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GENERAL KAC-MOODY ALGEBRAS AND
THE KAZHDAN-LUSZTIG CONJECTURE

WAYNE NEIDHARDT

Let g be a Kac-Moody algebra defined by a not necessarily sym-
metrizable generalized Cartan matrix. We use operators of coherent
continuation to define modules UaL(w λ) with α a simple root
of g and w in the Weyl group W of Q , and then use these mod-
ules to study the integers dim Ext" (M(x λ), L(y λ)) for x and
y in ί f , where A is a dominant integral weight, M(μ) denotes
the Verma module over & of highest weight μ and L(μ) denotes
its irreducible quotient. In particular, we show that in the presence
of a parity conjecture and a weak assumption on the behavior of the
modules UaL(w λ), both of which hold in the case of a finite di-
mensional Q , we may compute the dimensions by induction on the
length of x, recovering the coefficients of "twisted" versions of the
Kazhdan-Lusztig polynomials, where the twist comes from the fact
that we start at the top of the orbit W λ, rather than at the bottom.

1. Introduction. Let g be a Kac-Moody algebra over a field K of
characteristic zero defined by a not necessarily symmetrizable gener-
alized Cartan matrix. Translation functors over g were introduced in
[6] and [7]. In the latter, operators of coherent continuation were in-
troduced, but did not possess the desired self-adjointness which is so
useful in the finite dimensional case, i.e. where g is finite dimensional.

In the present work, we modify the definition of the translation
functors somewhat, so that when we compose two translation func-
tors to obtain an operator of coherent continuation, we do not be-
gin and end in the same Weyl group orbit. We do, however, ob-
tain two operators of coherent continuation which are adjoint to each
other. We then use these operators of coherent continuation to de-
fine modules UaL(w A) with a a simple root of g and w in the
Weyl group W of g, and use these modules to study the integers
dimExt£μ)(Λf(jc A), L(y A)) for x and y in W, where A is a
dominant integral weight, C{λ) denotes the category of weight mod-
ules all of whose weights are less than or equal to A, M(μ) denotes
the Verma module over g of highest weight μ and L(μ) denotes its
irreducible quotient.

In our study of these dimensions, we show that the various
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- λ), L(y λ)) occur as terms in long exact sequences in-
volving the modules UaL(w λ), just as they do in the finite dimen-
sional case. In particular, we show that in the presence of a parity
conjecture and a weak assumption on the behavior of the modules
UaL(w - λ), both of which hold in the case of a finite dimensional Q ,
we may compute the dimensions by induction on the length of x, re-
covering the coefficients of "twisted" versions of the Kazhdan-Lusztig
polynomials, where the twist comes from the fact that we start at the
top of the orbit W λ, rather than at the bottom.

It is worth noting that the major accomplishment in this work is
not the reduction of the computation of the integers

dimExt^w(M(jc λ), L(y λ))

to these conjectures, but rather the definition itself of the modules
UaL(w λ). Since, in the nonsymmetrizable case, we do not have the
Casimir operator and can possibly have Verma module imbeddings
between modules of highest weights in different Weyl group orbits,
considerable care must be taken just to define the translation func-
tors. Also, in defining the translation functors in one direction we are
tensoring with an infinite dimensional highest weight module, which
means that the translation functor in the reverse direction involves
tensoring with an infinite dimensional lowest weight module. Thus,
when attempting to show adjointness, these two functors are not in-
terchangeable; one must be the left adjoint and the other the right.
For this reason, in order for the operators of coherent continuation
to have nice adjoint properties, we cannot simply return to the same
orbit. More precisely, to obtain an operator of coherent continuation,
we translate from the orbit of a dominant integral weight λ to an
integral weight λa on the α-wall by tensoring with a highest weight
module, and then translate from λa to a different dominant integral
weight μ by tensoring with a highest weight module. The operator
of coherent continuation in the reverse direction then translates from
μ to λa to λ by tensoring with lowest weight modules at each stage.
Further difficulties are encountered as we try to control the composi-
tion factors of highest weights in the other orbits under translation.
We would like to have "lower" orbits remain lower and "higher" orbits
remain higher, but this cannot be completely controlled. For this rea-
son, we work only with λ and μ close enough to the α-wall that only
two orbits become reversed under translation, and these orbits can be
sorted out by the representation theory of sl(2, K). Thus the mere
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fact that we can define UaL(w λ) may be viewed as the significant
result of the present paper.

In §2 we give the definitions, notation, and background associated
with Kac-Moody algebras. Section 3 generalizes some previous results
from [7] on Verma series and reverse Verma series to modules with
highest weight series and reverse highest weight series. In §4 we de-
fine certain functors on modules with highest weight series and reverse
highest weight series which essentially pick out those factors with high-
est weights in a particular set of weights, such as a Weyl group orbit.
We also show that these functors act as adjoints to certain functors
previously defined in [6]. In §5, we define the translation functors
and operators of coherent continuation and prove their adjoint prop-
erties. The behavior of Verma modules and irreducible highest weight
modules under translation and coherent continuation is studied in §6,
resulting in the definition of UaL(w λ). Finally, in §7 we apply this
to study the integers d imExt^(Af (JC λ), L(y λ)).

2. Notation and background. In this section we give the basic def-
initions and notation associated with Kac-Moody algebras and their
representations, and introduce certain categories of modules and fil-
trations of modules. We also state some basic results which will be
needed in the sequel.

Let A = (Aij) be an / x / generalized Cartan matrix, meaning that
An = 2 for all /, A^ is a nonpositive integer for / Φ j , and A\j = 0
if and only if Aμ = 0. Let K be a field of characteristic zero, and
let 0 be the Kac-Moody Lie algebra over K defined by A, so that g
satisfies

(i) g is generated by an abelian subalgebra f), called the Cartan
subalgebra and satisfying dim^ f) = / + corank(v4), together with ele-
ments β\, . . . , eι, / i , . . . , fι, called simple root vectors and negative
simple root vectors, respectively.

(ii) There are linearly independent sets {h\, . . . , hi) in f) and
{a\, . . . , α/} in ()* such that Ay = α/(λi) for all / and j . The
ax's are called the simple roots, and the h\ 's are called the simple
coroots.

(iii) [ei9fj] = δijhi for all /, = 1 , . . . , / .
(iv) [h, έ?, ] = 0Li{h)ei and [h, f{\ = - α , (Λ)y; for all h e ί) and all

(v) ( a d ^ ) - ^ + 1 ( ^ ) = 0 = (ad/; ) - ^ i ( / . ) for all iφj.

(vi) There is an involutive antiautomorphism σ: g -» g such that

σ(βi) = fi for all / = ! , . . . , / , and σ(h) = h for all h e f).
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Denote by n+ (respectively, n") the subalgebra of g generated
by {e\, . . . , e{\ (respectively, {/i, . . . , //}), and set b = f) Θ n+ ,
called the Borel subalgebra of g. For each / = 1 , . . . , / , let 0/ =
Khi Θ Kβ[ Θ ϋ^/;, a subalgebra of g isomoφhic to sl(2, K).

For any f)-module M and any /let)*, let Mλ = {m € Λf |Λ m =
λ(h)m for all λ e ίj*}, called the λ-weight space of M\ if Λ/̂  ^ 0
we call λ a weight of M. Note that this notion of weights applies as
well to g-modules and b-modules, which may be viewed as f)-modules
by restriction. In particular, for the adjoint representation of g, we
let Δ = {a G ψ\ga Φ 0 and a ψ 0} and call Δ the set of roots
of g, and call each gα with a £ Δ the α-root space of g. In case
M is a g-module satisfying M — (&λei)* Mλ, we call M a weight
module, and write Π(M) for the set of weights of M. If in addition
each Mχ is finite dimensional, we define the character of M to be
chM = Σλeΐ)*(dimMχ)eλ, where the eλ 's are formal exponentials.

In the sequel, whenever M and N are weight modules, we will
write Hom(M, N) for the set of g-module morphisms from M to
N, and Extπ(AΓ, N) for the set of equivalence classes of n-extensions
of M by N in the category of weight modules. We also write
Ext(M, N) for Ext^M, N).

The root lattice is Q = £ = 1 Zα 7 , and we let Q+ = Σ j = 1 Z+α,,
where Z + is the set of nonnegative integers. For any η e <2+, we
define the height of η to be ht(τ/) = Σ/=i ̂ / > where /̂ = ]Γ;=1 fc/α,-.
We may define a partial order on ψ by letting μ<Λ, if λ- μe Q+ .
We set Δ+ = {a e Δ|α > 0}, called the set of positive roots, and
Δ- = -Δ+ = {a e Δ|α < 0}. Also, let P = {λ e ψ\λ{hi) e Z for all
/}, called the set of integral weights, and let P+ = {λ e f)* | λ(ht) e Z +

for all /} , called the set of dominant integral weights.

For any λ e ί)*, we denote by C(λ) the full subcategory of the
category of g-modules M such that M is a weight module with finite
dimensional weight spaces and such that Π(M) Q{μ\μ<λ}.

Suppose M is a g-module. If v £ Mχ is a nonzero vector satisfying
n+ v = 0, we call v a maximal vector. If in addition M = C/(g)v ,
where Ϊ7(—) denotes the universal enveloping algebra functor, we call
v a highest weight vector and M a highest weight module of weight
λ. Every highest weight module is a weight module.

Let λ G ί)*, and denote by K(λ) the one-dimensional b-module of
weight λ on which n+ acts trivially. The Verma module of highest
weight λ is then the induced g-module M(λ) = C/(g) ®u(b) %W.
It is well known that M(λ) is the universal highest weight module
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of weight λ, and that it has a unique irreducible quotient, which is
denoted L(λ). Similarly, we may define lowest weight modules, and
let W(λ) be the universal lowest weight module of weight λ and
Γ(λ) its unique irreducible quotient. (These latter two modules may
be viewed as "upside-down" versions of M(λ) and L{λ) hence the
choice of notation.) If A, μ G f)*, it is easy to see that any nonzero
morphism from M(λ) to Af (μ) must be injective.

The Weyl group W is defined as follows. For each / = 1 , . . . , / ,
define the linear involution s,-: ί)* —> ()* by Sf(λ) = λ - λ{hi)a,i, and
take W to be the subgroup of GL(ίj*) generated by {s\, . . . , sfi.
For any w G W, define the length of w, denoted l(w), to be the
smallest integer n such that w is expressible in the form 5/ 5/
for some zΊ , ... , in e {1,...,/}. Let p e ()* be a fixed element such
that />(λ, ) = 1 for all /, and define the dot action of W on fj* by
w λ = w(λ + p) - p.

If L is a weight module which is a direct sum of finite dimensional
(βι + ί))-modules for each / = 1 , . . . , / , we say that L is integrable.
It is well known, and easy to see from the representation theory of
sl(2, K), that for any integrable ^-module L, any λ e fj*, and any
w G W, we have dim Z^ = dim Lwλ. It is also easy to see that when
η G P + , both L(f/) and Γ(-ι/) are integrable.

Certain types of filtrations of modules will be useful in the sequel.

DEFINITION 2.1 ([2]). Let M be a weight module, all of whose
weight spaces are finite dimensional, and let μ G I)*. By a local
composition series (LCS) for M at μ, we mean a finite sequence
0 = MQ C MI c C Mrt = ¥ of submodules of Af such that
each factor Fi = Af,-/A//_i satisfies either Π(i7/) n {v\v > μ} = 0 or
F/ = L(βi) for some ///>//. In case Af has such an LCS, we write
(M:L(μ)) for the number of / such that μ; = μ. If (M:L(μ)) Φ 0,
we call L(μ) a composition factor of M.

REMARK. In [2, Proposition 4.2] it is shown that if μ

is finite, then M has an LCS at μ. In particular, such series al-
ways exist for modules which are objects in categories of the form
C(λ). It is also shown in [2] that the multiplicity (Af: L(μ)) does not
depend on the choice of LCS. One also obtains the same multiplici-
ties, when ch M exists, by defining these multiplicities by ch M =
Σμeγ(M:L(μ))chL(μ).

DEFINITION 2.2. Let Af be a weight module. By a Verma series
(VS) for Af we mean a sequence (possibly finite) 0 = Mo c M\ c
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of submodules of M such that (i) M = [ji>0 Mi, (ii) each factor Fz =
Mi/Mi-\ = M{λi) for some A, G f)*, and (iii) for any μ G ί)*, {/|A/ >
μ} is a finite set. In case M has such a VS and //Gf)*,we write
[M: M(μ)] for the number of / such that A, = μ . If [M: M(μ)] φ 0 ?

we call M(μ) a Verma factor of M.

REMARK. Condition (iii) above is equivalent to the requirement
that all weight spaces of M be finite dimensional, but compare this
with Definition 2.3 below. Also, the numbers [M:M(//)], when they
are defined, can easily be seen to be independent of the choice of VS,
by character considerations. In fact, we obtain the same result by
using ch M = ^2μel)*[M: M(μ)]ch M(μ) to define the multiplicities,
when M has a VS. For this reason, we can and do use this formula to
define the multiplicities [M:M(μ)] whenever M is an object in one
of the categories of the form C(λ), but not necessarily with a VS.

DEFINITION 2.3. Let M be a weight module. By a reverse Verma
series (RVS) for M, we mean a sequence (possibly finite) M = MQ D
MI D of submodules of M such that (i) f|/>o M = 0, (ii) each
factor Fi = A/i_i/Af, = M{λi) for some A, € I)*, "(iii) for any μet)\
{i\λi < μ] is a finite set, and (iv) there exist weight vectors Vi G Mχ
such that v\ + Mi is a highest weight vector for Fj for each / =
1,2 , . . . , and such that Mi = J2j>i U(n~)Vj for each i = 0, 1, ... .
In case M has such an RVS and μ G f)*, we write [M: M(μ)] for the
number of / such that A, = μ. If [M:M(μ)] ^ 0, we call Af(//) a
Verma factor of Λf.

REMARK. The idea of an RVS was introduced in [7], where it was
shown that the numbers [M: M(μ)], when they are defined, are inde-
pendent of the choice of RVS.

The following proposition, which is easy to prove, deals with some
cases in which VS and RVS actually occur.

PROPOSITION 2.4 ([7, Propositions 4.16 and 4.17]). (i) Suppose that
M has a VS and that N is a highest weight module with highest
weight μ. Then M ®κ N also has a VS, and [M ®κ N:M(v)] =
Σχ<μ[M:M(v - χ)]dimNχ for any v e ()*. In particular, M(λ) 0 ^
L(μ) has a VS for any λ, μ G ψ .

(ii) Suppose that M has an RVS and that N is a lowest weight
module with lowest weight μ. Then M <g>κ N also has an RVS, and
[M®κ N:M(v)] = Σχ>μ[M:M(v - χ)]άimNχ for any v e ψ. In
particular, M(λ) ®κ T{μ) has an RVS for any λ, μ G Ij*.
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In a similar vein, we also define the concepts of highest weight series
and reverse highest weight series.

DEFINITION 2.5. Let M be a weight module. By a highest weight
series (HWS) for M we mean a sequence (possibly finite) 0 = Mo c
Mi c -" of submodules of M such that (i) M = (J />0 Mi, (ii) each
factor Fi = Af//Af/_i is a highest weight module of weight A/ for
some A, € ί)*, and (iii) for any μ e fj*, {/|A/ > μ} is a finite set.

REMARK. The concept of highest weight series was introduced in
[3], where it was shown that any module in a category of the form
C(λ) has an HWS. Also, condition (iii) above is equivalent to the
requirement that all weight spaces of M be finite dimensional, but
compare this with Definition 2.6 below.

DEFINITION 2.6. Let M be a weight module. By a reverse highest
weight series (RHWS) for M, we mean a sequence (possibly finite)
M = MQ D M\ D of submodules of M such that (i) f|/>o M = 0 >
(ii) each factor Fj = Af| _i/Af, is a highest weight module of weight
λi for some Af e if, (iii) for any μ e fj*, {/|Λ,, < //} is a finite set,
and (iv) there exist weight vectors v, e Mλ such that ι;, + Mt is a
highest weight vector for Fi for each i = 1, 2, . . . , and such that
Mi = Σj>i U(n-)Vj for each / = 0, 1, . . . .

We now recall the finitely generated indecomposable projective ob-
jects in C(λ), for any fixed λ e ί)*, introduced in [8]. For any μ < λ,
let

P\μ) =

which is a projective object in C(λ)9 as was shown in [8], since
for any M e ObC(A), Hom(Pλ(μ), M) is naturally isomorphic to
Hom^Λ^μ), M), and hence to Mμ. Note that PΛ(μ) is finitely
generated—in fact, it is generated by the weight vector 1 ® 1 <g> 1 of
weight μ. The indecomposable summands of the various Pλ{μ) with
μ < λ have several nice properties, which we summarize here.

PROPOSITION 2.7 ([8, Propositions 4.5, 4.7, 4.8, and 5.3, Lemma
4.12, Corollary 4.13, and Theorem 6.2]). For each irreducible object'
L(μ) in C{λ), there is a unique (up to isomorphism) finitely gener-
ated indecomposable projective object Iλ(μ) in C(λ) which maps onto
L(μ). Conversely, every finitely generated indecomposable projective
object in C(λ) has a unique irreducible quotient, so that L(μ) <-• Iλ(μ)
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gives a one-to-one correspondence between the irreducible objects in
C(λ) and the finitely generated indecomposable projective objects in
C(λ). Furthermore, Iλ(μ) has a finite VS with M(μ) as the top fac-
tor, and [Iλ(μ):M(u)] = (M(u) : L(μ)) for all μ, v < λ. Finally, for
any Me Ob C{λ) we have (M: L{μ)) = dimHom(/A(μ), M).

It is easy to see that Iλ(μ) is a summand of Pλ(μ), so that Iλ{μ)
is generated by a weight vector of weight μ.

The following result, which follows easily from the fact that the
modules Iλ(μ) have finite VS as specified in the above proposition,
will be needed in the sequel.

PROPOSITION 2.8 ([6, Theorem 3.5]). Let Γ be the directed graph
whose vertex set is I)* and with an edge of multiplicity {M{μ):L{v))
from v to μ for each v < μ. We denote by gn{y, μ) the number of
paths of length n from μ to v in Γ. Let λ e ί)*, and let M e Ob C(λ)
have a finite VS. Then M has a projective resolution in C(λ)

such that each Pn is a finite direct sum of various Iλ(v) and such that
each Kerdn = lmdn+\ has a finite VS. The projective resolution can be
chosen so that for any v < λ the multiplicity of Iλ(v) as a summand
of Pn is equal to \\mdn:M(v)], and both multiplicities are equal to
Yjμ<)\M\M(μ)]gn(v , μ). In particular, if all Verma factors M(μ) of
M satisfy μ > χ for some χ e fj*, then the same is true of all Verma
factors of each Kerdn = ^

We make the observation for use in the sequel that it follows im-
mediately from the above proposition that Extf^^(M(μ), M) = 0 for
all n whenever M has no weights > μ.

We conclude this section with some facts relating Verma module
imbeddings, composition factors, and extensions of Verma modules.

PROPOSITION 2.9 ([5, Propositions 2.1 and 2.4] and [7, Proposition
4.6]). Let λ, μ, v e f)* with μ, v < λ. Then Hom(Λ/(i/), M(μ)) φ 0
if and only if (M(μ):L(v)) Φ 0. Also, if M is a highest weigfa
module of weight μ and Ext^(Λ/(z/), M) Φ 0, then there exist
weights v = vn < vn_χ < - < VQ < μ with (M(μ):L(u0)) Φ 0
and {M{vi_χ)\L{vi)) Φ 0 for all i = 1, . . . , n. In particular, if
Ext(M(u),M)φO, then v < μ and (M(μ):L(u)) φθ.
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3 Highest weight series and reverse highest weight series. In this
section, we examine some properties of modules with HWS or RHWS.
In particular, we describe how certain partitions of sets of weights
induce corresponding nitrations on modules with HWS or RHWS,
where the ordering of the factors can be controlled. We also give a
criterion for distinguishing modules with RHWS. The results of this
section essentially generalize results from [7] on modules with VS or
RVS.

LEMMA 3.1. Let sets of weights S\ and S2 be given such that
Hom(Af (A), M(μ)) = 0 whenever λ e S\ and μ G S2. Suppose we
have β-modules N c M, where M/N is a highest weight module of
weight λ e S\ and N is a highest weight module of weight μ G S2.
Then there exists a submodule N' of M such that N' is a highest
weight module of weight λ, and either M/N' is a highest weight mod-
ule of weight μ or M/Nf = 0.

Proof. Note that if V\ + N is any highest weight vector of M/N
with v\ G Mχ and if v2 is any highest weight vector of N, then
M = U{n~)vχ + U(n~)v2 . Observe that n+ -v2 = 0 for any such choice
of V\ and v2. We show that V\ may be chosen so that n+ -v\ = 0,
also.

Let π: M(λ) —> M/N be an epimorphism, and consider the pullback

0 > N • P • M(λ) • 0

0 • N > M • M/N • 0.

Since Ext(A/(λ), N) = 0 by Proposition 2.9 and our hypotheses on
S\ and S2, we must have P = N © M(λ). Identifying M(λ) with
its corresponding direct summand in P, and letting υ be a highest
weight vector for M(λ), we set v\ = φ(v). Then n+ -υ\ = 0, v\ G Mχ,
and V\ + N is a highest weight vector for M/N, by an easy diagram
chase.

Finally, setting N' = U(n")v\ gives the result, since M/N' is gen-
erated by v2 + Nf.

This lemma will allow us to switch the order of the factors in a high-
est weight series or a reverse highest weight series without increasing
the number of factors, thereby producing useful ίiltrations of modules.
We begin by applying this to modules with RHWS.
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PROPOSITION 3.2. Let sets of weights S\ and S2 be given such that
Hom(M(λ), M(μ)) = 0 whenever λ e S\ and μ G Si. Suppose M
has an RHWS M = Mo D M\ D M2 D - - where all factors have
highest weights in S1US2, and such that only a finite number of factors
have highest weights in Si Then there is a submodule N of M such
that N has an RHWS, all of whose factors have highest weights in
S\, and such that M/N has a finite RHWS, all of whose factors have
highest weights in S2

Proof. This follows by repeated application of Lemma 3.1 to each
of the finitely many factors with highest weights in £2 , switching the
order of the factors to bring them to the top of the RHWS or eliminate
them.

PROPOSITION 3.3. Let sets of weights S\ and Si be given such that
Hom(M(λ), M(μ)) = 0 whenever λ e S\ and μ e Si. Suppose that
M and M1 each satisfy the hypotheses of Proposition 3.2, and further
suppose that N c M and N' c M' are submodules satisfying the
conclusion of Proposition 3.2. Then for any φ G Hom(M, M'), we
must have φ(N) c Nf, so that φ induces maps φ\:N —• N' and
φ2:M/N-+Mf/N'.

Proof. If this were not the case, then φ would induce a nonzero
map φ: N -> M'/N'. Let N = No D N{ D N2 D be an RHWS
for N, and choose weight vectors vt e N in accordance with Def-
inition 2.6(iv) for / = 1 , 2 , 3 , . . . . Since M1 /Nf has only a finite
number of factors in its RHWS, the finiteness condition in Definition
2.6(iii) guarantees that φ{v{) = 0 for / large enough. Thus, there
is some k with Hom(N/Nk, M'/Nf) φ 0. But now each of N/Nk

and Mr/N1 has only finitely many factors in its RHWS. We see that
there is at least one factor F of the RHWS for N/Nk , and hence of
TV, and at least one factor F' of the RHWS for M'/N', such that
Hom(F, Fι) φ 0. But F has some highest weight λ e Si and F1

has some highest weight μ G SI, which, by Proposition 2.9, implies
that Hom(M(λ), M(μ)) Φ 0, contrary to our hypothesis on S\ and
S2 . Therefore φ(N) c Nf.

COROLLARY 3.4. Let S\,Sι, and M satisfy the hypotheses of Propo-
sition 3.2. Then the submodule N given in the conclusion of Proposi-
tion 3.2 is unique.



KAC-MOODY ALGEBRAS 97

Proof. This follows immediately from Proposition 3.3 applied in
the case where φ is the identity map on M.

THEOREM 3.5. Let sets of weights S\9 S2, . . . , Sk be given such that
Hom(Af (A), M(μ)) = 0 whenever λ G St and μ G Sj with i < j .
Suppose M = Mo D Mi D M2D - is an RHWS with factors Ft =
Mj-ι/Mj of highest weight A/, and suppose that all A, G SΊ u Si U U
Sk. Further suppose that for each j = 2 , 3 , . . . , k, the set {/|A, G Sj}
is a finite set Then there is a unique filtration 0 = No c N\ c C
Nk = M such that each Nj/Nj-ι has an RHWS with all factors having
highest weights in Sj for j = 1, 2, . . . , k, with the RHWS being finite
for j = 2, 3 , . . . , k. If Mf is another module satisfying the hypotheses
and 0 = iVJ C N[ C c N'k = Mf is its corresponding filtration, then
for any φ e Hom(Λf, M1) we have φ(Nj) c Nj for j = 0, 1 , . . . , & ,
so that φ induces maps φy. Nj/Nj_\ —• Nj/Nj_{ for 7 = 1,2, , A:.

Proof. This follows from Propositions 3.2 and 3.3 and Corollary
3.4, by induction on k.

We now apply Lemma 3.1 to the case of modules with HWS, ob-
taining similar filtrations, but without the extra finiteness assumption.

PROPOSITION 3.6. Let sets of weights Si and S2 be given such that
Hom(M(A), M(μ)) = 0 whenever λ e Si and μ G S2. Suppose M
has an HWS 0 = MQ C MI C M2 c where all factors have highest
weights in Si u S2. Then there is a submodule N of M such that N
has an HWSf all of whose factors have highest weights in Si, and such
that M/N has an HWS, all of whose factors have highest weights in
S2.

Proof. We first use induction on the number of factors to prove the
result for modules with finite HWS. Thus, assume that for Mk we
have already found a submodule Nk such that Nk has a finite HWS
whose factors have highest weights in Si and such that MkINk has a
finite HWS whose factors have highest weights in Si. Now, consider
Mk+ι. We have 0 c Nk c Mk c A/jt+1. If the factor Mk+ι/Mk has
highest weight in Si, then we simply set JV +̂1 = Nk . Otherwise, if the
factor Mk+ιlMk has highest weight in 5Ί , then repeated application
of Lemma 3.1 allows us to switch the order of factors and produce
a filtration 0 c Nk c JV̂ +i c Mk+X, where Nk+ι/Nk has the same
highest weight as Mk+ι/Mk, and where Mk+ι/Nk+ϊ has a finite HWS
whose factors have highest weights in S2 .
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We thus have a sequence of submodules 0 = No c Nx c N2 c of
M, and by setting N = UA:>O ^ > w e s e e ^at ^ has a n HWS whose
factors have highest weights in Sx. It remains to show that M/N has
the appropriate HWS. Consider 0 = (Af0 + Λ̂ )/JV c (Mi + JV)/7V c
(M2 + N)/N c -" as a filtration of M/N. Note that there may be
some repetitions. We show that if repetitions are eliminated, then this
is the desired HWS for M/N. Observe that each factor

[(Mk+x+N)/N]/[{Mk + N)/N]

is a homomorphic image of Mk+X/Mk , and hence it is either zero or a
highest weight module of the same highest weight as Mk+X/Mk , which
is therefore in SX\JS2. On the other hand, that same factor module
[(Mk+x+N)/N]/[(Mk + N)/N] is also a homomorphic image of Mk+X

with JVjfc+i contained in its kernel, and hence it is a homomorphic
image of Mk+X/Nk+X, whose HWS has factors with highest weights
in S2 Thus, applying Proposition 2.9 and our hypothesis on Sx and
S2, we see that the factor module

[(Mk+ι+N)/N]/[{Mk + N)/N]

cannot have any composition factors of the form L(λ) with λ e Sx.
We conclude that [(Mk+X + N)/N]/[(Mk + N)/N] is either zero or a
highest weight module with highest weight in S2. Therefore, elimi-
nating repetitions gives the desired conclusion on the HWS for M/N.

The following proposition, corollary, and theorem are analogous to
Proposition 3.3, Corollary 3.4, and Theorem 3.5. Consequently, their
proofs, which are similar to those dealing with RHWS, are left to the
reader.

PROPOSITION 3.7. Let sets of weights Sx and S2 be given such that
Hom(M(λ), M(μ)) = 0 whenever λ e Sx and μ e S2. Suppose that
M and Mf each satisfy the hypotheses of Proposition 3.6, and further
suppose that N c M and Nf c M1 are submodules satisfying the
conclusion of Proposition 3.6. Then for any φ e Hom(M, Mf), we
must have φ(N) c Nf, so that φ induces maps φx:N —> N' and
φ2\M/N -*

COROLLARY 3.8. Let Sx,S2i and M satisfy the hypotheses of Prop-
osition 3.6. Then the submodule N given in the conclusion of Propo-
sition 3.6 is unique.
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THEOREM 3.9. Let sets of weights S\, S2, . . . , Sk be given such that
Hom(M(λ), M(μ)) = 0 whenever λ e Si and μ e Sj with i < j .
Suppose 0 = MQ c Mi c M2 c •- is an HWS for M with factors
Fj = Mi/Mj-ι of highest weight λ, , and suppose that all λt e S\ U S2

U U Sk. Then there is a unique filtration 0 = No c N{ c - c Nk =
M such that each JV)/JV)_i has an HWS with all factors having highest
weights in Sj for j = 1, 2, . . . , A:. If Mr is another module satisfying
the hypotheses and 0 = NQC N[ C c N'k = M' is its corresponding
filtration, then for any φ e Hom(Λf, M') we have φ{Nj) c Nj for
j = 0, 1, . . . , k, so that φ induces maps φf. Nj/Nj^γ —• Nfj/Nr-_x for

We conclude this section with a look at certain cases where modules
do indeed have RHWS. The following lemma gives a criterion for
distinguishing those modules with RHWS.

LEMMA 3.10. Let M be a weight module. Then M has an RHWS
if and only if M = ΣHi U{n~)vit where the Vj are weight vectors of
weights λj, respectively, and for any //ef)*, {/|A, < μ} is a finite set

Proof. If M has an RHWS, then such weight vectors Vf exist by
Definition 2.6. Conversely, suppose such Vj e Mλ exist. By rear-
ranging the order of the vt if necessary, we may assume that λf < λj
implies i < j . Set M; = Σ/>ι U{n~)Vj for each / = 0, 1, 2, . . . .

Comparing this with Definition 2.6, it remains to show that each
Mi is a submodule of M, and that each factor Ft = M/_i/M/ is
either zero or a highest weight module of weight λι. To show that Af,
is a submodule, it suffices to show that for any j = 1, 2, 3, . . . , we
have

U(ΰ)U(n-)Vj = U(φj C ]Γ U(n-)vk.

Since U(g) = ί/(n")t/(b) by the PBW Theorem, it suffices to show
only that U(b)Vj C Σ)^>7 U(n~)vk . But this is clear from the order-
ing of the weight vectors when we write U(b) = C/(n+)C/(f)) by the
PBW Theorem. Therefore each M; is a g-submodule of M. For the
result on the factors, note that if i7/ = M ^ / M / is nonzero, then it is
generated by the image of Vi and that by the ordering of the weight
vectors, n+ ι;, c Mi, so that the image of Vi is a highest weight vector
and Fi is a highest weight module of weight λt.
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PROPOSITION 3.11. If M has an RHWS and N is a lowest weight
module, then M <g>κ N has an RHWS.

Proof. By the above lemma, we may write M = Σ S i U(n~)vi,
where the Vi are weight vectors of weights λ\, respectively, and for
any μ e fj*, {i\λj < μ) is a finite set. Choosing a ΛT-basis {wγ, W2,
...} of weight vectors for N, we see that M ®κ N is generated over
U(n~) by the weight vectors Vi Θ Wj for /, j = 1, 2, 3, . . . . Since
N is a lowest weight module, it is clear that the finiteness condition of
Lemma 3.10 is satisfied by the weights of the weight vectors Vi ® Wj.
Therefore, we may apply Lemma 3.10 to conclude that M ®κ N has
an RHWS.

REMARK. This shows, in particular, that M®κY(μ) has an RHWS
for any M with an RHWS and for any μ e f)*.

4. Functors and an adjoint-like property. We begin by using the
results of the previous section to define certain functors on modules
with HWS or RHWS. We then prove an adjoint-like property of two
of these functors.

Throughout this section we fix three sets of weights S\, S2, and
S 3 such that ϊ)* = Si U S2 U S3 and such that Hom(Λf (λ), M{μ)) = 0
whenever λ e Si and μ e Sj with i < j .

DEFINITION 4.1. For any module M with HWS, let 0 = No c N\ c
JV2 C iV3 = M be the filtration given by Theorem 3.9 relative to the
sets of weights S\, S2, and S3. We denote the quotient N2/N1 by
MS2. Also, if φ e Hom(M, M'), where each of M and M1 have
HWS, then we denote the induced map Φ2 given in Theorem 3.9 by
φS2. Msi —• MfS2. Thus the assignments M —• Λf^ and φ —• 0S2
define a functor on the category of modules with HWS.

We define similarly a functor on the category of modules with
RHWS with finitely many factors having highest weights in S2 U S3,
where we use again the notation M —> Λ/^ for the assignment of
the "middle" subquotient given by Theorem 3.5 and φ —• (/Λ for the
assignment of the map induced by φ on these subquotients, as given
by Theorem 3.5.

REMARK. Although we use the same notation for both functors, it
will be clear from the context whether we are dealing with modules
with HWS or modules with RHWS. In either case, MS2 denotes the
subquotient whose factors in its HWS or RHWS have highest weights
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in 5*2, and φFi simply denotes the map induced by φ on these sub-
quotients, so this should not cause any confusion.

In the following definition and lemma, we will be working with
resolutions of modules by modules with VS. It should be noted that
for any module with HWS, one can always construct such a resolution.
To see this, first recall the standard resolution

Q o
• - Ufa) ®c(b) /\(φ) - - U(g) ®u{b) /\(0/b) - K - 0

of K constructed and shown to be exact in [1, Theorem IL9.1]. By
tensoring this resolution with M over K, we obtain the desired res-
olution of M, because for each q, (U(Q) <8>u(b) /\g(ΰβ)) ®κ M =
U{θ)®u{b){l\q{%lb)®κM) by [3, Proposition 1.7], and this latter mod-
ule is easily seen to have a VS by choosing a JξΓ-basis of f\q{$lb)®κM
consisting of weight vectors.

DEFINITION 4.2. Let M be a module with HWS. Then for each
0 = 0 , 1 , 2 , . . . , we define Wq

2M to be the gth homology of the
complex

where

is any resolution of M by modules with VS. Furthermore if Mf is
another module with HWS, and if φ e Hom(M, Mf), then, using the
standard resolution of K to obtain resolutions of both M and M1,
we see that φ induces a morphism of complexes, and we denote by

s s s
Wq

2φ: Wq

2M-±Wq

2Mf the map induced on homology.
REMARK. In the above definition, it is not clear whether the mod-

ule Wq

2M depends on the choice of resolution. The functors M —•
Wq

 2M form a sequence of locally derived functors introduced in [6]
and used extensively in both [6] and [7]. A better approach than that
of the above definition is to use local projective resolutions, where the
projectivity is used to guarantee independence from the choice of res-
olution. It was shown, however, in [6, Theorem 6.2] that resolutions
by modules with VS may be used to obtain the same results. Since for
our purposes we will not need to make extensive use of local projective
resolutions, we choose to use the above definition here. Also, we will
almost exclusively work with the functor Wo

 2. This functor is right
exact.
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LEMMA 4.3. Let M be a module with HWS. If all the composition
factors of M have highest weights in Si US3, then M has a resolution
by modules with VS, all of whose Verma factors have highest weights in
S2 US3 . Furthermore, if all the composition factors of M have highest
weights in S3, then the modules with VS may also be chosen to have
all factors with highest weights in S3.

Proof. For the first statement, it suffices to show that there is a short
exact sequence

in which V has a VS whose factors all have highest weights in S2 U
5*3, and in which N satisfies the same hypotheses as M, since we
may then repeat the argument on N and splice together the resulting
short exact sequences. We begin with an epimorphism φ: X —» M
in which X has a VS. Such an epimorphism exists, since we may
choose, for example, the tail end of any resolution of M by modules
with VS. Let 0 = No c Nx c N2 c N3 = M be the filtration of M
given by Theorem 3.9, and let 0 = Yo c Y{ c Yι c I3 = X be the
corresponding filtration of X given by Theorem 3.9. Our hypothesis
on M implies that N\ = 0. Also, it was shown in [6, Corollary
4.4] that the factors of the filtration of X have VS, not just HWS,
since nothing is lost when the order of Verma factors is reversed.
Now Theorem 3.9 shows that φ{Yx) c Nx = 0, so that Yx c Ker^.
Hence φ induces an epimorphism ψ: XjY\ —• M. Setting V = Xj Y\
and N = Ker ψ gives us the desired short exact sequence, with the
appropriate Verma factors. The condition on the composition factors
of N follows from Proposition 2.9, since that proposition may clearly
be applied to obtain the result for V and N c V.

For the second statement, the proof is similar, and is left to the
reader.

LEMMA 4.4. Let M be a module with HWS. If all the factors of the
HWS have highest weights in Si, then there is a natural epimorphism
π: W0

2M —> M in which all the composition factors of Kerπ have
highest weights in S$.

Proof. Our hypothesis on the HWS for M means that we can iden-
tify MS2 with M. From Lemma 4.3, there exists an epimorphism
φ: V —> M where V has a VS whose Verma factors have highest
weights in S1US3. We can then identify Vs 1 with a submodule of V.
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Consider the filtration 0 = 0(0) c φ{Vsi) c φ(V) = M. Since Vsi
has a VS whose factors all have highest weights in S2, its homomor-
phic image φ(VS2) has an HWS whose factors all have highest weights
in S2 Similarly, since V/VS2 has a VS whose factors all have high-
est weights in S3, its homomorphic image Φ(V)/φ(VS2) has an HWS
whose factors all have highest weights in S3. But the same is true of
the HWS of the factors of the filtration 0 = 0 c MS2 = M = M. By
the uniqueness statement of Theorem 3.9 applied to the sets of weights
S 2 and S 3 , we must have φ(Vsi) = MS2 = M. Set Mo = VS2. We
now have an epimorphism ψ: Mo —> M. Letting N = Ker ψ, we
have by Proposition 2.9 that all composition factors of N have high-
est weights in S2 U S3. Applying Lemma 4.3 to N, we obtain a
resolution

• M2 -• Mi -> N -> 0

of N by modules with VS whose Verma factors all have highest
weights in S2 U S3. Splicing this sequence with the short exact se-
quence

we obtain a resolution

> M2 -* Mx Λ Mo -> M -> 0

of Λf by modules with VS whose Verma factors all have highest
weights in S2US3, in which all the Verma factors of Mo have highest

weights in S2. Note that we may identify M0

2 with MQ and that we
s

may identify M\2 with a submodule of M\. Since the resolution is
exact, we have M = Mo/ζ(M\). Also, using Definition 4.2, we have

Wξm s M0/ζ(Mι2). Since £(Λff2) c ξ{M{) we see that there is

an epimorphism π: w£2M -+ M with Kerπ = ξ(Mx)/ξ(Mf2). Note

that Kerπ is a homomorphic image of M\jMx

2, so that by Propo-
sition 2.9, all composition factors of Kerπ have highest weights in
S 3 .

Finally observe that all of the above constructions, including those
used in the proof of Lemma 4.3, depend only on choices of resolu-
tions by modules with VS. Since we may always work with resolutions
which are constructed from the standard resolution as in the discus-
sion preceding Definition 4.2, the naturality follows.

We are now ready to prove an adjoint-like property of two of our
functors.



104 WAYNE NEIDHARDT

THEOREM 4.5. Suppose M is a module with HWS such that all
composition factors of M have highest weights in S2US3, and suppose
that V is a module with RHWS such that all the factors of the RHWS
for V have highest weights in S\\jSι, finitely many being in S2. Then
there is a natural isomorphism Hom(F, Wo

 2M) = Hom(F5'2 ? M).

Proof. First observe that for any such F , there is a short exact
sequence

0 - > X — F - + F ^ - + 0

in which X has a RHWS whose factors all have highest weights in

S\. Thus Hom(X, Wo

 2M) — 0, and we have a natural isomorphism

Hom(F, wξ2M) = Hom(F^ , W^M).
On the other hand, for any such M, there is a short exact sequence

in which Y has a HWS, all of whose factors have highest weights
in S3. By Lemma 4.3 and Definition 4.2, we have Wq

 2Y = 0 for
all q, and by the long exact sequence for locally derived functors [7,
Theorem 3.7] we have wξ2M = W^2{Msi). The functoriality of w£2

shows that this isomorphism is natural. Thus we also have a natural
isomorphism Hom(F^ , W^M) = Hom(F^ , w£2{Msi)).

Now, from Lemma 4.4, we have a natural epimorphism

π: WQ

in which Ker π has all its composition factors of highest weight in S3.
Proposition 2.9 shows that Extw(F525 Kerπ) = 0 for all n, so that
in particular we have a natural isomorphism Hom(F>S2 ? Wo

 2{MS2)) =
Hom(FiS2 ? M

S2). Finally, Proposition 2.9 shows that Hom(FiS2, Y) =
0, so that we obtain a natural isomorphism

, M).

The result now follows by composing the above natural isomor-
phism.

5. Translation functors. We will now use the functors defined in the;
previous section to define the translation functors. The basic idea is
to "translate" Verma modules from one JF-orbit to another (where
orbits refer to the dot action of W). Although we could consider
translation in more generality, as in [7], for our present purposes we
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need only consider translation back and forth between the W-orbit of
a weight on one wall of the dominant Weyl chamber and the W-orbit
of a weight in the dominant chamber which is "close" to that wall.

Throughout this section, we fix a choice of / £ {1, 2 , . . . , / } , we
fix λ e P+ such that A(Λ, ) = 0, and fix η e P+ such that η(hϊ) =
1 and η(hj) = 0 for all j Φ i. Set a = aι and set s = st?, so
that a is a simple root and s is the corresponding simple reflection
in W. Observe that for the extreme weight sη of L(η) 9 we have
sη = η - a. Let Aα = λ + s// = λ + η - a. Note that Λ,α(λ, ) = - 1 ,
so that s - λa = λQ , and further note that λa(hj) > 0 for all j Φ ί.
Thus λα is on the α-wall of the dominant Weyl chamber with respect
to the dot action of W on f)*, and λ is "close" to that wall. This
restriction on λ may seem artificial at first, but the reason for this
is that when we begin to apply translation functors, certain ϊF-orbits
become interchanged. With our choice of λ and λa, only two of
these orbits are interchanged, and we may sort these two out by the
representation theory of sl(2, K), as we do in Proposition 5.1(iv)
below.

We now consider certain sets which are unions of W-orbits, and
show that they have many properties which will allow us to apply the
results of the previous section.

PROPOSITION 5.1. Let S[ = {v e i)*\w v j£ λ for some w e W},
S'2 = W -λ, and S'3 = {v e ψ\w v < λ for all w e W}. Also, let
S'{ = {v e ϊ)*\w v £ λ + η for some w e W}y Sf{ = W λa, and
S% = {v e ί)*|ι̂  £ S'l and w v <λ + η for all w e W}. Then all of
the following hold.

(i) ί)* is the disjoint union of S[, S'2, and Sf

3.
(ii) f)* is the disjoint union of S'{, S'{, and Sf±.

(iii) Hom(Af(i/|), M(VJ)) = 0 whenever vι e S and Vj e Sj with

(iv) Hom(Af (i//), M(uj)) = 0 whenever vt e S'/ and i/j e SJ with

(v) For any v eS'3 and any χ e U(L(η)), v + χeS'^.
(vi) For any v e S'2 and any χ e U(L(η)), v + χeS'{uS%.

(vii) For any v e S'{ and any χ e Π(Γ(-τ/)), v + χeS[.
(viii) For any v e S'{ and any χ e Π(Γ(-ι/)), v + χ e S[ u S'2.

Proof. Statements (i) and (ii) are clear. Statements (iii) and (iv)
follow from [6, Corollary 5.4] and the fact that
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Hom(M(λa),M(λ + η)) = 0

by the representation theory of sl(2, K). Statements (v) and (vi)
follow from the fact that for any w e W, w (v + χ) = w v + wχ
and we always have wχ e Π(L(η)) so that wχ < η .

To prove (vii), let v e S'{ and let χ e U(Γ(-η)). Choosing w eW
so that W'V j£ Λ+7/, we must also have w/ > -η, so that w (ίΉ-/) =
w v + wχ ^ λ, and therefore n / E 5 J .

To prove (viii), let v e S2 and / e Π(Γ(—*/)). Then 1/ = w λα

for some w E W, and we have w~ι - (v + χ) = ^ - 1 ^ + ^ - 1 Z =
^c+tί;"1/ = (λ+η-a)+w~ιχ = λ+(η+w~ιχ)-a. Now w~ιχ > -η,
so that we may write η + w~ιχ — ^ = 1 n 7α 7 with all Πj e 7L+. If
any n7 ^ 0 with j Φ i, then the above computation shows that
w~ι -(v+χ) jt λ, and we then would have v + χ E S[. Thus, we may
assume η + w~ιχ = nia. But then -η + Πta = w~ιχ e Π(Γ(-^)),
and since η(hj) = 1, there are only two possibilities for n z, namely
0 and 1. In case Πi — 1, we have w~ι - (v + χ) = λ + a — a = λ9 and
therefore v + χ £ S'2 . Thus, we may assume that nι• =• 0. This means
that w~ιχ = -η, so that sw~ιχ = -sη = -(η - a) = -η + a. But
we also have (sw~ι) -v = s- (w~ι u) = λa , so that (sw~ι) (v + χ) =
(.SK;"1) ^ + (.s ix;"1)^ =Aα-f/ + α = λ, and therefore ^ + χ G S'2 .

DEFINITION 5.2. Let S[, S'2, S'3, S'{, ^ , and S'{ be as in Proposi-

tion 5.1. We define the translation functors Tλ

χ

a and T£ by T*aM =

wf{wf2M ®κ L(η)) and Γ/ M = {Ms'ΐ ®κ T(-η))S2. The functor

Tλ

a is a functor from the category C(λ) to the category C(λa), but

the functor Tχ is a functor from a subcategory of C(λa) to the cate-

gory C(λ), as it is only defined on those M in C(λQ) with an RHWS

which has only finitely many factors of highest weight in S2 U S%.

REMARK. In the sequel, we will make use of the fact that Tλ

 a is a
composition of right exact functors, and hence is itself right exact.

THEOREM 5.3. Let S[, S'2, S'3, S'{, S'{, and S'{ be as in Proposi-
tion 5.1. If M e Ob C(λa) has a finite HWS with all factors of highest
weight in S" u S2, and if N e ObC(A) has all its composition fac-
tors of highest weight in S2uS'3, then there is a natural isomorphism
Hom(Γ/ M, N) = Hom(M, T^N).
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Proof. By Definition 5.2,

Hom(Γ/ M, N) = Hom((Λ/< ®κ Γ(-?/))52, N).
a

Using the finite HWS for MS2 , we see by Propositions 3.11 and

5.1(viii) that Ms'ί ®κ Γ(-η) has an RHWS with all its factors having

highest weights in S[ U S2, and only finitely many are in S2. Thus,

we may apply Theorem 4.5 to obtain Hom((MS2 <g>κ Γ(-?/))52 9 N) =

®κ Γ(-η), W^N). Now, by [7, Lemma 7.7],

5 X 2N) Hom(M 52 ;wf 2 ® L(η)).

From Propositions 2.9 and Proposition 5.1(iii), we have that all the
s'

composition factors of Wo

 2N have highest weights in Sf

2U S'3, and

hence, by Proposition 5.1(v) and (vi), all the composition factors of
s'

W0

2N ®κL{η) have highest weights in S2 U S3'. Thus, we may again

apply Theorem 4.5 to obtain

= Hom(M, Tλ

aN).

We now extend this adjoint-like property to the Ext functors. To
do this, we first need to study what happens to projective modules
under translation. As we will see in the next two lemmas, the result
is a projective module, but in the wrong category, and this is why we
make the following definition.

DEFINITION 5.4. The category C(/l)nice is defined to be the full sub-
category of C(λ) consisting of those modules whose composition fac-
tors all have highest weights in S2 U S3, where S2 and S3 are as in
Proposition 5.1.

We continue to use the notation of Proposition 5.1 in the following
two lemmas and theorem.

LEMMA 5.5. Let V e Ob C(λ) have a finite VS whose factors are all

of the form M{y) with v e S[ US'2, and let M e ObC(λ) n i c e . Then

there is a natural isomorphism E x t ^ ( F , M) = E x t ^ (VSΊ, M).

Proof. Let
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be a projective resolution of V in C(λ) as in Proposition 2.8. Observe
that the VS for each Pn satisfies the same hypotheses as the VS for
V, by Propositions 2.7 and 2.9. Applying [6, Theorem 4.8] gives the
exact resolution

of VS2 in C(λ)ni c e. We now note that each Pn

2 is projective in
s'

C(A)nice, since applying the functor Hom(Pπ

 2 , -) to a short sequence

of modules in C(λ)nice is naturally equivalent to applying the exact
functor Hom(Pn, -) to the same short exact sequence, by [7, Lemma
7.3]. Thus (*) is an exact projective resolution of VSΊ in C(A)nice.
Thus Ext£μj (VS2, M) is the nth cohomology of the complex

0 -> Hom(/$ , M) -* > Hom(/>?, M) -> ,

which, again using [7, Lemma 7.3], is naturally isomorphic to the
complex

0 -> Hom(P0, M)-> v Hom{Pn , M) -+ ,

whose nth cohomology is E x t ^ ( K , M).

LEMMA 5.6. IfveS'fuS^then T£lλ«(v) is projective in C(λ)n
α

Proof. We need only show that the functor Hom(Γ^Λ(^) , -) is

right exact when applied to sequences of modules in C(A)nice. Observe

that the hypothesis on v also holds for any / such that M(χ) is a

Verma factor of Iλ«(v), by Propositions 2.7 and 2.9, so that we have a

natural isomorphism Hom(Γ/ Iλ«{v), M) = Hom(Λ(i/), T^M) for

any M e Ob C(A)nice, by Theorem 5.3. Thus, given an exact sequence

M' -> Af -^ M ; / -* 0

in C(A)nice, we may use the right exactness of Tχ

a and the projectivity

of lλ«(y) to obtain the exactness of

Hom(/λ-(i/), Γ^MO -> Hom(/^(ι/), 7^βM)

-> Hom(/A«(ι/), Γ/M'O ^ 0 ,

and applying the natural isomorphism noted above gives the exactness
of

Hom(Γ/ Iλ*(u), M') -> Hom(Γ/ Iλ°(v), M)

-+ Hom(Γ/ 7λ-(i/), M;/) -* 0.
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THEOREM 5.7. Let V e Ob C(λa) have a finite VS whose factors are
all of the form M{y) with v e S'{υS![, and let M e ObC(A)n i c e. Then

we have natural isomorphisms Ext£(A } ( F , Tλ

χ

aM) = ExtJ ( λ )(Γ/ V, M)

for all n = 0 , 1 , . . . .

Proof, By Propositions 2.7, 2.8, and 2.9, V has a projective reso-
lution

in C(λa) in which each Pn is a finite direct sum of indecomposable
projectives satisfying the hypotheses of Lemma 5.6, and in which all
images and kernels have a VS satisfying the same hypotheses as the
VS for V. Thus, using [6, Theorem 4.8] twice and the exactness of
the functor —®κT{—rj) once, we see that

is an exact resolution of Tχ V in C(A)nice. By lemma 5.6, it is in fact a

projective resolution of τ[v in C(A)n i c e. Thus, Ext^(A) (T£V,M)

is the nth cohomology of the complex

0 -> Hom(Γf P o ? Λf) -* > H o m ( Γ / P w , AT) -* .
α α

By Theorem 5.3, this complex is naturally isomorphic to the complex

0 -» Hom(P0, T^M) -* > Kom(Pn , T^M) -+ ,

whose nth cohomology is E x t ^ j ( F , Tλ

aM). We have shown that

there is a natural isomorphism

E*rcwJ7iV, M) = Ext"C{K)(V, Tλ

χ°M),

and the result now follows from Lemma 5.5

We wish to compose translation functors to obtain the operators of
coherent continuation. In order to do this, for technical reasons we
cannot simply translate back to the same orbit. We now fix μ = λa + η
for the remainder of this section. The idea of coherent continuation
is to translate from the orbit of λ to the orbit of λa on the α-wall,
and then translate from the orbit of λa to the orbit of μ.

PROPOSITION 5.8. Let S[ = {v e \f\w v ^ λa for some w
S92 = W-λa, and S'3 = {v e l)*\w v < λa for all w e W). Also,
let S'( = {v e t)*\w v ^ μ for some w e W}, S'{ = W μ, and
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S% = {v e. ί)*\w v < μ for all w e W}. Then all the conclusions
(i)-(viii) of Proposition 5.1 hold for these sets of weights, as well.

Proof. The proof is essentially the same as that of Proposition 5.1,
but without the difficulties encountered in (vi) and (viii).

DEFINITION 5.9. Let S[, S'2, S'3, S'{, S'{, and Sξ be as in Propo-

sition 5.8. We define the translation functors T£ and Tμ

a by T^M =

wf(W^M®κL{η)) and ij°M = (Msϊ ®κ T{-η))S2. The functor
T^ is a functor from the category C(λa) to the category C(μ), but

a

the functor Γμα is a functor from a subcategory of C(μ) to the cate-
gory C(λa), as it is only defined on those M in C(μ) with an RHWS
which has only finitely many factors of highest weight in S'Ί U S3'.

Once again, the functor T% can be seen to be right exact. We
also have adjoint-like properties, whose proofs are similar to those
in Theorems 5.3 and 5.7 and Lemma 5.6, and are left to the reader.
The following definition makes their statement easier, and they are
summarized in the following theorem.

DEFINITION 5.10. Let S'2 and S3 be as in Proposition 5.8. We
define C(ylα)nice to be the full subcategory of C(λa) consisting of
those modules whose composition factors all have highest weights in

THEOREM 5.11. Let S[, S'2, S'3, S'{, S'{, and S'{ be as in Proposi-
tion 5.8. If M € Ob C(μ) has a finite HWS with all factors of highest
weight in S" U S'{, and if N e ObC(Aα)nice, then there is a natu-
ral isomorphism Hom(Γ/Λ/", N) = Hom(M, T?N). If in addition

a

we assume that the finite HWSfor M is in fact a finite VS, then there

are natural isomorphisms Ext£(Λ } ( Γ / M , N) = Ext£ ( / / )(M, TjfN) for
each n = 0, 1, Also, for any v e S'{ u S'{, we have that Tλ

μ

al^{y)
is projective in C{λa)nice.

We are now able to compose the functors defined thus far in order
to obtain the operators of coherent continuation.

DEFINITION 5.12. We define the operators of coherent continuation

θ α = Γf o Γ/ and Ψa = T{ o Γ/ .

The functor θ α is right exact, since it is composed of right exact
functors. We may apply the adjoint-like properties proved for the
translation functors to obtain similar results for coherent continuation.
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We summarize these results in the following theorem, whose proof is
left to the reader.

THEOREM 5.13. Let S[, S'2, and S'3 be as in Proposition 5.1, and let
S'l, S'{, and S'{ be as in Proposition 5.8. If M e Ob C(μ) has a finite
HWS whose factors all have highest weights in S" U S'{, and if N e
ObC(/l)njce, then there is a natural isomorphism Hom(Ψ α M, N) =
Hom(M, ΘaN). If we impose the additional hypothesis that M have
a finite VS rather than merely an HWS, then we have natural isomor-
phisms Ext^(Λ)(ΨαΛf, N) = Ext£(/l)(AΓ, ΘaN) for each n>0. Also,
for any v e S'{ u S'{, we have that ΨaI^(u) is projective in C(λ)τ/nice

6 The structure of certain translated modules. We retain the no-
tation of the previous section, and study the structure of the trans-
lations and coherent continuations of Verma modules and their ir-
reducible quotients. We begin with the behavior of Verma modules
under translation and coherent continuation, which involves only a
straightforward analysis of the possible resulting Verma factors.

THEOREM 6.1. Let w eW such that w < ws. Then the following
hold.

(i) Tλ

λ«M{w-λ) = M(w-λa) = ΊJ°M((ws) λ), andfurthermore any

imbedding of M((ws) λ) into M(w λ) translates to an isomorphism

of Tλ

λ«M((ws) λ) and tf°M(w - λ).

(ii) There is a short exact sequence

0 -> M(w - μ) -> ΘaM(w λ) -> M((ws) μ)-+0.

Also, the same is true with θaM((ws) λ) in place of ΘaM(w λ).

(iii) Tμ«M(w-μ) = M(w-λa) = TμaM((ws)-μ), and furthermore any

imbedding of M((ws) μ) into M(w μ) translates to an isomorphism

of τ£«M((ws)^ μ) and τ£°M(w μ).
(iv) There is a short exact sequence

0 -> M(w λ) -> ΨaM(w μ) -> M((ws) λ) -> 0.

Also, the same is true with ΨaM((ws) μ) in place of ΨaM(w μ).
(v) The sequences in (ii) and (iv) do not split.

Proof. For the first statement, since M(w λ) ®κ L(η) has a VS, we
see that T^M(w λ) = (M{w λ) ®κ L(η))S2 , where S'{ = W λa as
in Proposition 5.1. Any factor in the VS for M(w λ) ®κ L{η) has a
highest weight of the form w -λ + u , where z/ E Π(L(?/)). In order for
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this highest weight to belong to S<[, there must be some x e W with
x (w λ+v) = (xw)-λ+xv = λa = λ+η-a. Since we have (xw)-λ<λ
and xv < η, we only have two cases to consider. Either (xw) λ = λ
and xv — η - a, or (xw) - λ = λ- a and xv = η. In the first case,
we have xw = 1, so that w = x " 1 and v = x~ι(η-a) = w(η-a) =
IUST/ . In the second case, since A — a = s Λ, we have .xw = s, so that
ws = x " 1 and ι/ = x"1^/ = WST/. Thus, the only possible factor in

the VS for Tλ

λ

aM(w A) = (M(w A) <8># ^(^/))^' is the Verma module
o f h i g h e s t w e i g h t w λ + w s η = w -(λ + s η ) = w -(λ + η - a ) = w - λ a .
Since dim L(η)wsη = 1, this factor can occur only once, and we have

an isomorphism Tλ

aM(w λ) = M(w λa). A similar argument shows

that we have an isomorphism Tλ

aM((ws) Λ) = M(w Λα). The proof
that any nonzero imbedding φ: M((ws) Λ) —• M(w Λ) translates to
an isomorphism Tχ

aφ: Tλ

aM((ws) Λ) —• Tλ

aM(w Λ) is identical to
the proof of [7, Lemma 9.5].

To prove the second statement, observe that by (i), we have that
ΘaM(w-λ) = T£M(w-λa) = {M(W'λa)®κL{η))s>2 , where S'{ = W μ,

a

as in Proposition 5.8, where we use the fact that M(w λa)®κL(η) has
a VS. Now any factor in the VS for M(w Λα) ®κ L(η) has a highest
weight of the form w λa + v , where v e H(L(η)). But then, for any
x G W, we have x (w λa + v) — (xw) - λa + xv < λa + η = μ, with
equality only if both (xw) λa = λa and xv = η. The first equality
only occurs for the two cases x = w~ι and x — sw~ι, so that we have
v = wη or z/ = wsf/. Since d i m L ^ ) ^ = d i m L ^ ) ^ ^ = 1, we see
that (M(w λa)®κL(η))s'ί has exactly two factors in its Verma series,
of highest weights w λa + wη = w - μ and w λa + wsη = (ws) μ,
and each factor occurs once. Since the order of factors in a finite VS
may be arranged so that the factors of higher highest weight occur at
the bottom of the series, we obtain the existence of the short exact
sequence in (ii). Finally, since θa = T% o Tλ

a, we may conclude from
(i) t h a t QaM((ws) Λ) = ΘaM{w λ ) /

The proofs of (iii) and (iv) are similar, involving RVS in place of
VS, and are left to the reader.

To see that the sequence in (ii) does not split, observe that

dimHom(M((ws) μ), θaM(w Λ))

= dimHom(Tμ«M((ws) μ), Tλ

χ

aM(w Λ))

= dimHom(M(i(; λQ), M(w Λα)) = 1.
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Similarly, to see that the sequence in (iv) does not split, observe that

dimHom(ΨαM(w μ), M(w λ))

= dimKom(T^M(w μ), T*«M(w λ))

= dimHom(Af(w λa), Af (it; λα)) = 1.

We now look at the more complicated behavior of irreducible high-
est weight modules under translation and coherent continuation.

PROPOSITION 6.2. Let w eW such that w <ws. Then the follow-
ing hold.

(i) T^L(w-λ) = 0.
(ii) ΘaL(w-λ) = 0.

(iii) Tλ

aL((ws) λ) is a nonzero highest weight module of weight
w λa in which L(w λa) occurs exactly once as a composition factor,
and all other composition factors are of the form L{u) with v e S'{,
where S% is as in Proposition 5.1.

(iv) There is a unique submodule L'{{ws)μ) ofΘaL((ws)-λ) which
is of highest weight (ws) μ and in which L((ws) μ) occurs exactly
once as a composition factor, and all other composition factors are of
the form L{y) with v e S%, where S% is as in Proposition 5.8.

(v) dimΐlom(θaL((ws) λ), L((ws) μ)) = 1.
(vi) There is a complex

0 -> L'((ws) - μ) Λ ΘaL((ws) λ) ^ L((ws) μ)^0

in which φ is the injective inclusion map, its image being the unique
submodule of ΘaL((ws) λ) with properties given in (iv), and in which
ψ is surjective, its image being the unique quotient of θaL((ws) λ)
which is irreducible of highest weight (ws) μ, as given by statement

(v).

Proof. For the first statement, consider a short exact sequence

0 -> M((ws) λ) Λ M(w λ)-+X-+09

where φ is any nonzero imbedding of M((ws) λ) into M(w λ),

so that X is a highest weight module of weight w λ. Since Tλ

a is

defined as a composition of right exact functors, it is right exact, and

Proposition 6.1 may be applied to show that Tλ

aX = 0. But L(w λ)

is a quotient of X, so we may apply the right exactness once more to
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obtain Tλ

aL(w - λ) — 0. The second statement follows immediately
from the first.

For the third statement, we have that

T^L((ws) λ) = wf{W^L{{ws) λ) ®κ L(η)),

where S'2 and S2 are as in Proposition 5.1. Using Proposition 2.9
s"

and the definition of the functor W0

2 , we see that the only possible

factors of 1*°L((ws) λ) are of the form L{y) with veS'ίuS'j. What
remains to be shown is that the only possible composition factor of
Tλ

aL((ws) -λ) of the form L(x λa) is L(w λa), and that this factor
occurs only once. But, using [6, Theorem 6.9] twice and [6, Corollary
7.5] once, we have

(T^L((ws) λ): L(x λa)) = (L((ws) λ) ®κ L(η): L(x λa)).

Now, [6, Proposition 7.6] states that the only such composition factor
which may occur is L(w λa), and this factor occurs at most once.
On the other hand, using the isomorphism of Theorem 5.3, we have

λa), T^L({ws) λ))

= dimHom(Γ/M(w λa), L((ws) λ))

= dimHom(ΨαM(κ; μ), L((ws) λ)) = 1,

where we have used the structure of ΨaM(w μ) given by the short
exact sequence from Proposition 6.1 for the last equality. Thus
L(w - λa) occurs at least once as a composition factor of
Tλ

aL((ws) λ), proving the third statement.
For the fourth statement, we have

dimHom(M((ws) μ), θaL((ws) λ))

= dimHom(ΨαM((ws) μ), L((ws) λ)) = 1.

We may thus take Lf((ws) μ) to be the unique nonzero image of
Af ((it; J) μ) in θQL((ws) λ). That is, let

φ e Hom(M((ws) - μ), ΘaL((ws) λ))

with 0 ^ 0 , and set L'((ws) μ) — Im</>. Clearly L'({ws) μ)
is a nonzero highest weight module of weight (ws) μ, and hence
L((ws) - μ) occurs exactly once as a composition factor. It remains
to show that L'((ws) μ) has as its other composition factors only
those of highest weight in S'{. We use the notation S", S'{, and
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#3 of Proposition 5.8. Let X be the unique maximal submodule of
M((ws)-μ), and consider an HWS for X, which exists by [3, Lemma
4.4], Since, by Proposition 2.9 and Proposition 5.8, the only possible
highest weight factors of X have highest weights in S^US^, we see by
Proposition 3.6 that X has a two step filtration 0 c Xsϊ C X, where
XS2 has an HWS 0 = Xo C X\ c Xi C in which each factor
has highest weight in S'{, and where X/XS2 has an HWS in which
each factor has highest weight in £ 3 . We show by induction that each
Xi c Ker0. Clearly XQ c Kevφ. Assume XfCφ. if Xi+\ <fc Kerφ,
then φ would induce a nonzero map from Xi+χ/Xi to θaL((ws)-λ).
But then, since by Proposition 2.9 and [4, Theorem 4.1] Xi+\/Xi has
highest weight of the form x μ for some x € W with x > ws, we
would have a nonzero map from M(x-μ) to ΘαL((u7,s) Λ). However,
using Proposition 6.1 (iii) and (iii) above, we have

Hom(M(x μ)9θaL((wsyλ))^Hom(TJl*M(x μ), T*°L((ws)d)) = 0.
Therefore we must have Xi+\ c Ker^, completing the induction, so

that in fact Xt c Ker<£ for all / > 0. But Xsϊ = U/>oχ/> s o w e

have XS2 c Ker0. This shows that L'((ws) - μ) = Imφ is a nonzero

quotient of M((ws) μ)IXs'ί , and thus L((ws) μ) occurs once as a

composition factor and all other composition factors are composition

factors of X/XS2 , hence have highest weights in £ 3 .
By the right exactness of θ α , we see that there is an epimorphism

π: θaM((ws) λ) —> θαLίίtί Λ1) λ). Using Proposition 6.1(ii), which
gives us a filtration 0 c M{w λ) c θαAί((ι/;j) A), we may consider
the images under π to obtain a filtration 0 c M c θαL((ws) A),
in which M is either zero or of highest weight w - μ, and in which
θaL((ws) Λ)/Λf is either zero or of highest weight (ws) μ. But

Hom(M(w μ), ΘaL((ws) -λ)) = Hom(ΨaM(w μ), L((ws) A)) φ 0,

so that M is nonzero. To show that ΘaL((ws) A)/M is nonzero,
note that otherwise we would have M = ΘaL((ws) A), and L(w μ)
would be a quotient of ΘaL((ws) A), and hence a quotient of
ΘaM((ws) - A), which would contradict the fact that the sequence
in Proposition 6.1 (ii) does not split. Therefore ΘaL((ws) A) has a
nonzero quotient ΘaL((ws) λ)/M of highest weight (ws) μ, which
in turn has L((ws) μ) as a quotient, which shows that

Hom(ΘaL((ws) A ) , L((ws) >μ))φθ.

On the other hand, since θaL((ws) A) is a quotient of ΘaM((ws) A),
we have
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dimHom(θaL((ws) λ), L((ws) μ))

< dimHom(θαM((ws) λ), L((ws) μ)) = 1,

by Proposition 6.1 (ii). This proves (v).
Finally, the only part of (vi) which does not follow immediately

from (iv) and (v) is that Im φ c Ker ψ. Let /: M((ws)-μ) —• M(w -μ)
be a nonzero imbedding. By Proposition 6.1(iii), this translates to an
isomorphism Tμ

ai: M(w λa) —> M(w λa). We now have a square
Hom(M(w μ), θaL((ws) λ)) > Hom(M((ws) μ), θaL((ws) A))

Hom(M(w λa), Tλ

λ

aL{{ws) /I)) > Hom(M(^ λa), Tλ

λ

aL((ws) A)),

where the vertical maps are the natural isomorphisms of Theorem
5.11, the top horizontal map is just the restriction map given by trans-
position of i, and the bottom horizontal map is given by the transpo-
sition of the isomorphism Tμ

ai, so that the bottom horizontal map is
also an isomorphism. Note that the naturality implies that this square
commutes. By (iii), the vector spaces on the bottom of this diagram
are 1-dimensional, hence so are the ones on top. The commutativ-
ity shows that the top map must be an isomorphism, and hence any
nonzero map from M(w-μ) to θaL((ws)-λ) has a nonzero restriction
to M((ws) μ), and hence its image N, which is a highest weight mod-
ule of weight w μ, contains a nonzero image of M((ws)-μ), which is
L'((ws) μ) by (iv). Now consider the filtration 0 c M c ΘaL((ws)-λ)
from the proof of (v). It is clear that M is the unique submodule of
highest weight w μ, so that M = N, and hence L'{(ws) μ) c M.
On the other hand, from the proof of (v) we have M c Ker ψ, so
that Imφ = L'((ws) - μ) c M c Ker ψ.

We may now define certain submodules which have been studied
extensively in the case of a finite dimensional algebra.

DEFINITION 6.3. We use the notation of Proposition 6.2(vi). We
define UaL((ws) λ) = Ker^/Im^, KaL((ws) λ) = Ker^, and
QaL((ws) - λ) = ΘaL((ws) λ)l Im φ.

Observe that we have short exact sequences

0 - +

0 ^

0-*

L'((ws)
L'((ws)

UaL((w

•μ)

•μ)

-» KaL((ws) •

-> θaL{(ws) •,

λ) -»• QaL((ws

λ)

λ)

) . .

-> UaL((ws)
-H QΩL((iί;5)

λ) -»• £((«;*)

•A)

•A)

JO

- 0 ,

- 0 ,
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a n d

0 -> KaL((ws) λ) -> Θ α L ( ( w s ) A) -> L((ws) >μ)-+0.

We now take a look at what composition factors of the form L(x-μ)
can occur in UaL((ws) A). For this, we first need a lemma involving a
further translation. Note that μ satisfies exactly the same hypotheses
as λ, namely that μ € P + and μ(A/) = 0. Thus we may set μa =
μ + 7/ and define the translation functors Tμa and T$ exactly as in
Definition 5.2. These translation functors have all the same properties
as Tλ

a and T£ .

LEMMA 6.4. For any x eW and any short exact sequence

of modules in C(μ) n i c e , (TμaM: L(x μa)) = (7j β L:

(7jβΛT: L(JC /έα)) Similar results hold for Γf αnJ/or 7j° o Γ/ .

Proof. Since T$ Iμ«(x -μa) is projective in C(//)nice by Lemma 5.6,
we have that the sequence

0 -> Hom(Γ^/^(x /ια), L) ^ Hom(Γ^/^(x μa),

^ / ^ ( x ^έα), iV) ^ 0

is exact. We now use Theorem 5.3 and Proposition 2.7 repeatedly to
obtain

(T£°M: L(x μa)) = di

^ / ^ ( ^ μ<*),

/^(jc // α ), L) + dimHom(Γ^/^(x /ια), N)

x μ α ) , Γ^L) + dimHom(/^(x μa), Γ^iV)

= (If-L: L(x /ια)) + (Tf ΛΓ: L(X μα)).

The above lemma essentially says that although the translation func-
tor Tμa may not be exact, its lack of exactness involves only modules
with composition factors whose highest weights are in "lower" orbits,
and that they behave like exact functors if we consider composition
factors of highest weight in W μa. Similar statements hold for the
other translation functors and compositions of these functors.

COROLLARY 6.5. For any xeW and any M e Ob C(λ α ) n i c e , (Tμao
£ : L(x μa)) = 2(M: L(x λa)).
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Proof. First note that by the exactness of translation functors on
modules with VS as in [6, Theorem 4.8], we may use Proposition
6.1(ii) and (i) to conclude that Tμa o T%M{x λa) has a VS with
just two factors, each isomorphic to M(x μa). This implies that
[Tμa o T£M{y)] = 2 if v = x μa , and 0 otherwise.

We now consider a resolution

• Mi -> Mo -> Af -> 0

of M by modules in C(λa)nice which each have a VS, as constructed
in Lemma 4.3. Note that if we use the standard resolution of K
when performing this construction, we can guarantee that Mn has
no weights > λa - a for n sufficiently large, so that Tμa o T^Mn

has no weights > μa. Thus the following sums, which may appear
to be infinite, have only finitely many nonzero terms. Also, since
y . μa = (ys) - μa and y λa = (ys) λa for any y e W, we avoid
repeated terms in the following sums by assuming y < ys. Applying
Lemma 6.4 gives

: L(x //«)) = ^ ( - 1 ) « ( Γ ^ o T*Mn: L(x μa))
n>0

- 1 ) " Σ I 7 ?" ° ^ ^ : ^ O ' βa)](M{y • μa): L(x • μa))
n>0 yeW

y<ys

n>0 yeW zeW
y<ys z<zs

• \Tμ

μ° o T^M(z λa): M(y • μa)](M(y μa): L(x • μa))

- 1 ) " Σ 2lM»: M{y-λa)]{M{y • μa): L(x • μa))
n>0 yeW

y<ys

^ 1 ) " Σ 2Wn' M(y-λa)]{M{yλa): L(x • λa))
n>0 yeW

y<ys

where we have used [6, Theorem 7.10] for the penultimate equality.
Note that we have relied heavily on Propositions 2.9, 5.1 and 5.8 to
justify only considering highest weights in the appropriate orbits and-
ignoring highest weights in one of the sets of the type 5 3 .

THEOREM 6.6. The only composition factors of UaL{{ws) λ) which
are of the form L(x μ) with x e W satisfy x < xs, with L(w μ)
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occurring exactly once. Using the sets S", S![, and S1^ as in Propo-
sition 5.8, all other composition factors of UaL((ws) λ) have highest
weights in S%.

Proof, We first look at the composition factors of θaL((ws) λ).
From the filtration O c M c θaL((ws) λ) in the proof of Propo-
sition 6.2(v), we see that L(w μ) occurs as a composition factor
exactly once, and all composition factors have highest weights either
in ^2 = W-μ or in S%. Also, from Proposition 6.2(vi), we see that the
composition factor L((ws) μ) occurs at least twice. Now we have
by Proposition 6.2(iii) and Corollary 6.5 that the only composition
factor of TμaθaL((ws) λ) of the form L(x μa) is L(w μa), which
occurs exactly twice. But, applying Tμa to the individual composition
factors of θaL((ws) λ) and using Lemma 6.4, we see that the two
factors L((ws) μ) translate to the factors each having a composition
factor L(w μa) by Proposition 6.2(iii), so that all other composi-
tion factors of θaL((ws) λ) of the form L(x μ) must vanish under
the translation Tμa. Thus, by Proposition 6.2(i) and (iii) we see that
these composition factors must satisfy x < xs. We now use Proposi-
tion 6.2(vi) to eliminate the composition factors of L'{{ws) μ) and
L((ws) - μ), obtaining the desired result for UaL((ws) λ).

7 The main theorem. We continue with the notation of the preced-
ing section. We now use the modules UaL((ws) λ) defined in that
section to show that, assuming certain nice properties which hold in
the case of a finite dimensional algebra carry over to our present sit-
uation, we may compute the integers dimExt^(//)(M(x μ), L(y μ))
for any x , y e W, using induction on l{x). Note that these inte-
gers were shown to be independent of the choice of μ e P+ in [7,
Theorem 8.6]. Also, knowing these integers allows us to compute the
multiplicities [L(y μ): M(x μ)], by [7, Proposition 10.3], and then,
using Mόbius inversion, the multiplicities (M(y μ): L(x - μ)).

LEMMA 7.1. If x<xs and y<ys, then Exi^w(M(x λ), L(y - λ))

l s ) λ), L(y λ)) for all n>0.

Proof, Using the short exact sequence

0 -> M(x λ) -> ΨaM{x μ) -+ M((xs) λ) -> 0

from Proposition 6.1(iv), we apply the functor Hom(-, L(y λ)) to
obtain a long exact sequence, and we see that it suffices to show that
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ExtJ(λ)(ΨαAf(jc μ), L(y A)) = 0 for all n > 0. But this is clear,
since Extn

C{λ)(ΨaM(x • //), L(y A)) = Ext£w(Jlf (* μ), θ α L(y • A))
by Theorem 5.13 and θ α L(y - λ) = 0 by Proposition 6.2(ii).

The following two lemmas will form the heart of our argument, and
are essentially an adaptation of the proof of [9, Theorem 3.5].

LEMMA 7.2. If x <xs and y < ys, then

Extn

c{μ)(M(x μ), KaL((ys) λ)) = Έxtn

c{λ)(M((xs) λ), L((ys) λ))

for all n>0.

Proof. Consider the diagram

. . . -* Extn

C{μ)(M(x μ), ^αL((y5) λ)) - Ext^ } (M(x μ), θaL((ys) A))

) . A), L((ys) A)) - , Extn

C{λ)(ΨaM(x /ι), L((yj) λ))

//),

where the top row is a long exact sequence derived from the short
exact sequence

0 -> ΛΓαL((yj) λ) - ΘαL((>;5) A) -> L((yj) //) ^ 0

which was noted after Definition 6.3, and the bottom row is a long
exact sequence derived from the short exact sequence

0 -> M{x λ) -> ΨαAΓ(x //) -^ M((X5) λ) -> 0

of Proposition 6.1(iv). The vertical maps are the natural isomor-
phisms of Theorem 5.13 and [7, Proposition 8.5]. Notice that the first
vertical isomorphism is essentially derived from the natural equiva-
lence of functors

Hom(-, - ® L(η) ® L(η)) and Hom(- ® Γ(-^) ® Γ(-ι/), - ) ,

and the second from the natural equivalence of functors

Hom(-, - ® L(μ - λ)) and Hom(- ® Γ(λ -μ),~),

as proved in [7, Lemma 7.7]. Since L(μ-λ) is a subquotient of L(η)<g>
L(η), the naturality shows that the diagram commutes up to a scalar
multiple, where the scalar depends on our choices for highest weight
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vectors in the subquotient modules. By the commutativity up to scalar
multiple, we may define, noncanonically, the desired isomorphisms.

LEMMA 7.3. For any w < ws and z < zs, we have a long exact
sequence

... -> Extn

C{μ)(M(z • μ), L((ws) μ)) -> Ext"c{μ)(M((zs) μ), L((ws) μ))

-> E x t ^ } ( M ( z μ), C/βL((tι;j) A)) - .

Proof. Using the short exact sequence

0 -+ L'((tus) μ) -> #αL((ws) A) -• UaL{{ws) λ) -* 0

which was noted after Definition 6.3, we obtain a long exact sequence

•. - Ex\n

C{μ)(M(z . //), l/((tw) //)) - Ext^ }(M(z . μ), KaL((ws) 2))

^ //), UaL((ws) A)) - .

From the description of the composition factors of L'((ws) μ) given
in Proposition 6.2(iv), we see by Propositions 2.9 and 5.8 that

Extn

c{μ)(M(z • μ ) , I / ( ( W J ) μ)) = Extn

c{μ)(M(z μ), L ( ( W J ) //)) ?

and substituting this in the long exact sequence gives

•. -> Ext^ }(M(z |i), L((ws) //)) - Ext^ }(M(z . μ), ^αL((^^) A))

-, Ext^ }(M(z //), UaL((ws) A)) - . . . .

Making a further substitution from Lemma 7.2 gives

£ ( M ( z μ), L((ws) //)) - Ex£w(Af ((ZJ) A), L((ws) A))

μ), ^ ( ( U J ) A)) - • .

Finally, applying [7, Theorem 8.6] on the independence of the choice
of dominant integral weight gives the desired result.

In order to use the long exact sequence of Lemma 7.3 in our induc-
tive scheme, we will need the following two properties, which hold in
the case of a finite dimensional algebra.

Conjecture 7.4. Let x, y eW. Then the following hold.

(i) If Extn

c{μ){M{x -μ))ϊθ, t h e n l(x) - l(y) = n ( m o d 2 ) .
(ii) If x < xs and y < ys and L(x - μ) occurs as a composition

factor of UaL((ys) λ), then Hom(M(x μ), UaL((ys) -λ))φθ.
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REMARK. The second part of the above conjecture is actually a
weaker form of [9, Conjecture 2.5], where it was conjectured, and
later proved in [10, Corollary 7.18], that UaL((ys) λ) is completely
reducible.

LEMMA 7.5. Let z < zs and w <ws. Assuming Conjecture 7.4, if
L(z - μ) occurs as a composition factor of UaL((ws) X), then l(z) =
l(w) (mod 2).

Proof, Using Conjecture 7.4(ii), we have

Hom(Λf(z μ), UaL((ws) μ)) φ 0,

so that by the long exact sequence in Lemma 7.3 we have either
Hom(M((zs) μ), L((ws).μ)) φ 0 or Extx

c{μ)(M(z μ), L((ws) μ)) φ
0, and in either case the result follows from Conjecture 7.4(i).

LEMMA 7.6. Assume that Conjecture 7.4 holds. Let x < xs and
y <ys. If l(x) - l(y) ψ n (mod 2), then

Extn

c(μ)(M(χ.μ),UaL((ys) λ)) = 0.

On the other hand, if l(x) - l(y) = n (mod 2), then

μ), UaL((ys) λ))

= ] Γ (UaL((ys) λ): L(z μ)) dimExt^ }(M(x μ), L(z μ)).
zew

Proof. Consider a local composition series for UaL((ys) λ) at
x - μ. In case l(x) - l(y) φ n (mod 2), we have that

Extn

c{μ)(M(x μ),F) = 0

for each factor F in the LCS, by Lemma 7.5, and hence

by induction on the number of factors. The case where l(x) - l(y) = n
(mod 2) also follows by induction on the number of factors,
since Conjecture 7.4(i) shows that both Ext^:\(M(x μ), F) and

μ), F) for each factor F in the LCS.

COROLLARY 7.7. Assume that Conjecture 7.4 holds, and let x < xs
and y <ys. Then

dimHom(M(x μ), UaL((ys) λ)) = (UaL((ys) λ): L(x • μ)).
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Proof. This follows immediately from Lemma 7.6, with n = 0,
when we observe that Hom(Af (x μ) , L(z μ)) — 0 unless x = z .

DEFINITION 7.8. We define the polynomials 7Xyy(q) e Z[q1/2] for
each x, y eW by

?*,y(«0 = Σ dimExtn

C{μ)(M(x / / ) ^ ) ^ ) ^

REMARKS. If we assume the truth of Conjecture 7.4, then we have
that Ύx^y(q) G Z[#], and it was shown in [7, Corollary 10.4] that we
have [L(y λ): M(x - λ)] = (-l)lM"l(y)PXfy{l). Thus, determining
the Ext dimensions determines the multiplicities [L(y λ): M(x λ)]
and hence, by Mόbius inversion, the multiplicities (M(y -λ): L(x -λ)).

For the case of a finite dimensioanl algebra, it was shown in [10,
Theorem 7.3] that PXίy is the same as the Kazhdan-Lusztig polyno-
mial Pχwo,ywo 9 where WQ is the longest element in W. In the present
situation, we have no longest element of W to work with, and we
begin our inductive scheme with the dominant integral weight μ by
starting with x = 1, rather than beginning with the weight w0 - μ as
in the proof for the finite dimensional case.

DEFINITION 7.9. For any x Φ y, we define

μ(x, y) = d i m E x t ^ } ( M ( x μ), L(y μ)).

We also define μ(x, x) = 1 for any x e W.

REMARK. Assume x Φ y. Since Hom(M(x μ), L(y μ)) = 0,
we have that degP*^ < (l(x) - /(y) - l)/2, so that μ(x, j;) is the
leading coefficient of Px,y when it has maximal possible degree
(/(JC) - /(y) - l)/2, and is zero otherwise.

COROLLARY 7.10. Assume that Conjecture 7.4 /zo/tffc, and let z < zs
and y < ys with z φy. 7 7 ^ (C/QX^JΛS ) A): L(z μ)) = μ(z

Proof. Since z φy ,we also have zs φys, and hence

Also, for either side to be nonzero, we can assume that l(z) = l(y)
(mod 2), by Lemma 7.5 and Conjecture 7.4(i). But then, using Con-
jecture 7.4(i) again, Έxtι

c^(M((zs) μ), L((ys) μ)) = 0, so by the
long exact sequence in Lemma 7.3 we have

dimHom(M(z μ), UaL((ys) λ))

= dimExt ι

C(μ)(M(z μ), L((yj) μ)) = μ{z,
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THEOREM 7.11. Let μ e P + , and assume the truth of Conjecture
7.4. The integers d imExt^^Af (x μ), L(y μ)) can be computed by
induction on l(x) as follows. When x = 1, we have

dimExtn

C{μ)(M(μ),L(y μ)) = O

unless y = 1 and n = 0, and dim Hom(M(μ), L{μ)) = 1. For
x Φ 1, choose a simple reflection s such that xs < x. We then have
the following two cases.

Case 1. y < ys. Then

dimExt£(//)(M(x μ), L(y //)) = dimExt^(M((x5) /ι), L(y //)).

2. y > y^. FΛeft wÂ « /(x) - l(y) φ n (mod 2) we Λαve
-//), L(y-μ)) = 0, andwhen l(x)-l(y) = n (mod 2)

> μ), L((ys)

μ(z, y)άiτΆΈx\n

C(lή{M((xs) • μ), L(z μ))

z<zs

s) μ), L{y

Proof. The assertions for x = 1 are clear from Proposition 2.9,
so we choose a simple reflection s with xs < x, and choose λ and
μ as in the preceding two sections. Case 1 is simply a restatement
of Lemma 7.1. For Case 2, we can assume by the parity conjecture,
i.e. Conjecture 7.4 that l(x) - l(y) = n (mod 2), and we use the long
exact sequence

•. • - Extn

C(μ)(M((xs) μ), L(y • //)) - E x t ^ } ( M ( x //), L(y

) μ), C/αL(j; λ)) -

of Lemma 7.3. By the parity conjecture and Lemma 7.6, this long
exact sequence collapses into a family of short exact sequences, and
we have

μ), UaL(y

But now, we may use Lemma 7.6 to compute

dimExt£ (/ i )(M((xs) μ), UaL(y λ))
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by taking the sum of the various dimExt^ ^(M((xs) μ), L(z μ))
with L(z μ) a composition factor of UaL(y A). We thus obtain the
desired result when we note that L((ys) μ) occurs exactly once as a
composition factor of UaL(y λ) by Theorem 6.6, and by Theorem
6.6 any other composition factor is of the form L(z μ) with z < zs
and it occurs with multiplicity μ(z, y), by Corollary 7.10.

COROLLARY 7.12. Assuming the truth of Conjecture 7.4, we
compute the polynomials PXiy(q) by induction on l(x) as follows.

(i) / / * = 1, fλe/i ?*,,(?) = 0 /or y ^ 1 αnrf Px,y(q) = 1

(ii) If x Φ 1, ί/zê  choose a simple reflection s with x > xs.
m //ze case where y < ys we have PXyy(q) = Pxs,y(q), and in the case
where y > ys we have

zew
z<zs

Proof. This follows immediately from Theorem 7.11 and the defi-
nition of the polynomials PXjy(q).

REMARK. If we do not assume Conjecture 7.4, part (i) and the first
case y < ys of part (ii) still must hold, since the proof of this case
relies only on Lemma 7.1.
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