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CURRENTS, METRICS AND MOISHEZON MANIFOLDS

SHANYU J1

A compact complex manifold M is Moishezon if and only if there
exists an integral closed positive (1, 1)-current  such that w > eo
and @ is smooth outside an analytic subvariety.

1. Introduction. Given a Moishezon manifold A/, it is well known
(cf. [Mo], [W]) that there is a bimeromorphic morphism 7n: M — M
such that the manifold M is projective algebraic. Let & be Kéhler
form on M with [@] € H*(M,Z). Then the pushforward current
w = m.@® is a d-closed current on M such that

(i) [wle HX (M, Z);

(il) w is smooth on M —S, where S is some proper analytic subset
in M;

(iii) w > €o in the sense of currents, where ¢ > 0 is some real
number and o is a fixed positive definite (1, 1)-form (not necessarily
d-closed) on M.

Conversely, we shall prove the following

THEOREM 1.1. Let M be a compact complex manifold of dimension
n. Then M is Moishezon if and only if there exists a d-closed (1, 1)-
current @ on M such that the conditions (i), (ii) and (iii) above are
satisfied.

In fact, the above theorem is a weak version of a general conjecture
of Shiffman [J] which asked: whether a compact complex manifold N
is Moishezon if and only if there exists a d-closed (1, 1)-current satis-
fying the conditions (i) and (iii) above. The conjecture is to generalize
the well-known Kodaira embedding theorem in terms of currents and
it is still unknown. Some partial results have been obtained [J]: if M
is complex torus, Shiffman’s conjecture is true; if .S is a set of isolated
points, Theorem 1.1 follows from an extension theorem of Miyaoka
[M]; if S is special in some sense, Theorem 1.1 is also true. All of
these results are proved by smoothing of currents technique, and de-
pends on a fact that the top degree Chern number (c¢;([w])”, M) > 0.
However, it is easy to find an example of a current w satisfying (i), (ii)
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and (iii) but its top degree Chern number is negative. So the method
of smoothing currents cannot prove Theorem 1.1.

Recently, Demailly introduced a very useful notion of singular Her-
mitian metric on a holomorphic line bundle [D2] and he proved many
interesting results. One of them [D2, Proposition 4.2 (b)] is that if M
is a projective algebraic manifold of n-dimension with a Kéhler form
o and if L is a holomorphic line bundle over M, then L admits a
singular Hermitian metric with ¢(L) > ¢o if and only if the Kodaira
dimension k(L) = n. We observed that this result is in fact the spe-
cial case of Shiffman’s conjecture in which M is projective algebraic
(Lemma 2.1). Thus we want to modify Demailly’s idea to prove The-
orem 1.1. The Demailly’s proof is based on the standard LZ-estimate
of & over Stein or projective algebraic manifolds. However, in our
problem, M is only a compact complex manifold. By observing that
M —S is complete Kédhler (Lemma 4.1), instead of using the standard
L2-estimate of J, we then prove Theorem 1.1 by using a deep gener-
alization of the L? estimate theorem by Demailly [D1] on complete
Kihler manifolds with non-complete Kahler metric and with singu-
lar metric on the line bundle. By a similar method, a special case of
Shiffman’s conjecture when M is Kéhler is also proved.

THEOREM 1.2. Let M be a compact Kihler manifold of dimension
n. Then M is projective algebraic if and only if there exists a d-
closed (1, 1)-current @ on M such that the conditions (i) and (iii)
are satisfied.

We also study a class # of compact complex manifolds as sug-
gested by Harvey and Lawson [HL, §5, problem 2]. We prove the
following result.

THEOREM 1.3. Let X € # . Then X is a Moishezon manifold iff it
is projective algebraic. In particular, this holds for any analytic compact
smooth family X of curves with Kdhler base space.

Finally we point out an interesting fact below. Its proof is easy from
[K], [NS], [N].

THEOREM 1.4. Let M be any compact complex manifold. Then the
statements are equivalent:
(i) M is a Moishezon manifold,
(ii) there is a proper analytic subset S C M such that M —S admzts
a complete Kdhler-Einstein metric with negative Ricci curvature,
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(iii) There is a proper analytic subset S C M such that M — S
admits a complete Kdhler-Einstein metric with negative Ricci curvature
and with finite volume,

(iv) There is a proper analytic subset S C M such that tM — S
admits a complete Kdhler metric g with Ricci(g) < —g.

The author wishes to thank Professor B. Shiffman for encourage-
ment for this work and wishes to thank Professor J.-P. Demailly for
very stimulating conversation during the JAMI conference at The
Johns Hopkins University 1991.

2. Singular metric on line bundles. Let L be a holomorphic line
bundle over a complex manifold M . A singular Hermitian metric
h on L [D2] is a metric which is given in any local trivialization
0: Ly —UxC by

€]l =16@&)le™"™),  xeU,¢elLy,
where hy € LL (U) is an arbitrary function, called the weight of the

metric with ré:i)ect to the trivialization 6. If 6': L|,, — U’ xC
is another trivialization with the associated weight 4, , and if p €
Z*(U N U’) is the transition function, then 6'(¢) = p(x)0(&) for
£ €Ly, and hy = hy +1log|p| on UNU’'. The curvature form of
L is then given by the d-closed (1, 1)-current ¢(L, h) = \/—;_laﬁhu
on U, which is independent of the choice of local trivialization. The
de Rham cohomology class of ¢(L, A) is the image of the first Chern
class ¢;(L) € H¥(X,Z) in H3x(X,R).

In order to relate any integral d-closed positive (1, 1)-current to
singular Hermitian metric, we need to have the following lemma in
the type of Lefschetz’ (1, 1)-theorem.

LEMMA 2.1. Let M be a complex manifold of dimension n and
let w be a d-closed positive (1, 1)-current on M . If the de Rham
class [w] € H*(M , R) is integral, then there exists a holomorphic line
bundle L with a singular Hermitian metric h such that

w=c(L,h).

Proof. Choose an open cover Z = {U,} of M such that U, are
geometrically convex and then all finite intersections of the sets in %
are contractible. Also assume that each U, is chosen small enough so
that there exists a plurisubharmonic function Ay on U, satisfying

A P ¢
= Taahuu = ﬁdd hy ~ on U,

where d¢ =+1/—1(8 —9); hence dd¢ =2\/—10v/-180.
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It is sufficient to find transition functions {p,s} € ZY(%, &)
defining a holomorphic line bundle such that

(2.2) hy, = hy, +10g|pag|.

In this case, Ay is the weight of the singular metric.

Put u; = flﬁhUa and u,p = ug — U, . Because ug — u, is pluri-
harmonic on U, N U, it implies that ug — u; must be smooth; thus
Uop € gRoo(Ua N Uﬂ) .

By exactly the same argument as in [SS, Lemma 2.36, p. 38], we
can construct a family of transition functions {p,z} satisfying (2.2).
Here we only sketch the proof: since ddu,s = 0, we can choose
Vap = CR°(U.NUp) such that dv,p = duypg . Then c,p, = Vg —Vay+
v,p defines an element {c,5,} € Z%(% , R). By Leray isomorphism,
{capy} corresponds to the cohomology class [w]. Since {c,g,} is
integral, there is a 1-cochain {b,5} € C}(# , R) such that

Capy + bﬁy - bay + baﬂ =Mupgy € Z.

Let f.p = Uap + V—1(tap + bop), which is a holomorphic function
such that

Toy = Jar + Jap = V=1Magp, .

Let pos = exp(2nf,p). Such {p,p} € ZX (%, &) satisfies (2.2).
Thus the lemma is proved. o

From the proof above, by the standard regularity theorem for ellip-
tic operators, it is easy to obtain the following

COROLLARY 2.3. Let M, w be as in Lemma 2.1 and let @ be
smooth on M — S for some proper analytic subset S C M . Then there
exists a holomorphic line bundle L over M with a singular metric h
such that

w=c(L,h)

and h|y_s is smooth, i.e., for any point in x € M, there is a neigh-
borhood U of x in M such that the weight hy of the singular metric
h is smoothon U - S.

Let L be a holomorphic line bundle over M admitting a singular
metric & such that the curvature current ¢(L, #) > 0. For any x €
M, let hy be the weight of the metric on a neighborhood U of x,
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we define the Lelong number with respect to the singular metric by
(cf. [D2])

T kU(Z)
(2.4) 'U(hU, X) = lllz'l'_l_)l)?fm
Equivalently,
v(hu,x)=liﬂév(C(L,h),x,r)
where
1 _
ch,h,x,r:——————/ c(L, h) A (V=108 |z[)" 1.
(E(Ls ), %, 1) = (s || (Lo YA (V=T0D2P)

So we can denote v(hy, x) to be v(c(L, h), x). We define a set
Ec(c(L, h)={xeM;v(c(L,h),x)>c}

which is an analytic subset by a well-known theorem of Siu [Si].

LeEMMA 2.5 (¢f. [D2, Lemma 2.8)). If ¢ is a plurisubharmonic func-
tion on M, then e=2% is integrable in a neighborhood of x € M if
v(¢, x) < 1, and e~2¢ is non-integrable on any neighborhood of x if
v(p,x)>n.

3. L? estimate for & over complete Kihler manifolds. In this sec-
tion we review some results of Demailly [D1] and state a general L2
estimate for 0 for line bundles with singular metric.

Let M be a complex manifold of dimension # with a Kdhler metric
« . We shall use the same notation  to denote the associated Kéhler
form. Denote dV,, = w"/n! to be the volume form of (X, w). The
form  defines an operator on A?*? T*M by

p+1,9+1
wla) =wAa€ /\ ™M

and its adjoint operator A is defined by

(A, ) = (o, @(B))

forall ae N>9T*M, e NP9 T*M . Here (, ) is the inner
product given by w.

Let L be a holomorphic line bundle over X . Then these operators
w and A can be extended to the space of L-valued (p, q)-forms,
N9 T*M ® L, by the identity map id; . In additional we suppose
that (L, k) is a line bundle over M with a positive C? Hermitian



340 SHANYU J1

metric A, i.e., its first Chern class ¢;(L, #) > 0. For each integer ¢,
1 < g < n, we define a bilinear form ¢(L, &),

C(L’ h)q(aa B) = (27(61(L, h)Aa> ﬁ)

forall a, B € N"9T*M ® L. Since ¢;(L, h) > 0, it is known
that ¢(L, h), is positive, for all ¢ [D1, Lemma 3.1]. For any forms
a€ N"!T*M ® L, one defines

3 Ka, B)|
ez, my, = s‘gp{c(L, h)qe(B, ﬂ)}

where 0 # B runs through A"’ T*M ® L. Notice that the number
leel( L,k), May be equal to infinity. In practice, in order to estimate
the term |a|C(L,;,)q , we have the following result. If ¢(L, A) > lo ®

Id;, where A > 0 is a measurable function on A, then for a €
N"9T*M ® L, one has [D1, Lemma 3.2]

1
(3.1) lolece my, < gzlol*

LEMMA 3.2 [D1, Theorem 4.1]. Let M be a complete Kihler mani-
fold of dimension n. Let w be a Kdhler metric which is not necessarily
complete. Let (L, h) be a holomorphic Hermitian line bundle over M
with a C? positive Hermitian metric h. Then for any smooth L-valued
(n, q)-form g on M with

B_g:(),/ gl?dVi < oo and /|g|§(L . @V < 00,
M X *"q

there exists a smooth L-valued (n, q — 1)-form f on M such that
of=g. and [ 1fPaVi< [ lelyn, dVo.

Notice that M is complete Kihler, i.e., M admits a complete
Kéahler metric g, but @w may not be equal to g. The norm | | is
defined with respect to w and 4.

Let M be a complete Kdhler manifold of dimension n. Again let
o be a Kihler metric which is not necessarily complete. Let L be
a holomorphic line bundle over M with a C? Hermitian metric /.
Let ¢ be a function on M such that for any point x € M, there is a
neighborhood U of x in M such that the restriction of ¢ on U

(3.3) dlu =1+ ¢2
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where ¢; is a C? function on U and ¢, is a plurisubharmonic
function on U. The Lebesgue decomposition of the 0-order current

V—180¢ gives
V=183¢ = V=1(09¢). + V=1(896);

where the singular part v/—1(89¢); is a positive (1, 1)-current, and
the absolute continuous part /—1(89¢). is a semipositive (1, 1)-
form with L} coefficients.

We define

(L, e~%h) = (L, h) + g(a%)c.

LEMMA 3.4 [D1, Theorem 5.1]. Let M be a complete Kihler mani-
fold of dimension n. Let w be a Kdhler metric which is not necessar-
ily complete. Let L be a holomorphic line bundle over M with a C?
Hermitian metric h. Let ¢ be a function which is locally the sum of
a C? function and a plurisubharmonic function as in (3.3). Suppose
c(L, e ?h) > 0. Then for any smooth L-valued (n, q)-form g on M
with

0g=0 and /M |g|§(L,e_¢h)qe—2¢ dV, < oo,

there exists a smooth L-valued (n, q — 1)-form f on M such that
T 2,-2¢ 2 -2¢
of =g and [ |fPeav,< [ 18Ry o e dVe.
where | | is defined with respect to h and .

The above lemma leads to a general L2-estimate for & for any
holomorphic line bundle with singular metric as follows.

Let M, w be as in Lemma 3.4 above. Let L be a holomorphic
line bundle over M with a singular Hermitian metric /4. Suppose

o(L,h)>0

in the sense of currents. Now take and fix any smooth Hermitian
metric Ay and L; then on each open subset U such that L|y is
trivial, the weight Ay y of Ag is a smooth function on U . Define on
each such U a function

(3.5) ou=hy —ho,u.
It is easy to see that we have in fact defined a function ¢ on M
globally such that

plv = ou.
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Since ¢(L, h) > 0, by the proof of Lemma 2.1, we see that any weight
hy of the metric 4 is plurisubharmonic, then the function ¢ is obvi-
ously locally a sum of a C2-function and a plurisubharmonic function.
Then from Lemma 3.4 we obtain

COROLLARY 3.6. Let M, w be as in Lemma 3.4. Let L be a
holomorphic line bundle over M with a singular Hermitian metric h
such that c(L, h) > 0. Suppose that hy is any smooth Hermitian
metric on L and denote ¢ to be the function on M defined by (3.5).
Then for any smooth L-valued (n, q)-form g on M with

o — 2 -2
0g=0 and ‘/Mlglc(L’eﬁho)qe ?dV, < oo,
there exists a smooth L-valued (n,q— 1)-form f on M such that
0f=g and [ 1PdVe< [ 18y oy €70 dVo,
where | | is defined by h and .

Proof. Apply Lemma 3.4 to (L, hy) and ¢, we know that for any
g with 8¢ = 0 and [, |g|? e 2 dV,, < oo, there exists f

such that
Of=g and [ 1fR e dVo< [ gl e V.

Notice that |f]io,we—2¢ = |fl; , by (3.5), and the corollary fol-
lows. o

c(L,e h o),

REMARK 3.7. Suppose that the line bundle L has a singular metric
h such that ¢(L, h) > ew, for some constant ¢ > 0, i.e.,

c(L, h)(v,v)>ew(v,v),

for any test form v . Since

/(3

c(L, e ?hy)(v,v) = [c(L ho) + (ﬂ ) ](’u v)

aD

- [c(L,ho> Loz ¢] (v, v)
=c(L, h)(v, v),

we see that
c(L, e %hy)(v,v) >en(v,v).
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Therefore by (3.1) we have the estimate

|la)? < const .|a|?

e(L,e"*hy),
forany ae N""?T*M QL.

4. Complete Kihler metric on A — S . In order to prove Theorem
1.1, we wish to apply Lemma 3.4 to X — §. In general, X —S may
not be complete Kéhler, but together with the d-closed (1, 1)-current
o satisfying (ii) and (iii), we can construct a complete Kédhler metric
on M —S. The proof is analogous to [D1, Proposition 1.6].

LEMMA 4.1. Let M be a compact complex manifold and S C M a
proper analytic subset. Let w be a d-closed (1, 1)-current satisfying
the conditions (ii) and (iii) in §1. Then M — S admits a complete
Kdhler metric.

Proof. By [D1, Proposition 1.4], for any complex manifold M and
any analytic subset S C M, there exists a locally integrable function
v on M such that y is smooth on M —§; yw(x) < —1, for any
xeM-S;and y(x) — —oco as x goes to S, and there exists a real
continuous (1, 1)-form y on X such that

(4.2) V=180y > y;

(4.3) if a > 0 is a real number, e~®¥ is non-integrable on a neigh-
borhood of a point s € S where the codimension of the germ S;
satisfies

codimSs > a.

Put @ = Cw — v/—188/—y , which is a smooth form on M — S
and is a current on M . We claim that we can choose the constant
C > 0 large enough such that

V-1ddy
N

In fact, since y is continuous on M and w > ¢o on M (cf. (iii) in
§1), and since X is compact, we can find a constant number C > 0
such that

(4.4) (C-No+ >0 onM-S.

14
C-1)ec>-——21— onM.
( Jeo 2 2/=v
Then
V- 68:// 14
>(C-1Nec+=————2>0
N ( )

(C -+ 7 2
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on M in the sense of currents. Thus (4.4) is proved. From (4.4), it
yields

(4.5) > w+4/=10 ()4 AD(—y)/*
because
V=1889(—/=V¥) = ‘/:ﬁ”’+4\/-_13(-w)1/4/\5(—w)1/4.

Then @ is complete Kihler by the same argument of [D1, proof of
Proposition 1.6]. For the reader’s convenience, we still give the proof:
let & (resp. &) be the geodesic distance associated to @ (resp. @).
For any two z;, z, € M,

6(zy1, z22) = mf/ \/ )dt

(similarly one defines §(z;, z,)) where u runs through the set of all
C! curves u: [0, 1] — M — S with the ending points z; and z,. By

(4.5),
. (du du du du du\\ |?
du du d(you)|?
2‘“(7;’ "ITJZ)+I a1
because d( ) 4 J
you) du u
a1 ‘d“’(dt)‘ZR ‘”’(dt)
Thus

0(zy, z2) 2 sup(d(zy1, 22), |¥(z1) = w(z2)) -
Since y is exhaustive, and since a manifold admits a complete metric
@ if and only if the closed balls defined by geodesic distance & are
always compact, we know that @ is complete Kdhleron M —S. O

5. Proofs of Theorems 1.1 and 1.2.

LEMMA 5.1 [D1, Lemma 6.9). Let Q C C* be an open subset, and
let Y Cc Q be an analytic subset. If w is a (p, q) -form with L loc
coefficients on Q, and v isa (p, q— 1)-form with L loc coefficients on
Q such that v =w on Q—Y in the sense of currents, then 9v = w
on Q in the sense of currents.

Proof of Theorem 1.1. By Lemma 2.1 and Corollary 2.2, there exists
a holomorphic line bundle L over M with a singular metric # such
that w =c¢(L, h) and A is smoothon U —S.
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By Lemma 4.1, M — S is a complete Kidhler manifold. Since the
restriction of the singular metric # on L is smooth over M — §,
L|p_s has a smooth Hermitian /4 = A|;,_s. We consider w as Kahler
metric on M — S. Notice that @ is not necessarily complete.

Take and fix a point xy € M —S. Because 4 is smoothon M — S,
we see that the Lelong number is

v(c(L, h),x)=0, Xx=Xxpo0r X near xg.

Let ¥, be a smooth function on M — {xy3} which is equal to
nlog|z — xp| (in some coordinates) near X .

By the hypothesis (iii), ¢(L, &) > ¢ on M, there is some m such
that

(5.2) mc(L, h) + —;185?’0 > meo + —';185‘1’0 >0.

Put v, =c¢(L, h) + (vV/—1/n)00%¥,. The Lelong number

v(Um,Xo)=n+1 and wv(v,, z)<1, forz# xynear xgp.

Therefore, by Lemma 2.5, e~2¥ is non-integrable near x;.

Let P(z) be an arbitrary polynomial of degree 1 in the given co-
ordinates V of x;. Fix a smooth cut-off function y with compact
support in ¥ such that y = 1 near xy. Fix a non-vanishing local
holomorphic section g € HO(V , Ky ® L™).

Then v = POy ® g is regarded as a smooth d-closed L™-valued
(n, 1)-form on M and hence on M — S such that

/ v]2e~2%o dV, < oo
M-S

where ¥ is constructed as above, and | | is defined by w and by the
smooth Hermitian metric 4.

Then by (5.2), we apply Lemma 3.4 and Remark 3.7 to M — §,
(L™, h™) and ¥y, and then there is a smooth L™-valued (n, 0)-
form u on M — § such that

du=v and / |u|*e~2%o dV, 5/ lv)2e= Yo dV, <.
M-S M-S

Then we claim that u# can be extended as a smooth L™-valued
(n, 0)-form on M. In fact, we apply Lemma 5.1 to prove it. Since
v is a smooth L™-valued (n, 0)-form on M, it is sufficient to show
that Vx € S, there is a neighborhood U = U, of x in M such that

/ 2, dVy < 0
-S
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where dVy is the Euclidean volume form on U with respect to a
coordinate system and the norm | |y is with respect to dVy and 4.
Recall w > ¢o, and ¥, is smooth near §'; it yields

/ lu|ZdVy = / lul?, dvy < constant/ lul*e=?%0 dV,, < 0.
U U-S U-S
The claim then is proved by the regularity theorem.

Also we claim that |u(z)| = o(]z — xo|) near xp. In fact, it is
true by the fact that f[,, ¢|ul?e=2¥dV < oo, and that e=2% is non-
integrable near Xx;, and that u is holomorphic near Xxg.

Therefore

fi=xPg—-uecH' M, Ky  L™)

has the prescribed 1-jet Pg at xy. Thus the Kodaira dimension of
Ky ® L™ =n. Hence M is Moishezon. O

Proof of Theorem 1.2. By the similar procedure as above, replacing
M — S by M, we can apply Corollary 3.6 and Remark 3.7 to know
that M is Moishezon if and only if thereisa (1, 1)-form @ satisfying
(1) and (iii). Since M is Kéhler, by Moishezon’s theorem [Mo], it is
equivalent to M being projective algebraic. Then Theorem 1.2 fol-
lows. o

6. Projectivity of a class of Moishezon manifolds. In 1983, Har-
vey and Lawson proved a characterization theorem for Kéihler man-
ifolds [HL], that is, a compact complex manifold is Kéhler if and
only if there exists no nontrivial positive current which is a bidimen-
sion (1, 1)-component of a boundary. They also raised several gen-
eral problems. One of them [HL, §5, problem 2] is as follows: de-
scribe the class of compact complex manifolds which satisfy that if
there exists a non-trivial positive current which is the bidimension
(1, 1)-component of a boundary, then there exists a non-trivial posi-
tive smooth current which is the bidimension (1, 1)-component of a
boundary. We denote this class by .# . The significance of this prob-
lem is that to test whether a given manifold in /# is Kéahler; it suffices
to check the pointwise non-negative, smooth (n — 1, n — 1)-forms, to
see if one is a boundary.

It is worth remarking that investigating the obstruction of a Moishe-
zon manifold to be projective algebraic is an interesting problem in
the theory of compact complex manifolds. Classically we know that
there is no obstruction for compact complex surfaces (Chow-Kodaira
[CK]) and for complex tori (Lefschetz [W]). Moishezon’s theorem
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[Mo] just means that this obstruction is equivalent to that the man-
ifold is non-Kihler. Recently Peternell showed that this obstruction
for 3-dimensional complex manifolds is a positive integral linear com-
bination of irreducible curves which is homologous to zero.

As an important example in /# , we point out that if (X, Y, f) is
any analytic compact smooth family of curves with Kahler base space
Y, then X is in #Z. Here we say that (X, Y, f) is an analytic
compact smooth family of curves if X and Y are compact connected
complex manifolds, and f: X — Y is a surjective holomorphic map
which is everywhere of maximal rank such that each fiber X, = f~1(»)
is a connected smooth curve for any y € Y. Notice that in this case
f is a submersion. For any analytic compact smooth family of curves
(X, 7Y, f) with Kihler base space Y, we know X € # by [HL,
Theorem (17)°].

Proof of the Theorem 1.3. By applying Moishezon’s theorem [Mo]
that a Moishezon manifold is projective algebraic if and only if it is
Kihler, it suffices to show: if X is a Moishezon manifold, then X is
a Kahler manifold. Suppose X is non-Kéhler. By the result of Har-
vey and Lawson [HL, Proposition (12) and Theorem (14)], we know
that there exists a non-trivial positive current 73 on X which is the
bidimension (1, 1)-component of a boundary. Since X € #, there
exists a non-trivial positive smooth current 7" which is the bidimen-
sion (1, 1)-component of a boundary. We can write

T=05>'+985"2,

where S%:! and S!:2 are some currents of X of the bidimension
(2,1) and (1, 2), respectively. Notice that these $2'! and S!-2
may not be smooth. _

Since X is Moishezon, there exists a modification 7: X — X such
that the manifold X is projective algebraic. Let ¢ be a Kéhler form
on X.

We claim that the push-forward current ¢ := 7,6 is a d-closed
(1, 1)-current on X satisfying the following property: for any point
a € X, there exists a neighborhood U of a in X with a local co-

ordinates system (U, z!, ..., z") and a positive constant C such
that

n . .
(6.1) G—CZ\/—IdZ’/\dEJZO

j=1
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on U in the sense of currents. In fact, for any point a € M, we can
find a neighborhood U of a in M with a local coordinate system
(U, z', ..., z") and a constant C > 0 such that

n
&-Cn* (Z\/—_ldzf/\dff) >0
j=1
on n~l(U) in the sense of currents. Then on U, we see 7.6 —
Cr.n*(¥}_; V—1dz/ AdZ’) > 0 in the sense of currents. So we have
0 =76 > Cra* (X vV=-1dz/ AdZ)) > CY}_ V-1dz/ AdZ/ on
U in the sense of currents. The claim (6.1) is then proved.

We define the smoothing o, as follows: Let {U,}1<;< be any finite
open covering of X and {¢;}1<i<, be any partition of unity subordi-
nate to {U;}i<i<q. Suppose that every U; is a coordinate chart and
that U; is identified with a unit ball with center 0 € C" with respect
to the coordinate chart. On each U;, since it is biholomorphic to the
open unit ball, we can write

g=+v—-180f;.
Because f; — f; is pluriharmonic on U; N Uj;, Vi # j, it implies that
fi = fi is smooth. Then we define a global d-closed smooth real
(1, )-form P on X

r
P:=w- \/—1352 0. f;
i=1

because Ply = v-188 X[, ¢i(hj — hi); ie., we have ¢ = P +
v—1Y;9:f;. Then smoothing o, of o, a d-closed real (1, 1)-form
on X, is defined by

g
0, = P +v/~109 (Z Xie ¥ (wﬁ)) :
i=1
where x; . is the standard approximation of identity defined on U;.
Since 0, — 0 = V—-100{3 %, (xi, *(9ifi) — (9ifi))} , it follows that

[61=[o]e H'Y(X,R) and o, — 0, ase—0

in the sense of currents.
By the facts that X is compact and that 7" is smooth, we can make
the following computation:

(0, T) = lim(c,, T) = lim(a, 88> 4+38"2)
&e— &E—
= 1im(0 + 0) =0,
e—0

where we used the fact that o, is d-closed.
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On the other hand, the following claim leads to a contradiction and
it completes the proof of the theorem:

(6.2) (6,T)>0.

In fact, let the open covering {U;}i<i<, of X and a partition of
unity {¢;}i<;<q subordinate to {U;}i<;<, be as before. Since T is
non-trivial and o satisfies the property (6.1), we assume that the form
91T #0 andthat 6 > CY.7_, vV—1dz;AdZ; on U, for some positive
constant number C in the sense of currents. Then

g

(O', T) = Z(Ua ¢1T)
i=1

We claim that for each i, 1 < i < gq, (g,9;T) > 0. In fact, let
Xi.e be the standard approximation of identity defined on U;. Then
(0, 0,T) = limg;_o(xi e x0, 9;T). Notice that x; . * ¢ is a posi-
tive C*(1, 1)-form on U; for any ¢ > 0, and that ¢,;T is positive
(n—1, n—1)-current on Uj;; it follows that (x; . * o, ¢;T) is non-
negative. The claim then is verified by letting ¢ go to zero. Therefore,
we have shown

(6.3) (0, T)2(a,T).

For the positive current 0—C Z?:l vV—-1dz;jAdzZ; on U, by apply-
ing the same method, we know (6—-C Y77, vV-1dz;AdZ;, 9, T) >0,
i.e.,

(6.4) (U,¢1T)_>_C(Zv—lej/\d_ZT,wlT) .
j=1

Applying Wirtinger’s Inequality as well as the argument in [HL, §4],
we get

(6.5) (i\/—_ldzj/\dz—j, (/)IT) =M(p,T)>0,

j=1

where M (¢, T) is the mass of 7. The claim (6.2) follows from (6.3),
(6.4), (6.5) above. ]

7. Moishezon manifolds and Kihler-Einstein metrics. We prove
Theorem 1.4 now. The statements (ii) = (ii) = (iv) are trivial. It suf-
fices to show (i) = (iii) and (iv) = (V).
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Proof for (i)=>(iii). Suppose that M is a Moishezon manifold.
Then there is a projective algebraic manifold M,a proper surjective
holomorphic mapping n: M — M, and an analytic set V' such that
the restriction mapping 7| R M-V M-V is bihomororphic,

where V :=n~! (V). Choose a purely 1-codimensional analytic subset
S on M such that ¥ c S and that Ky ® [S] is ample. By applying
Hironaka’s resolution of singularities if necessary, we assume without
loss of generality that S is with simple normal crossings. Then by a
result of Kobayashi [K, Theorem 1], we know that M —.§ admits a
complete Kihler-Einstein metric & which is with negative Ricci cur-
vature and with finite volume. Then we set g := ((|pr—s)"1)*&

Proof for (iv) = (i). Suppose that there is an analytic subset S C M
such that M —.S admits a complete Kidhler metric g with Ricci(g) <
—g . By Hironaka’s resolution of singularities again if necessary, we
can assume S is a hypersurface. Then by the L? Riemann-Roch
inequality proved by Nadel and Tsuji [NS] and by [N, Proposition
1.11}, it implies

hmmf——dlmHo(M K& x [s18Kk-D)

k—+o0 k

> l%l‘_l}_:l;lofk dlmlf(z)(] KM S)

1 n n
> n—!/M_Scl(KM—S) > m/M—sg >0
Since HO(M , K$F ® [S1®*-D) ¢ HO(M, (Kar ® [S])¥), we then see
dim HO(M , (Ky ® [S])®F)

k" n my_ (1 n O(k'")) n
Z ./M—-Sg O = (me—sg Nz K

This yields (1). O

Note added in proof. Recently, Shiffman’s conjecture has been
proved completely. See: S. Ji and B. Shiffman, Properties of com-
pact complex manifolds carrying closed positive currents, to appear in
J. Geom. Anal.
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