complete Kahler manifold. Since the
restriction of the singular metric h on L is smooth over M - S,
L\MS has a smooth Hermitian h = H\M-S We consider ω as Kahler
metric on M — S. Notice that ω is not necessarily complete.

Take and fix a point XQ e M - S. Because h is smooth on M -S,
we see that the Lelong number is

υ(c(L, h), x) = 0, x = Xo 0 Γ χ near x0

Let Ψ o be a smooth function on M - {XQ} which is equal to
n log \z - xo\ (in some coordinates) near XQ .

By the hypothesis (iii), c(L, h) > εσ on M, there is some m such
that

(5.2) mc(L, Λ) + ̂ I c O T o > mεσ + ~ < 9 d Ψ 0 >
7Γ π

Put ^ m = c(L, h) + (v

/ : :T/7r)55Ψo. The Lelong number

v(vm, XQ) = n + 1 and i>(i>m , z) < 1, for z Φ x0 near x0.

Therefore, by Lemma 2.5, e~2ψo is non-integrable near x0.
Let P(z) be an arbitrary polynomial of degree 1 in the given co-

ordinates V of Xo. Fix a smooth cut-off function χ with compact
support in V such that χ = 1 near XQ . Fix a non-vanishing local
holomorphic section g eH°(V, AΓM ® Lm).

Then v = P<9χ ® g is regarded as a smooth d -closed Lm -valued
(n, l)-form on M and hence on M - S such that

ί
JMJM-S

where Ψo is constructed as above, and | | is defined by ω and by the
smooth Hermitian metric h .

Then by (5.2), we apply Lemma 3.4 and Remark 3.7 to M - S,
( L m , hm) and Ψ o , and then there is a smooth Lm-valued (n, 0)-
form u on M - S such that

Θu = υ and / \u\2e-2ΨodVω < ί \v\2e-2ψodVω<oo.
JM-S JM-S

Then we claim that u can be extended as a smooth Lm-valued
(n, 0)-form on M. In fact, we apply Lemma 5.1 to prove it. Since
v is a smooth Lm-valued (n, 0)-form on M, it is sufficient to show
that \/x eS, there is a neighborhood £/ = 17* of x in M such that

\u\ljdVu <oo
u-s
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where dVυ is the Euclidean volume form on U with respect to a
coordinate system and the norm | \u is with respect to dVjj and h.
Recall ω>eσ, and ΨQ is smooth near S it yields

/ \u\jjdVu = / \u\\jdVu < constant / \u\2e-2ψodVω
Ju Jus Jus

< 00.

The claim then is proved by the regularity theorem.
Also we claim that \u(z)\ = o(\z - xo\) n e a r χo I*1 fact, it is

true by the fact that j M _ s \u\2e~2ψo dV < oo, and that e~2ψo is non-
integrable near XQ , and that u is holomorphic near x 0

Therefore
/ := χPg-ueH°(M, KM®Lm)

has the prescribed 1-jet Pg at JCQ. Thus the Kodaira dimension of
KM®Lm = n. Hence M is Moishezon. D

Proof of Theorem 1.2. By the similar procedure as above, replacing
M — S by M, we can apply Corollary 3.6 and Remark 3.7 to know
that M is Moishezon if and only if there is a (1, l)-form ω satisfying
(i) and (iii). Since M is Kahler, by Moishezon's theorem [Mo], it is
equivalent to M being projective algebraic. Then Theorem 1.2 fol-
lows. D

6. Projectivity of a class of Moishezon manifolds. In 1983, Har-
vey and Lawson proved a characterization theorem for Kahler man-
ifolds [HL], that is, a compact complex manifold is Kahler if and
only if there exists no nontrivial positive current which is a bidimen-
sion (1, l)-component of a boundary. They also raised several gen-
eral problems. One of them [HL, §5, problem 2] is as follows: de-
scribe the class of compact complex manifolds which satisfy that if
there exists a non-trivial positive current which is the bidimension
(1,1 )-component of a boundary, then there exists a non-trivial posi-
tive smooth current which is the bidimension (1, 1)-component of a
boundary. We denote this class by %?. The significance of this prob-
lem is that to test whether a given manifold in %f is Kahler; it suffices
to check the pointwise non-negative, smooth (n - 1, n - 1)-forms, to
see if one is a boundary.

It is worth remarking that investigating the obstruction of a Moishe-
zon manifold to be projective algebraic is an interesting problem in
the theory of compact complex manifolds. Classically we know that
there is no obstruction for compact complex surfaces (Chow-Kodaira
[CK]) and for complex tori (Lefschetz [W]). Moishezon's theorem
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[Mo] just means that this obstruction is equivalent to that the man-
ifold is non-Kahler. Recently Peternell showed that this obstruction
for 3-dimensional complex manifolds is a positive integral linear com-
bination of irreducible curves which is homologous to zero.

As an important example in / , w e point out that if (X, Y, /) is
any analytic compact smooth family of curves with Kahler base space
Y, then X is in %?. Here we say that (X, Y, /) is an analytic
compact smooth family of curves if X and Y are compact connected
complex manifolds, and / : X —• Y is a surjective holomorphic map
which is everywhere of maximal rank such that each fiber Xy = /~~1 (y)
is a connected smooth curve for any y e Γ . Notice that in this case
/ is a submersion. For any analytic compact smooth family of curves
(X, Y, /) with Kahler base space Y, we know X e & by [HL,
Theorem (17)°°].

Proof of the Theorem 1.3. By applying Moishezon's theorem [Mo]
that a Moishezon manifold is projective algebraic if and only if it is
Kahler, it suffices to show: if X is a Moishezon manifold, then X is
a Kahler manifold. Suppose X is non-Kahler. By the result of Har-
vey and Lawson [HL, Proposition (12) and Theorem (14)], we know
that there exists a non-trivial positive current Γo on X which is the
bidimension (1, l)-component of a boundary. Since I E / 5 there
exists a non-trivial positive smooth current T which is the bidimen-
sion (1, l)-component of a boundary. We can write

where S2>1 and S 1 ' 2 are some currents of X of the bidimension
(2, 1) and (1,2) , respectively. Notice that these S2>1 and S 1 ' 2

may not be smooth.
Since X is Moishezon, there exists a modification π: X —• X such

that jthe manifold X is projective algebraic. Let σ be a Kahler form
on X.

We claim that the push-forward current σ := π*σ is a J-closed
(1, l)-current on X satisfying the following property: for any point
a e X, there exists a neighborhood U of a in X with a local co-
ordinates system (C/, z 1 , . . . , zn) and a positive constant C such
that

(6.1)
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on U in the sense of currents. In fact, for any point a e M, we can
find a neighborhood U of a in M with a local coordinate system
(U, z 1 , . . . , zn) and a constant C > 0 such that

σ-Cπ* ίf^^^dzJ AdzJ J >0

on π-^t/) in the sense of currents. Then on U, we see π*<7 -
Cπ*π*(]Γ"= 1 \ΓΛdz}' Λd~zJ) > 0 in the sense of currents. So we have
σ = π*σ > Cπ*π*(Σ* = 1 \ίzΛdzi Λ dz O > C Σ J = 1 yΓΛdz* Λ ̂  on
£/ in the sense of currents. The claim (6.1) is then proved.

We define the smoothing σε as follows: Let {ί/;}i<κ be any finite
open covering of X and {φi}\<i<q be any partition of unity subordi-
nate to {Ui}ι<i<q . Suppose that every £/z is a coordinate chart and
that Uf is identified with a unit ball with center O G C " with respect
to the coordinate chart. On each [//, since it is biholomorphic to the
open unit ball, we can write

Because fi - fj is pluriharmonic on C/, Π Uj, Vi ^ j , it implies that
ŷ  = yj is smooth. Then we define a global d-closed smooth real
(1, l)-foπn P on X

because P\v. = y/-rΐd'dγfi=ιφi(hj - Λ/) i.e., we have σ = P +

y/^YliΨifi- Then smoothing <τε of σ, a ^/-closed real (1, l)-form
on X , is defined by

w=l

where χif£ is the standard approximation of identity defined on t/f .

Since σε - a = V^θ<9{Σf=1(;t/,ε * {ψifi) - (ί?/.//))} > it follows that

[σ] = [σε]eHι>ι(X,R) and σ e -+σ, as ε -> 0
in the sense of currents.

By the facts that X is compact and that T is smooth, we can make
the following computation:

(σ, T) = lim(σε, T) = lim(σε, dS2>ι + dSι>2)

= lim(0 + 0) = 0,

where we used the fact that σε is ^-closed.
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On the other hand, the following claim leads to a contradiction and
it completes the proof of the theorem:

(6.2) ( σ , Γ ) > 0 .

In fact, let the open covering {Ui}\<i<g of X and a partition of
unity {<Pi}ι<i<q subordinate to {£//}i<κ# be as before. Since T is
non-trivial and σ satisfies the property (6.1), we assume that the form
ψ\T Φ 0 and that a > Cγ^J=ι \ΓΛdzjNd~Zj on U\ for some positive
constant number C in the sense of currents. Then

ι = l

We claim that for each /, 1 < i < q, (σ, φ{Γ) > 0. In fact, let
Xiy6 be the standard approximation of identity defined on t/, . Then
(σ, ψiT) = limβ_o(/ϊ,ε * σ ? ΨiT)- Notice that /,->e * σ is a posi-
tive C°°(l, l)-form on Ui for any ε > 0, and that ^/Γ is positive
(n - I, n - l)-current on C// it follows that (//,e * σ, ^/Γ) is non-
negative. The claim then is verified by letting ε go to zero. Therefore,
we have shown

(6.3) ( σ , Γ ) > ( σ , ^ Γ ) .

For the positive current ( T - C ^ " = 1 \ΓΛdzjί\d~2Γj on C/j, by apply-
ing the same method, we know (σ — C Σy = i yf—\dzjt\d~Tj, ^ Γ ) > 0,
i.e.,

(6.4)

Applying Wirtinger's Inequality as well as the argument in [HL, §4],
we get

(6.5) [Σ^dzjΛdΎJiφ^] =M(φιT)>09

where M(φ\T) is the mass of T. The claim (6.2) follows from (6.3),
(6.4), (6.5) above. D

7. Moishezon manifolds and Kahler-Einstein metrics. We prove
Theorem 1.4 now. The statements (ii) => (ii) =» (iv) are trivial. It suf-
fices to show (i) => (Hi) and (iv) => (v).
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Proof for (i)=>(iii). Suppose that M is a Moishezon manifold.
Then there is a projective algebraic manifold M, a proper surjective
holomorphic mapping π: M —• M , and an analytic set F such that
the restriction mapping π\~_ψ:M—V-+M—V is bihomororphic,

where V :=π~ι(V). Choose a purely 1-codimensional analytic subset
S on M such that F c S and that #3/ ® [S] is ample. By applying
Hironaka's resolution of singularities if necessary, we assume without
loss of generality that S is with simple normal crossjngs. JΓhen by a
result of Kobayashi [K, Theorem 1], we know that M — S admits a
complete Kahler-Einstein metric g which is with negative Ricci cur-
vature and with finite volume. Then we set g := ((π\M-s)~ι)*g

Proof for (iv) => (i). Suppose that there is an analytic subset S c M
such that M-S admits a complete Kahler metric g with Ricci^) <
-g. By Hironaka's resolution of singularities again if necessary, we
can assume S is a hypersurface. Then by the L2 Riemann-Roch
inequality proved by Nadel and Tsuji [NS] and by [N, Proposition
1.11], it implies

x

/ ^f g">0.
M-S

 n
 JM-S

Since H°(M, Kff ® [5] Θ ^- ! )) c //°(M, (A^ ® [5])^), we then see

dimH°(M,(KM®[S])®k)

f ( jp
M-S \n\JM-s k»

This yields (i). D

Note added in proof. Recently, Shiffman's conjecture has been
proved completely. See: S. Ji and B. Shiffman, Properties of com-
pact complex manifolds carrying closed positive currents, to appear in
J. Geom. Anal.
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