PACIFIC JOURNAL OF MATHEMATICS
Vol. 159, No. 2, 1993

BETWEEN THE UNITARY AND SIMILARITY ORBITS
OF NORMAL OPERATORS

PauL S. GUINAND AND LAURENT MARCOUX

D. A. Herrero has defined the (% + .7 )-orbit of an operator T
acting on a Hilbert space # to be (¥ + % )(T) = {R™!TR: R
invertible of the form unitary plus compact}. In this paper, we char-
acterize the norm closure in % () of such an orbit in three cases:
firstly, when 7 is normal; secondly when 7 is compact; and thirdly,
when 7 is the unilateral shift. Some consequences of these charac-
terizations are also explored.

1. Introduction. Let /# be a complex, separable, infinite dimen-
sional Hilbert space and denote by % (%) the set of bounded linear
operators acting on # . As usual, .7 (#) will denote the unique two-
sided ideal of compact operators. There are many interesting ways of
partitioning the set % (#°) into equivalence classes. We mention two
in particular.

Given T € ZB(#), we define the unitary orbit of T as Z(T) =
{U*TU: U € #(#) a unitary operator}. Then an operator A €
% (T) if its action on #Z is geometrically identical to that of 7 .
Equivalently, one can think of 4 as 7 itself acting on an isomorphic
copy of #Z .

Another much studied class is the similarity orbit of T € B (#),
namely #(T) = {S~ITS: S € Z(#) an invertible operator}. This
notion of equivalence ignores the geometry of the Hilbert space, and
concentrates on the underlying vector space structure. ‘

In general, neither of these sets need be closed. This is in contrast
to finite dimensional Hilbert spaces, where %/ (7T) is always closed
while (T is closed if and only if 7" is similar to a normal matrix
[Her 1, p. 14]. It is therefore interesting to describe the norm closure
of these orbits, a program which for unitary orbits was undertaken by
D. W. Hadwin [Had], using a result of D. Voiculescu [Vei], and for
similarity orbits was done by C. Apostol, L. Fialkow, D. Herrero, and
D. Voiculescu [AFHV].

One can also turn one’s attention to the Calkin algebra &7 (%) =
B(A')|Z (#) and consider both unitary and similarity orbits there.
Indeed, one of the major results along these lines is the classification
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of the unitary orbits of normal elements of &/ (#) by L. Brown,
R. G. Douglas and P. Fillmore [BDF].

Denoting the canonical map from % (#) to & (#) by =n, their
theorem states that if N and M are in Z(#) and are essentially
normal, that is, if 7(N) and #(M) are normal in &/ (#), then n(N)
and n(M) are unitarily equivalent if and only if

(i) g(n(N))=a(rn(M)) in & (#); and

(i1)) ind(AI — N) =ind(Al — M) for all A € pg(N), where ind 7T =
nul 7 —nul T* is the Fredholm index of an operator T € % (#), and
pse(T) is the semi-Fredholm domain of T . More precisely, pe(7) =
{A € C: ranT is closed and either nul7 < oo or nul7* < oo},
and its complement is denoted by op.(7). We also let g.(7) de-
note o(n(T)), the essential spectrum of T. (Note: here, nul7 =
dimker T .)

In this paper we propose to study the closure of an orbit which lies
between the unitary and similarity orbits of an operator as defined
above, and is related to the unitary orbit of elements of the Calkin
algebra. In studying various classes of operators in the past (for ex-
ample, biquasitriangular operators or the closure of the set of nilpotent
operators), much profit has been gained by observing that these classes
were invariant under the action of similarity transformations. From
this, spectral invariants have been deduced which produced useful
characterizations of these classes (cf. [Voi 2], [AFV]).

It is our feeling that the (% + Z')-orbits defined below may play a
similar role when studying classes of operators closed under unitary
plus compact transformations but not under general similarity trans-
formations. The motivating example here is the class of quasidiagonal
operators and certain of its subclasses. These classes behave very badly
under similarity transformations (cf. [Her 3]). In fact, this orbit first
made its appearance in [Her 2] in relation to a question concerning
quasidiagonal operators. We define this orbit as follows.

First, for a Hilbert space #, let (Z + Z)(#)={Re€ HZ(Z): R
is invertible in % (#) and R is of the form unitary plus compact}.
Then, for T € Z(#), let

(# +F)(T)={R"'TR: Re (¥ +%)(¥)}.

We write T =, S if S € (% +.%Z(T)), and note that =, is an
equivalence relation on % (#). Clearly Z(T) C (% + Z)(T) C
& (T), and the same obviously holds for their closures. In gen-
eral these orbits need not coincide, although in finite dimensions,
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(% +Z)(T) = F(T) is clear, since all invertibles are of the form
unitary plus compact.

In §3 we extend this to the case of compact operators, showing that
(# +FZ)T) = A(T) forall T € Z(#). In this case, something
even stronger is true, namely #(T) = (I +.%)(T) = {R"'TR: R
invertible in % (#), R of the form identity plus compact}.

In §2 we shall describe the closure of the (% + .%)-orbits of nor-
mal operators in % (#). We shall show that with one other condi-
tion, the list of necessary conditions for membership in (% +.%)(N),
N € #(#) normal, as given in [Her 2, p. 481] is complete, and also
constitutes a list of sufficient conditions.

We would like to thank the referee for several useful comments,
and in particular, for pointing out a fatal flaw in our original proof of
Theorem 2.13.

2. The normal case.

2.1. In restricting our attention to the case of normal operators,
we can make a number of observations which simplify our task. For
instance, if we begin with a normal operator N, then not only is
(Z + % )(N) contained in the set of essentially normal operators, but
infact T € (# +.%)(N) implies T € (N +F ) F)={A€ B(Z): A
of the form normal plus compact}. (This follows from the fact that
the latter is norm-closed, by [BDF].) Moreover, #(7) and n(N) must
be unitarily equivalent in the Calkin algebra, and so again by [BDF]
we can conclude that there exists an operator K € #(#) and a
unitary U € % (#) such that T = U*NU + K. Our question then
becomes: “How does one absorb the compact perturbation of U*NU
into a similarity transform R~!NR of N, where R itself is of the
form unitary plus compact?” The answer lies in the following series
of approximations to the main theorem.

2.2. NotATION. Following [Her 1], for T € % (#) and A a clopen
(i.e. closed and open) subset of o(7), we denote by E(A; T) the
corresponding Riesz idempotent and the range of E(A; T') is denoted
by Z(A; T). If A= {A} is a singleton and dim#Z(A; T) is finite,
then A is called a normal eigenvalue of T . The set of all normal
eigenvalues of 7 is denoted by oo(7).

2.3. THEOREM. Let N be a normal operator whose spectrum a(N)
is a perfect subset of C. Let  ={T € B(#). T € (N +F)Z),
0e(T) = 6o(N) = a(N) and oo(T) = 2}. Then (% + % )(N)=T".
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Proof. First we show that 9 C (% + % )(N). From the Weyl-
von Neumann-Berg-Sikonia Theorem [Brg], [Sik], we may assume
that N is a diagonal operator with respect to an orthonormal basis
{en}5°, and that each eigenvalue of N is repeated with infinite mul-
tiplicity. To see why we may do so, first observe that (% + .7 )-orbits
are closed under the following transitivity relation: namely, that if
Be(Z +%#)A) and C € (# + % )(B) for operators A, B and C,
then C € (% + % )(A) (the proof is not difficult). But then given any
normal N’ with a(N’) = g.(N’), the above theorem implies the exis-
tence of a diagonal operator N as above with o(N) = g.(N) = o(N')
and Z(N)=%Z(N'). But then (Z + Z)(N) = (% + % )(N'").

Suppose T € J and let ¢ > 0. From [Her 1, Thm. 3.48],
we conclude that there exists K € 7 (#) with ||K|| < & such that
o(T + K) = 0.(T + K) = 0.(N) = o(N). As such, it follows from
[BDF] that 7 + K = U*NU + L, for some unitary U and some
Ly e Z(#Z). Inotherwords, T+K € Z(N+L) where L =UL,U* €
Z (#). We need only show, therefore, that N+ L € (% +.%)(N).

Let P, be the orthogonal projection onto span{e;}? . Then
{Fn = P,LP,}3°, is a sequence of finite rank operators satisfying
lim,_, ||L — F,|| = 0. Moreover, it is not hard to see that N + F,, =
N @& G, (= denotes unitary equivalence), where G, = P,NP, + F,,.
Let V, be the unitary such that N+ F, =V (N®G,)V,, . By dropping
down to a suitable subsequence, we may assume that ¢(N & G,) =
(N + F,) € (6(N))1/n = {4 € C: dist(4, a(N)) < 1} . This sim-
ply uses the upper semicontinuity of the spectrum with respect to
o(N+L)=0(N) and 6(N+ F,), n>1.

Thus we can perturb G, by at most % to obtain a new matrix
G, satisfying ¢(G)) C o(N) (i.e. consider G, in upper triangu-
lar form and simply shift the eigenvalues over). Then |G}, — G,|| <
Limplies |(N + F,) = V(N ® G),)Va|| < L and so V;(N&G),)V, also
converges to N + L.

We can now use a technique similar to that found in [Her 2] to
show that N& G), € (Z + Z )(N), which will clearly be sufficient. We
may assume that G, is upper triangular, say

_/11
A2 gij

0
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Consider Dy = diag{4;}" |, where o(G}) = {4;}*, including mul-
tiplicity. Let § > 0. Using the fact that o(N) is perfect, at a cost
of some f(J) (with lims_ f(d) = 0), we can perturb each 4; to a
A; € 0(N) so that min;y; [4; —A}| > J. Let D, = diag{4;}]Z, . It now
follows from elementary linear algebra that there exists an invertible
matrix S5 so that

_,1,1 ]
A 8ij
D, =S;! Ss.
0
i A |
Thus [|Gy—S5D,S; | = || diag{ki—4}72, | < £(5). Now N = N&D,,

and so
[(N©G,)—(I®S;)(NoD,)(IaS;")|| = |08(G),—SsDaS5 )l < f(9).

Letting 6 tend to 0 we obtain No G|, € (% + % )(N), forall n > 1.
But then lim, ,. . N& G), = N+ L € (Z + % )(N). From before, we
conclude T+ K € (Z + % )(N). Finally, since ¢ > 0 was arbitrary,
Te(Z+Z)N).

To show that (' + #)(N) C I ,1let T € (# +#)(N). From
above, T € (N +Z)(#) and 0.(T) = g¢(N). That go(T) = @ is an
immediate consequence of the upper semicontinuity of the spectrum,
using the fact that o(N) is perfect. Thus 7T € 7, completing the
proof. a

2.4. In what follows we shall be looking at upper triangular operator
matrices whose strictly upper triangular parts are compact. One of the
main tools we shall use is Rosenblum’s Theorem, which we now state.

ROSENBLUM’s THEOREM [cf. Her 1, Cor. 320]. Let A, B € B (%)
and consider T p: B(H) — B(#), X — AX — XB. Then
(i) o(t4p) =0(4)—0(B);
(ii) if o(4)No(B) = @ _then there exists a Cauchy domain Q such
that 6(A) C Q, o(B)NQ = o, and for Z € B(X), 1;3(Z) =
— e foqA — A)"'Z(AI - B)~'da.

For our purpose, we shall also need the following observation:
It is not hard to see that we can actually choose Q to be an analytic
Cauchy domain. Now suppose Z is a compact operator. Then it
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becomes evident from the definition of the integral on the right of the
above equation as a limit of “Riemann sums” that r;é(Z ) must also
be compact, as each approximating sum is. Using this observation,
we obtain the following version of the Rosenblum-Davis-Rosenthal
Corollary:

2.5. CorROLLARY. Let #4 and #p be two complex, separable Hil-
bert spaces and let A € B (#,), B € B (#p) and Z € B (#p, #4),
Z compact. Assume that o(A) Na(B) = @. Then there exists R €
(% + %) (#y & #p) such that

A Z
_ p-1
A®B =R [0 B]R'

Proof. By the preceding remarks, if dim.7; = dim#3 = oo, then
we can choose 7;5(—Z) = X compact. Note that R = [} 4] then
does the job. The case where dim /7, < co or dim#3 < oo is handled
precisely as in [Her 1, Cor. 3.22], only noting the fact that in this case
the similarities are already of the form U + K with U unitary and

K compact. a
2.6. COROLLARY. Suppose

4,
Ay Zi;

0

| Ay
is an operator matrix acting in the usual way on the direct sum @}_, 7
of Hilbert spaces #;, 1 <i < n. Suppose also that each Z;;, 1 <i<
J < n, is a compact operator and that o(A;)No(4;) =@, 1 <i#j<
n. Then T =, B}, A4;.

.4

Proof. Induction. O

2.7. Along similar lines, we can also obtain some information for
the case when the spectra of the diagonal elements of the operator ma-
trix T are not disjoint. We note that Al-Musallam has independently
obtained this result in his thesis [Al-M], and that the proof there is
similar to the one below. We include it for completeness.

PROPOSITION. Let #; and 7y be Hilbert spaces and let T = [ %]
with respect to #; ® #g. Suppose Z is compact. Then A® B €
(% +Z)T).
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Proof. Without loss of generality, we may assume |7 < 1.

If #, is finite dimensional, then let ¢ > 0 and set R, = ¢l4 &
Ip where I, (resp. Ip) is the identity operator in % (#;) (resp.
B (#p)). Then R, € (% + %)(#; ® #) and R, TR;' = [§°F].
Thus by letting ¢ tend to O we get A& B e (# +Z)T).

If #Z, is infinite dimensional, then as in [BD] we can obtain a
tridiagonal representation of 4 with respect to a decomposition 7, =

ne1 7y where dim#; < oo forall n > 1, and moreover we are free
to choose # arbitrarily. Let 0 < ¢ < 1/v/2 and choose # large
enough so that ||Z — P(#)Z|| < &3, where P(#) is the orthogonal
projection of #; onto /#; . Then we may write

. . o 7]
Asq Asz Z4
T= | A A3z A3y Z3
Ay3 Ay An Z,
Ay Ay Z,
L e 0 0 0 B
and note that
Za || < €3,
VA
Z,

Now ||T|| < 1 implies ||4|| < 1 and hence ||4;;|] < 1 for all
i, j > 1. We claim that we can find a finite sequence § = J; < d, <
.-+ < 8y =1, where m is a positive integer and m < 4/e2+1 < 5/&2
such that

(1) 14; i1 = (0id)A; i11(0ie1 L)~ ]| < &; and

(2) Aix1 i = BisrTiv) Aivr i(G:d) M < &,
and where [; is the identity operator in % (#), 1

To see this, consider the following: Let &} = § r1<i<5/e?,
let 6/, =0/(1+%), sothat &/, —d/ = /(%) > d]() > €*/4. Thus
there exists m < 4/¢? + 1 such that ¢/, , < 1 and ), > 1. Let
0;=0] for 1<i<m-—1 and J; =1 for i > m. Now note that

(i) 1-6;65,=5(1+%)<%;and
(i) G167 —1=(148)-1<4,
for 1<i<m-2.
Also, 1_6m—15r711 =1-0,_1. Now J,,_; <1 but 5m-—1(1+%) >1
since J,, > 1. Thus 6,y > 1 — £6,,—; > 1 — %, implying that

l.

G & IA
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1= m_10;;' < &. Similarly, 5,0, | —1=6"1 —1<(1-§)1-1=
¢/2(1 - %) <& as ¢ < 1. Finally note that
() WAy i1 = (6 A; 11 Gi i) ™M = (1 = 8,6, ) Li4; il

<1 =867 1114 is1ll <e-1=¢; and

(2) i1 i — Gipidis) it (6 L) = 1160167 = Dy Aigy |
<1010 =1 A il <e-1=¢

for 1 <i<m.

The relevance of the above computatlons becomes clear when we
define an operator R € B (7, & #2p) = B (D, #n) ® #Z5) by R =
(D5 0nl,) ®I. Since each H, is finite dlmensmnal and 6, = 1
except for 1 <n<m, Re (%+ %) #; & #). Now consider
RTR™!: (in the matrix notation we shall abbreviate J,1, to J,).

[

m+1 m+1 m+1l m
Am m+1 Amm
-1 . .
RTR™' = . . 8,7, | -
-1

A33 . C53"‘13252 ) 5323
52A2353 A22 . 62‘42151 5ZZZ
61A1262 All ‘lel
0 0 0 B

As such,
|4®B—RTR'| <2 1r<l’lifgn{1|/4i i1 = (6D A; 14161 L),

i1 i = SisrLiv1) Aipr 1(6:1) 71|}

6"’1 m
+o1Zy| + : + .
IZy] 5.7, Zm+2:| ‘

6,7,
<2£+ (Za | Zm ||> +
+

éa+mls+ é
-2 2

Zm+1

&>
)
& +8

2
Letting ¢ tend to O yields the desired conclusion. O

1
§%8+83<88a582<—.
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2.8. REMARK. As was the case in the previous Corollary 2.6, we can
extend this result to an n x n operator matrix with compact strictly
upper triangular part by induction.

For A € & (#), we denote by 0;,(A) the isolated points of g(A4).
Then o;,(A4) is a countable set which contains gy(A4) and which has
no accumulation points outside of g.(A4). Note that o;,,(4) need not
be closed in C. We also define g,..(A4) to be the set of accumulation
points of g(A4). Then a,c(A) is closed. If 4 is a semi-Fredholm
operator (i.e. if 0 € psp(A4)), then we define the minimal index of A4,
denoted min. ind.(4) to be the minimum of nul4 and nul 4*.

By g,(A) we shall denote the point spectrum (i.e., eigenvalues) of
A and for A C C, A* = {A: 1 € A}. Following Apostol, we may
define the regular points of pgp(A4) as

Pk = {4 € pse(4): nul(4 — ) and nul(4 — p)*
are continuous on some neighbourhood of 4}

as well as the singular points of pgp(A4) as

Psg = Pse(A)\psp(A4).

The set pS(A) consists of a countable sequence with no accumu-
lation points in pge(A4). The reader is referred to [Her 1] for more
information regarding these parts of the semi-Fredholm domain.

2.9. THEOREM. Let # be a Hilbert space and N € B (#) be
normal. Suppose T € (Z + % )(N). Then
(i) TeWN +FNZ);
(i) 0e(T) = e(N), a(N) C o(T);
(ii1) nul(T — 1) > nul(N — A) for all 2 € psp(T) = pp(T);
(iv) if {A} € 0yo(T) N ae(T), then (A—T)|Z(A; T)=0;
(v) if {A} €0o(T), then rank E(A; T) =rank E(A; N).

REMARK. One can also combine conditions (iv) and (v) above to
obtain the equivalent condition

(iv)' if A € 6yo(T), then (A-T)|Z(4; T) =0,and dimZ(1; T) =
dim#Z(A; N).

Proof. The necessity of conditions (i) and (ii) is easily verified. As
for conditions (iii), (iv) and (v), we turn to the Similarity Theorem of
[AFHV].
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Let Re B (#) and let p: & (Z) — B (#,) be a faithful unital
x-representation. If u is an isolated point of og¢(R), then the Riesz
Decomposition Theorem implies that p(n(R)) is similar to u/+Q,®
W, , where Q, is quasinilpotent and u ¢ o(W),). In [AFHV, p. 3]
is defined the function k(A, n(R)) with domain C as follows:

0 if A¢oe(R),
k(A; n(R)) = if A € g50(R) N ge(R) and Q;
is a nilpotent of order #,

oo otherwise.

Also defined is gne(R) ={A € C: 1 < k(4; n(R)) < o0} .

The Similarity Theorem [AFHV, Thm. 9.2] shows that for X €
ZB(Z) to bein S (R), it is necessary (though not sufficient) that

(a) min.ind.(X —A)* > min.ind.(R — A)k for all k > 1 and for all
A€ psF(R);

(b) if 1 € 0p(X), then rank E(A; X) =rank E(4; R);

(c) if A € ope(X) Nao(X), then

rank[(A — X)*|Z(A; X)] < rank[(A — R)*|Z(4; R)]

for all k > k(4; n(X)).

Now condition (b) is exactly condition (v). Meanwhile, since in our
case n(T) = n(N), k(A; n(T)) = k(A; n(N)) for all 1 € C and so
it is easily seen that k(4; n(7T)) = 1 for all A € 0;,,(T)Na.(T). But
then

rank[(A — T)!|Z(A; T)] < rank[(A — N)!|Z(4; N)]
=0 for A€ ay,(T)Na.(T).

Thus (A—T)|#Z(A; T) =0, which is condition (iv).

It remains only to show that condition (iii) is necessary. The fact
that T € (/ +.%)(#) implies that ind(T — A)¥ = 0 for all 1 €
pse(T) = pr(T) = pp(N) = pg(N), and for all £k > 1. The same
holds true for N. Thus condition (a) above implies (in our case) that

nul(7 — A)¥ > nul(N — A)* for all k > 1 and for all A € pg(T).

But nul(N — A)* = nul(N — 1) forall kK > 1 and A € pp(T), and so
we may in fact conclude that
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nul(7 — A) > nul(N — 1) forall 1 € pg(T),

which is condition (iii). This completes the proof. |

2.10. The main theorem—Theorem 2.14—below asserts that in-
deed, the five conditions above are also sufficient for membership in
(Z + % )(N) and hence characterize this set. The difference between
this theorem and Theorem 2.3 is, of course, that we now allow nor-
mal operators N which have isolated eigenvalues. As it turns out,
those eigenvalues which are also isolated eigenvalues of 7 can be
(relatively) easily handled using conditions (iii), (iv) and (v) above in
combination with Corollary 2.6. The trouble begins when A € g5,(N)
but A ¢ 0,,(7T), and this is perhaps best illustrated by the following
example.

2.11. EXAMPLE. Let S denote the forward unilateral shift and B
denote the bilateral shift. Let O; denote the O operator acting upon a
1-dimensional Hilbert space and Q denote an arbitrary—but fixed—
compact, quasinilpotent operator acting on an infinite dimensional
separable Hilbert space.

Consider the normal operator N = B & (0,)(®), and the operator
T =B o Q. It follows immediately from condition (iv) of Theorem
29that T ¢ (Z +Z)(N). If welet R=S®S*®Q, then o(R) =
{4 € C: |A| £ 1}. In other words, we have “filled in the hole” of
o(N). It is not difficult to see that a simple application of the upper
semicontinuity of the spectrum allows us to approximate (to within
arbitrary ¢ > 0) Q by a finite rank nilpotent F = F(¢) so that
F=F EBO{°°) , F’ acting on a finite dimensional space, o(F') = {0}.
By Theorem 2.3, S&S*@F’ € (¥ +-%)(B), while obviously (0;)(*) €
(% +Z)((0)))),andso R, = S®S*OF' ®(0,)>®) € (¥ + Z)(N).
Since ||[R — R;]| < ¢ and ¢ > O is arbitrary, R € (% + % )(N).

We have used two main ideas here. First, we were able to “break up”
Q into a finite dimensional piece whose spectrum lay in the hole of
o(N), and an infinite dimensional direct summand of R correspond-
ing to the isolated point of g.(R) which is not isolated in o (R).

Secondly, we were able to “glue” that finite dimensional piece onto
an essentially normal operator with non-zero minimum index inside
the hole. While this may generate singular points in the semi-Fredholm
domain of R, Theorem 2.3 was nonetheless capable of handling
these.
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It will hopefully prove useful to keep the example of R and N in
mind when reading Theorem 2.14. The general case is also compli-
cated by the presence of elements of oy(N) which are not isolated in
o(T).

2.12. A key step is allowing us to deal with the “holes” of o (N)
which are “filled in” in o(7T) is the Lemma 2.13 below. This lemma
is an adaptation to suit our specific needs of Lemma 5.1 of [HTW].
Two of the main ingredients in the proof are Apostol’s triangular rep-
resentation and the decomposition of certain multiplication operators
on L2-spaces. [Apo 2] is a good reference for the former, while [HTW,
§3] is a good reference for the latter. What follows is a (very) brief
synopsis of the salient features involved.

In [Apo 2], C. Apostol showed that every T € % (#) admits the

representation
T, « x| %
Tr= To = 2

] Z
where

#; =span{ker(A—-T): A€ p(T)},

# =span{ker(A—T)*: A€ pip(T)} and H=# o (Z&A).

Under this representation, 7, (resp. 7}) is a triangular operator and
all the components of its spectrum intersect the interior of ps(7) N
op(T) (resp. of per(T) N ap(T*)). Also, ap(T7) = 0p(Th) = 2,
pse(T) € pse(Tr) N pse(T7) N (C\oo(Tp)) and pep(T) € ao(To) -

As for the multiplication operators, let Q be a non-empty bounded
open subset of C and let #(Q) denote the uniform closure of the
rational functions with poles outside Q. As mentioned in [HTW],
one can find an appropriate measure u on () so that the opera-
tor M(0Q) € B (L*(0Q, du)) of “multiplication by A” admits the
following decomposition:

M(5Q) = M, (0Q) Z(HQ) } H?(0Q) ’
0 M_(0Q)| L%06Q)e H*(0Q)

where H2(9Q) is the L2-closure of #(Q). This representation has
a multitude of special features:
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(i) H?(0Q) is a rationally cyclic invariant subspace of L?(0Q),
with eg(A) =1 being a rationally cyclic vector for M, (0Q);

(i) M(0Q) is normal, op(M(0Q)) = @

(1)) M, (0Q) and M_(90Q)* are pure subnormal operators such
that o(M.(0Q)) = o(M_(0Q)) = Q, 0.(M,(0Q)) = 6.(M_(0Q)) =
0.(M(0Q)) = G(M(BQ)) =0(Q);

(iv) Q\O(Q) = 0p(M_(0Q)) = 0p(M.(9Q)")";

(v) ind(A — M_(0Q)) = nul(A — M_(0Q)) = nul(A — M (0Q))" =
—ind(A — M, (8Q)) for all 1€ Q\d(Q); and
(vi) Z(0Q) is compact.

2.13. LeMMA. Let T € B (#) be an essentially normal operator,
and let © be a component of pse(T) N interior[a,(T)Nop(T*)*]. Then,
given ¢ > 0, there exists K, € Z (#) with ||K.|| < ¢ such that

N(7) W] ,

rok [N
&

where

(i) N(t) is a compact perturbation of a normal operator;
(i1) o(N(7)) =71, Ge(N(T)) = 3(T);
(iii) ap(N (1)) = 6p(N (1)) = T\O(T
nul(N(7) — A) =nmul(N(1) —A)* =1 for all A€eT\I(T);
(1v) 0e(T) = 0e(T), pse(Te) = pse(T);
(v) ind(T, —A) =ind(T — ) forall 1€ psp(T);
(v1)
nul(7-1) -1 ifier,

nul(7, — 4) = { nul(7 — ,1) ifie PsF(T)\T

(vii)
nl(T-A)*—-1 ifier,

I'IUI(Ts - A)* = { nul(T — l)* lf& € psF(T)\T‘

Proof. 1If we let Q = 7\0(T), then we can consider the normal
operator M = M(9QQ) as above. Note that g(M) = g.(M) = 0Q =
0(T), and that Q = 7. To save on notation, we shall write

M, Z} H?*(0Q)

Mz[ 0 M_| 120Q)e HX5Q).
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Now 9(T) C g.(T) and therefore, since 7 is essentially normal, we
can find Ko € Z(#), |Ko|| < § suchthat T-Ko=ToMoM
([Sal]). By furthermore applying Apostol’s triangular representation
of T, we obtain

M, O 0O 0 0 0 Z17
M- 0 0O O O O
Z M. 0 O O O
T—-Ky= 7, X; X, O
To X3 O
7, 0
L M_ ]

The operator 7, is triangular. Let A be that component of a(7;)
which intersects 7 non-trivially (note: 7 C ¢(7,) and thus the com-
ponent is unique). By the Riesz Decomposition Theorem,

T,:[T,(A) *] F(A; T
Tl o0 T ZoX AT,

and #Z(A; T,) = span{ker(A — T,)*; A € Ana,(T,), k > 1}. Thus
T,(A) is triangular (cf. [Her 1, p. 73]). Moreover, since a(7,(A))N
o(T}) =2, ind(T, — 1) =ind(7,(A) — 1) > 0 for all 1 € psp(T;) NA,
while ind(7,(A) — 1) = 0 forall 4 ¢ A, since o(7,(A)) C A. Thus
we may write

M, 7 -
M_
Z M,
~ T,(A) * =
T-Ky= ( T
Ty =
T;
L M_ ]

The operator M, & T,(A) is quasitriangular (that is,
ind(My & T,(A)) — 1) >0 forall A€ pp(M, @ T,(A));

see [Her 1; Thm. 6.4]). Since the spectrum of this operator has
no isolated points, we are now in a position to apply the results of
[Her 4] to obtain a compact operator K, ||K|| < ¢ such that 4, =
(M ® T,(A)) — K, is triangular with diagonal entries {4;}92, with

respect to some orthonormal basis {e; 221> and so that 4; € 0(T) C
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Ore(M, ® T,(A)), for all j > 1 (cf. [Her 4, Cor. 2.4]). This forces
0p(A7)* C 0ire(Ar) ; moreover,

ind(7,(A)-1) ifier,

ind(4, — 4) = { ind(T,(A)) if 1 € psp(Tr(A)\T.

Now let P, be the orthogonal projection onto span{e;}’_, . Since

Z' = [£] is compact, lim,_.s ||Z’' — P,Z'|| = 0. Thus there exists K

a compact operator, ||K>|| < /6, such that

M_ 0 0
EA AR

(for some sufficiently large #n), where

A1 e

Ay % ()

Fr,n = .
An €n

(Fy,n = Aflran P,), and
Anti €nt1
Ar p = Any2  * €ni2

(Ar,n = Ar| ker P;) has the same characteristics as A, (cf. [Her 4] or
[HTW, Lemma 5.1]).
Observe that the spectrum of

M_ 0
Rn = [P,,Z’ Fr,n]

is equal to o(M_)Ud(F; ») =7 and p(R,) Na(R,) = pi(Ry) =
7\0(T). Furthermore, R, is essentially normal and ind(R, —4) =1
forall Ae7\0(7).

By Proposition 3.4 of [HTW], there exists K3 compact, ||K3|| < &/6
such that R = R, — K3 is essentially normal, op(R) = pj(Rn) =
T\I(T), 0p(R*)* = pp(Ry) = &, G(R) = 0(T) and nul(R - 1) =
ind(R—- A1) =1 forall Ae7\d(7).
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Moreover,

il ([g Af,n] _'1> =nd ([15 Aj,n] —’1)

=ind(R - A) +ind(4, , — A)
=nul(R—A)+nul(4, , —4) forall A€ pg(T,(A)).

Summing up, there exists K compact 1Ko < 1K+ 1Kl +
IK3|| < €/2 such that
M_ 0 0
Z M. 0 —Ke{ﬁ ;]
0 0 (A) g

where B, = 4, ,. Let N(1) = M, ® R. Clearly conditions (i), (ii)
and (iii) are met.

In a similar vein, 7} is triangular. Letting A’ be that component
of o(T})* which intersects T non-trivially, we can again use the Riesz
decomposition to write

1= |0 )

0 T,4)

where a(7T;(A")) = A" and T;(A')* is triangular. Also, ind(7;(A")—A4) =
ind(7; — 1) < 0 for all A € p(T;) NA.

Since o(T;(A")® M_) = a(T;(A’)) UT has no isolated points, and
ind((T;(A"YeM_)—2) <0 forall 1 € psp(T;®M_), by using the results
of [Her 4] we can find a compact operator K, ||Ky|| < &/2 such that
B, = (T;(A')® M_) - K{] is the adjoint of a triangular operator whose
diagonal entries belong to J(7) C oy(7;(A") & M_). It follows that

60(B1) C 0ire( TH(A') & M_) C 01re(T) , and
ind(T,(A) - )+ 1 ifier,
ind(B; = 4) = { ind(T3(A")) if 4 € pr(THANT.

We conclude that there exists a compact operator K, = Ko+ (K; @
0@ K{), ||Ke|l <& such that

[N(t) =* 0 0 =«
B, x *x x x
~ T, * * x
r- Ke o To * *
T; *
L By
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Finally, let

B, x * x

T, x % x

Ts= To * *
/

Tl *

B,

As in [HTW, Lemma 5.1], with the help of [Her 1, Chapter 3], one
can verify that 7, has the desired characteristics. |

The idea behind this lemma is perhaps obscured by its technical de-
tails. One may think of it as follows: if an operator 7T € (/ +.% )(#)
has the same spectrum, essential spectrum, index and minimum in-
dex as our operator R = S & S*® Q of Example 2.11, then we can in
fact find an invariant subspace for a small compact perturbation of T
where this perturbation of 7 behaves like S&S*. The corresponding
T, then behaves like B Q. Since T € (N + FZ ) (#), sois T;, and
W is compact. Another small perturbation allows us to “pull out” the
0-direct summand and proceed as before.

2.14. THEOREM. Let # be a Hilbert space and N € B (#) be
normal. Then

(% + F)N)={T € B(#): T satisfies conditions (1), (ii), (iii),
(iv) and (v) of Theorem 2.9}.

In particular, the only difference in the spectra of N and of T is that
a(T) may have fewer holes, while the index of (T — i) must equal 0
for all A€ pg(T) = pe(T) in these holes. Moreover, if {A} € 0;5o(T),
then the compression of T to the corresponding eigenspace # (A; T)
is a scalar, and dimZ(1; T) = dimZ(i; N).

Proof. The necessity of conditions (i), (ii), ..., (v) for membership
in (Z + Z)(N) is precisely Theorem 2.9. We content ourselves now
with showing their sufficiency. First we may assume without loss of
generality as in Theorem 2.3 that N is a diagonal operator with all
eigenvalues in d.(N) repeated with infinite multiplicity ([Brg], [Sik]).

Step One: The isolated points of o(T). Let {4;}/_, (0 < p < o0)
denote the countable set g;,(7), in decreasing order of distance to
Oacc(T). (Note that if g;,(7) has infinite cardinality, then in fact
{A;}-, tend to 8(de(T)).) Now if A € gp(T), then by (iii) and (v),



316 PAUL S. GUINAND AND LAURENT MARCOUX

we find that dimZ(A; T) = nul(N —A). Morever, by (v), Z(4; T) =
ker(T — A). Similarly, by (iv), if {A} C 0i5,(T) Nae(T), then we find
that {1} Co.(N) and Z(1; T) =ker(T — 4).

Because of the countability of ¢;,,(7), we can choose ¢ > 0 arbi-
trarily small yet subject to the condition that 9((Gacc(7T))e) NOiso(T) =
@. Having chosen such an ¢ > 0, let Q; = (Gacc(7T)). and let
{A1,242, ..., An} be an enumeration of g(T)\Q,. If u < oo, we
choose ¢ > 0 small enough so that o0;,(7) N Q, = @. We then note
that 7" admits the representation

[T, Ty Va
T, T;; Ty Vs
T= : S
Tn TnO %
L Ty 2

where A, 7, ..., 4y, % are so defined that @le% coincides
with @, Z(4;;T) for 1 <k < n and @} (% = #. Then
T; = A;1; for 1 <i < n, where I; is the identity operator acting on
# . Since T € (V' + % )(#), an easy computation now shows that
each 7;;, 1 <i<n, 0<j < n, above is compact. Moreover, by
simple index considerations, we get back that not only is 7, essentially
normal, but in fact, Ty € (/" + #)(#). Note in particular that
dimZ =nul(N —4;), 1 <i<n and that 4; ¢ a(Ty), 1 <i<n.

Now N is normal and {4;}/_, C 0i(N). Also, nul(N — 4;) =
dim# allows us to write N = (@', 1,1;)® Ny with respect to the de-
composition Z = (@}, Z)®# , where Ny = N|(D_, Z (4;; N))*.
Note that Ny is normal with Gacc(Ny) = 0acc(N), 0(No)=0(N)\{4;},
= g(N)N Q.. Obviously the multiplicities are preserved.

Suppose, temporarily, that we can show that there exists V1 €
(# + % )(#) such that ||V, ' NoVy — Ty|| < 7¢. Then

[ A1 2
n i Dy T,; TV
N= (@l,],) &Ny =, N = .
=1 /lnIn TnOVE)_1
! Ny

by Corollary 2.6.
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o () o) (@) )

Thus

_ﬂ,lll Ty W
Aoy T;; Ty
= N” = . .
/q-nln TnO
| Vo ' NoVs |

But then ||7 — N”|| = ||To — V5 'NoW|| < 7¢. Since ¢ > 0 can
be chosen arbitrarily small, we see that T € (% +.%)(N). Thus
it suffices to show that dist(7p, (% + % )(Ny)) < 7e. We therefore
proceed in this direction.

Step Two: ago(N)\0iso(T) . Essentially we have reduced the original
problem to the case where A € o(7,) implies dist(, gac(7p)) < €.
The spectrum of T, looks like that of Ny, except that some of the
holes (i.e., bounded components of p(Ny)) of a(Ny) may be filled in.
In much the same way that we dealt with gi5,(7"), we shall now deal
with the points f € go(/N) which lie in a hole of a(N), but which are
not isolated in o(T).

Let {B:}/_; (0 <v < oo) denote the countable set go(N)\oiso(T) =
00(Np)\0iso(Tp) in decreasing order of distance to aec(Ng) C de(Ny) -
Let b; = nul(Ny— ;) for i > 1. Then b; < nul(Ty— f;) by condition
(ii1), for i > 1 (it is not hard to see that we may indeed use 7y and
Ny here instead of 7 and N).

As before, because of the countability of go(Ny)\diso(7p), We can
choose 0 < & < ¢ such that 9((Gacc(MNo))e,) N {Bi}/—; = @. Having
done so, let {#;}?_, denote those elements of {f;}?_, which do not
lie in (0acc(No))e, - (Again, if v < oo, choose & > 0 small enough
so that p =v.) Then b; < nul(7p — B;), 1 <i < p, implies that T
admits the representation

[ B11] Bio] A
p215 Bij B M

ﬁpl;l; ﬂpO %
T,
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where I/ is the identity operator acting on a space .#; of dimension
b;, 1 <i< p. Again, using the fact that T € (/" +.% ) (%) , a simple
matrix computation shows that 77 is essentially normal, while index
considerations and [BDF] imply that 7, € (/" + .7 )(4#;). In fact, a
simple computation shows that a(7}) = a(Ty), 0.(T7) = ge(Tp) , and
nul(T; — f) = nul(Ty — B) if f € pr(TOMBIY, -

Since Ny is normal and B; € go(Ny) foreach 1 < i < p, we can
also decompose Ny as Ny = (@Y_, BiI})® N, with respect to the same
decomposition % = (PF_, #;) ® 4. The key reason for doing this
is that B; ¢ o(N;) for 1 <i < p. In particular, if f € g(N;), then "
either dist(f, Gacc(N1)) = Gacc(N) < €& or f € ge(Ny) = d.(Ny) and
B is in some hole of o(N;), but g is not isolated in o(7;). (This is
the situation illustrated by Example 2.11.)

Step Three: Emptying the “Big Holes” of o(T}). Since o(T}) =
o(Ty), it also looks like o(N;) with some of the holes filled in. Now
o(N;) is compact, and as such it can have at most countably many
holes. By {7;}7_; (1 <5 < oo) we shall denote the holes of o(N;)
which lie in o(7;). Again using the compactness of o(N;), the se-
quence {7 j};?=1 must be decreasing in the sense that given & > 0,
there exists N = N(ez) > 0 such that {7;}7_y., C (dacc(N1))s,. Let
us therefore fix 0 < & < ¢/2 and find the appropriate N = N(e;).
The holes {7,}}_; we shall call “big”, while {z;}7_y,, we shall think
of as “small”. (As usual, if # < oo, we choose ¢; small enough so
that N = n, i.e., all holes are “big”.)

Suppose min.ind.(T; —a) =«; forall A€ 1;Npl(T7), 1 <j<N.
Let k = Zj-v:l Kj,and let 0 <eé&3 <é&/k.

We can now apply Lemma 2.13 to 77, first setting 7 (there) equal
to 7; and ¢ (there) equal to &;. We obtain a compact operator K
such that ||K;| < &3 and

on

with Ni(7() (resp. T]) playing the role of N(t) (resp. T;). The
point is that the nullity of (7] — a) is one less than the nullity of
(T —a) forall Ae ;N pse(Th) .

If we reiterate this process on 7] (x;—1) more times using 7, , and
then (x;) more times using 7;, 2 < j < N, the result is a compact

operator K,, with || K;| < (Zf’zl K;j)é3 < &, such that
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[N (1)) Wi
j I/VZO cfl
Nz,l(tl) 5
T,-K, = N,(z,) . :
S
3
“%

N (1) Wio
L T, |
where

(i) each N;(t;) is a compact perturbation of a normal operator;
(i) a(Ni(tj)) =7T;, ge(Ni(t;)) = 0(T));
(i) op(Ni(1j)) = op(Ni(7j))")* = T)\0(T;), nul(Ny(tj) —4) =
nul(N,-(tj) - 2.)* =1 forall A€ ?j\a(fj) 5
(1v) 0e(T2) = 0e(T1), pse(T2) = psr(Th);
(v) ind(T; —4) =ind(7; — 1) =0 for all A € pse(Ty);
(vi)

Ty -A)—x; ifiet;,1<j<N,
nul(Tz—,1)={nu(l )= xj i R

nul(T; — A) if A¢ Ul 755
(vii)
nul(Tl——l)*—xj if/lETj,lSjSN,

(T> - 4)* =
nul(T2 = 4) {nul(Tl—l) it 2¢ UYL, <.

Moreover, as T € (V' +%)(A#) , using (i) and still another matrix
calculation of the same type as above, we find that each W;;, 1 <
i<k, 0<j<k,iscompact and that T, is essentially normal. As
always, index considerations show that 7, € (/" + % )(%) .

Conditions (iv), (v), (vi) and (vii) together show that ogy(73) =
oo(T1) U (pp(T1) N (Uf;l 7)) . Moreover,

N N
s () (ron ()
j=1 j=1

Step Four: Factoring out the singular points of T, . Let us now con-
sider T,. We know 0¢(T3) = 0e(T1) = 0e(Ty) = 0e(Ng) = 0e(Ny).
Since both 7, and N; are of the form normal plus compact, it fol-
lows from [BDF] that there exists a compact operator L; € % (%)
and a unitary operator U: .#y; — -% such that

TL=2=UNU"+Li=U(N,+L)U",
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where L = U*L,\U € % (#;). Now we adopt an approach similar
to that of Theorem 2.3. Namely, we let {¢;}%°, be an orthonormal
basis for .#; with respect to which N is diagonal (recall that N; is
a direct summand of N, which we assumed was a diagonal normal
operator). Let P, be the orthogonal projection onto span{e;}”
m > 1. Then {F; = P,LP;}?°, is a sequence of finite rank operators
satisfying lim, . ||L — F;|| = 0.
Now

71

Y2 Vij

N+ Fy, = ® diag{y;}i>m >

Im

and the upper semicontinuity of the spectrum ensures us that by choos-
ing m large enough, we get
(1) [[(Ny + Fpn) — (N1 + L)|| <¢; and

(i) o(Ny + Fn) € (6(N1 + L)) = (0(T3))e -
Clearly g.(Ny + Fyy) = 0e(N; + L).

Now ag(Ni+F) € {7332, and since ao(N;+F),,) forms a sequence
with no accumulation points in psg(N; + F) = pse(N1), we can find
mg > m such that dist(y;, ge(N;)) < & for i > my. Consider

71 Vij
Gy = . @ diag{yi}ﬁ’mH and M = diag{yi}z>mo 5
Ym

sothat M+ F,, =2 G, d M. If y; € a(M), then dist(y;, (M) =
de(N1)) < &, and so clearly we can choose f(i) > mg so that y; =
Yriy € {Vitjs>m, so that yi = ygu) € {yj}j>m, N 0e(Ny) satisfies
l7: — 7l < e&. Let M, = diag{y;}i>m, . Then ||M; — M|| < ¢ and
o(M;) = g.(M;) = g.(N;). Note, therefore, that if i > m and
Vi & Uflzl 7, then dist(y}, gacc(N1)) <& <e.

As for Gy, 0(Gy) C a(Ny + Fy) C (6(73))e, and so for 1 <i <
mg, either y; € Uﬁ-v:l Tj, or dist(y;, Oacc(N1)) < 2e. If y; & ij:] T
for some 1 < i< mg, then choose ! € gacc(Ny) such that |y, — 7| <
2¢. Otherwise, let y; =y;.

Letting

7 Vij
G, = & diag{y,

Pm

mO
iI=m+1°2
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|G}y — Gmll = max |y;— ;| <2¢ and
1<i<m,

N

o(G,) C (U Tj) U (Gace(N1))-

Jj=1

Now ||(N1+F,)—(G),®M,)| < 2¢. Hence ||(N;+L)—(G,,®M))| <
3e,and so ||T, - U(G,, & M)U*|| < 4e.

Let K} € Z (#), K} = 0® K, with respect to the decomposition
Ao = (Mo)*" ® #y. Then ||K;|| = || K> < e and

[ B11] Bo 1 4
Ba1 Bij B0 M
ﬂPIIIJ ﬁpO ‘%
| (Tl —KZ)J ‘%
[ B11] Chu + Ci Cio]
Bp[z’: Cpi T Cpx Cpo
= Ni(ty) Wio
. Wi‘ ;
N, (tn) Wieo
| T, |

If we now conjugate this by (/@ U) with respect to the decomposi-
tion % = (Jy)* @ Jy, and then replace U*T,U by G, ® M, , we see
that

- ! -
B Cyy Cix CyoU M,
B, : : : :
1

N , Bl  Cp o Cox CpoU Ay

Ty =, Ty — Ky =4, Ny(zy) WU A

W : :

ij .
Ney(ty) WU S
G,, &M, %

Now, since each C;oU, 1 <i<p,and WU, 1 <i <k, is com-
pact, we can approximate them individually to within ¢/(x + p) by
finite rank operators Cj, = (C;joU)P, and Wy, = (W;oU)P, for some
r > my sufficiently large, r independent of i in each case. Let D, =
diag{y;};>,. Consider G, ® diag{y, f=m,+1 - Let {w;}!_, denote the

subset (including multiplicity) of (G, © diag{y; l’.=m0 +1) Wwhich lies
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in (Uﬁy=l 7;), and let {w;}/_,,, denote the remaining eigenvalues.
: / 3 /\r
Clearly we can find a new orthonormal basis for G}, @ diag{y; i=m +1
such that
r ! " "
B Bij Cn Cix Cio Cio
’ : :r/ :III
BI, C, - Cp Coo Coo
Ny(ty) Wio Wio
’ 1" ’III
Ty %, Ny, (tw) Weo Weo
wl wl]
,;
wl
wt+l wij
L wl‘
@D

r+1-

Step Five: Rebuilding T, from N,. We are now (finally!) in a
position to show that Ty is close to (Z + .7 )(Ny) .

For 1 <j <N, T Coe(Ny). Thus Ny =, (DY, N'(1))) & Ny,
where N'(t;) is a normal operator whose spectrum is the perfect set
;.

Moreover, since @; € (Gacc(N1))e, for t+1 <7 < r, we can find
{d;i}'Z] € dacc(No) satisfying

(i) di#d;j, 1<i#j<r—t;

(i) |di— il <2e<e, 1<i<r—t;

(ii)) d; ¢ {B;})_;, 1<i<r-t;and

(iv) di ¢ (UL 7)) 1<i<r—t.

N] . Thus

P N
Ny =, (@ ﬁ,‘[{) &© (@ N/(Tj)) @ diag{d; ::i @ Ni.
i=1 =1
Choose R, € (# + % )(M#) & - ©#,) such that
» B Bij
R, (@ﬂzf?) R'= ’
i=1 BoI,

This is a simple application of Corollary 2.6, as dim.#Z; < oo, 1 <
i<p.
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Choose Ry € (# + F)(A @ --- &% ®span{e;}_,) such that

[N, (7)) Wll(l) 1

N ) "
' -1 N, (1y) w
R, (Q?N(rj)) R, - kN Al <e
Jj=

This can be done since the second operator in this difference satisfies
the conditions of Theorem 2.3 with respect to the normal operator
EBj-V:l N'(zj). Choose Rj3 € (# + % )(span{e;};_,. ;) such that

d,
. dy Wiyt
Rs(diag{d;}/=H)R; ' = .
di—r
This is again Corollary 2.6. Then
Wir1 Wpp1¢42 0 Wrypyr
. P Wiy2
R (diag{d;}/=H)R;"' -
Wy
= d; — ; .
é?é‘,x.r’ P~ O] <&
Now
p
R, (GB B,I.f) Ry
i=1
o~ N
NoFuck R, (EB N(r») Ry oM
j=1

Ry(diag{d }\=R;"

and since the spectra of the diagonal elements of the 3 x 3 operator
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matrix are disjoint, we conclude by Corollary 2.6 that

r p
7 —1 " "
Rl (@ﬂllz)Rl Cll"'Clx CIO CIO
i=1
: 1" :III
Cppo.Cyy Cro G
W,
NO “u+k 10 @ Nl’
i ! 1 ./l/
R, | DN (7)) | R, Weo
j=1
wij
. - —1
Ry (diag{d,}/_)R; ' |

But finally
o(N1) = a(N\{A}L U{Bi})).
while
0(Dri1) = 0(M) = 0e(M1) = 0e(Ny).

Since the Hausdorff distance dy(a(Ny), g.(Ny)) < ¢, it follows from

[Dav 2] that dist(D,,, Z(N;)) < ¢. Choose R, unitary such that
”Dr+1 - R4N1RZ” < ¢&. Then

r p
’ -1 7 1"
Rl (@&L) Rl Cll “‘Clx ClO ClO
i=1
) 1" :III
Cpy - Cpp Cro CPB’
W,
~ !
No = pxNo = 10
N ! 1 'IH
R, @N(rj) R, Wi
j=1
wlj ‘
I Ry(diag{d,}/=")R; "

® R,N,R;,

and ||Tp — Nyl < 7e.

But as we saw at the end of Step One, this is indeed sufficient to,
prove our theorem. O

2.15. Let N € Z(Z) be normal. Let Z(n(N)) be the (neces-
sarily closed) unitary orbit of n(N) in &/ (#) (cf. [BDF]). Let
Y ¥ (x(N)) = {T € B(#): n(T) € Z(rn(N))} be the lifting to
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B(H) of Z(n(N)). Since T € (Z + % )(N) implies T € F(N) N
n~ Y% (r(N))), it is natural to ask whether or not (Z +.7)(N) =
F(N)Na~ Y% (n(N))). The answer is yes.

COROLLARY. Let N € Z(#) be a normal operator. Then

(# +Z)(N) =S (N)nn~ ! (#(=(N))).

Proof. Again, (% + #)(N) C X (N)nn~Y(#Z (n(N))) is easily seen.
As in Theorem 2.9, if T € #(N), then T must satisfy condi-
tions (iii), (iv) and (v) of that theorem, and moreover, ¢(N) C o(T).
If T € n=Y(%(n(N))), then we also have that g.(T) = ge(N), so
that T satisfies (ii), and from [BDF], we can also deduce that T €
N+ Z)WH), so that T satisfies (i). Thus T € (% + % )(N), com-

pleting the proof. O

2.16. Question. In general, for A € Z(#), % (n(A)) need not be
closed [Dav]. Nevertheless, we can define 7~ (% (n(A))) as above. Is
it true in general that

(% +%)(A) =F(A)na- (% (rn(A)))?

2.17. CoRrOLLARY. Let N € ZB(#) be a normal operator. Then
(% + Z)YN)+Z(#)=%(N)+F (#). In particular, (% + .7 )(N)+
F(AZ) is closed.

Proof. Clearly Z(N) + Z(#) C (# + #Z)(N) + Z(Z). But if
T € (# +X#)(N), then n(T) € Z(n(N)), and so by [BDF], T =
U*NU +K for some unitary U and some compact operator K . That
is, TE#(N)+Z (#). Now % (N)+Z (#) = n~Y(#(n(N))), again
by [BDF], and since % (n(N)) is closed, so is z~1(Z(n(N))), as was
to be shown. O

2.18. CoROLLARY. (N + Z)NW#) = (X +F )N (Z)), where
N (H) is the set of normal operators on 7 , and (% + F )N (Z)) =
H(#% +Z)N): NeV (#)}.

Proof. Suppose T = N+K where N € /' (#Z) and K € Z(#Z). As
before, it suffices to consider the case where N is diagonal with respect
to an orthonormal basis {¢;}{°, for # . Let P, be the orthogonal
projection onto span{e;}’”,. Let ¢ > 0.
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Consider

Tn=N+PnKPn

(a1 @iy -+ ap 0 1
ay - Qg 0
Ann 0

L 0 o - 0 diag{di}i>n i

Choose M, € #(#) such that M, = diag{d;(n)}2, satisfies
(@) di(n)=d;, i>n;

(b) |di(n) — a;i| < &/n; and

(c) dj(n) #di(n) if i< j#k<n. Then

[di(n) ai aip 0
dy(n) ap 0
My =,k Ry = : :
dn(n) 0
. 0 0 - 0 diag{d}i>n]

and ||R, — T,|| = max <<, |di(n) — o;i| < &/n. Thus

dist(T, (% + Z)AN(Z))) < |T — Ty|| + dist(Ty, , (Z + F)(M,))
< “T" Tn” + HTn - Rn”
<|\T - T,| + ¢/n.

Since T =lim,_,, Ty, letting n tend to oo does the trick. O

3. The compact case. In this section we consider the case of compact
operators. Let (I+.7)(#) = {R € & (#)|R is invertible and R is of
the form identity plus compact} (note: (I +.Z)(Z) C (% +FZ )(#)).
For Te B(#) let I+ Z)T)={R 'TRIRe (I +%)#)}. We
show that for K a compact operator

(I +7Z)(K)=(K)

(and hence (Z + % )(K) = F(K)).

After submitting this paper for publication, we learnt that Al-Musal-
lam has independently obtained a characterization of (% + % )(K) in
the case of a compact operator K (cf. [A1-M]). The methods used
and the characterization of (% + .%Z')(K) given there are substantially
different from those below, and are more along the lines of our Theo-
rem 2.14. The development here is indeed much shorter, and actually

identifies (% + .%)(K) with both (I +.%)(K) and #(K).
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3.1. LEMMA. Any compact operator K € Z (#) is the norm limit
of finite rank operators F, which are invertible when restricted to the
subspace supp(F,) = span{F,# , F; 7} .

Proof. Let F, be a sequence of finite rank operators converging
in norm to K. For each n one can find a u,, 0 < u, < 27", such
that F+ un Poypp(rry » Where Py £’y 1s the orthogonal projection onto
supp(F,), has the desired property. O

3.2. LeMMA. The action of a similarity induced by S € B (#) ona
finite rank operator F of the form of the previous lemma can be induced
by an operator S’ € (I + Z)(#) such that |S'|| |S"~ 1| < IS IS~

Proof. Let F' = S~'FS. We have dimsupp(F) = dimsupp(F’).
Decompose # as # &%+ where /% = span{supp(¥F), supp(¥’)}.
We can find a unitary U = U, @1d with respect to this decomposition
such that if F” = U*F'U then supp(F) = supp(F"). Let R=SU.

Now consider the decomposition # = supp(F)®(supp(F))+. With
respect to this decomposition we have

n_ |Ru Rpp|[F) O] _[Fu O] [Ru Ripf _
RF_[RZI Rull 0 o/T]0 0]|Ry Ry| =R

As F{| and Fj, are invertible when restricted to supp(F) this implies
that Ry = Ry; = 0. Thus the operator R’ = R;; ® Id implements
the similarity of F and F”. Thus we have F’ = UR~!FR'U*. We
also have ||R'U*|||JUR-Y| < |IS|IIS7!|| and R'U* is of the form the
identity plus a compact. o

3.3. THEOREM. If K € F (#) then the closures of the (I + %)
orbit of K and the similarity orbit coincide.

Proof. Let F, be a sequence of finite rank operators of the type
constructed in Lemma 3.1 converging in norm to K. Let T € #(K)
and let S; € Z(#) be a sequence of invertible operators such that
S;KS7' — T. Let S;, € %(#) be the invertible operator in
(I + Z)AZ) constructed in the previous lemma such that

St nFuS; = SiFAS7Y and 18,1l IS7 41 < IS 18771 We have

1S5, nFnS; ), — SiKS7 | = 1Si(Fn — K)ST!||
< ISl I1F = KIS -
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By passing to a subsequence F,(; of the F, we can force this to go
to zero as i goes to infinity. Hence S, ;) Fn(i)S; L(i) converges to T .
The same subsequence gives

I, n(z ”

”Sl n( l)S, n(i) _Sz n( z)KS
S ”Si,n(i)” | Fuciy — K| ||S @l

As IS; il HSI.‘;(”H ||S,-|| S|, the right-hand side converges to

zero. Hence S; p(, KS converges to 7', completing the proof. O

i,n(i)
3.4. CoroLLARY. If K is a compact quasinilpotent then 0 &€
(I +Z)K).

Proof.. By a result of Rota [Ret], 0 € #(K). 0

3.5. COROLLARY. The closure of the (I + K) orbit of a compact
quasinilpotent which is not nilpotent consists of all compact quasinilpo-
tents.

Proof. Apostol [Apo] has shown that the result holds for the simi-
larity orbit. a

3.6. REMARK. It is worth noting that for K € .7 (/#), the answer
to Question 2.12 is again positive. In this case, %7 (n(K)) = Z (%),
of course, yielding, (% + % )(K) = X (K)NFZ (#) =7 (K).

3.7. The coincidence of .#(T) and (% + % )(T) for T € Z(#)
is, understandably, a very special phenomenon. In fact we have the
following

ProrosITION. For T € Z(#Z), A (T) = (% + % )(T) if and only
if T is of the form scalar plus compact.

Proof. That #(T) = (% + % )(T) when T is a scalar plus compact
follows immediately from Theorem 3.3.

Let T be such that A (T) = (Z + % )(T). Note that if 4 &
(% + Z)(T), then ||n(A4)|| = ||x(T)| ; the essential norm is preserved.
Consider a decomposition of 7 = #| ® 7 into two infinite dimen-
sional subspaces. Let R € % (/#, #;) be an arbitrary operator from
A5 to A#{. With respect to this decomposition we have the following
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application of a similarity to 7.

I R|\|[Tyy T2 [I -R

o 7 Bl 7
_ ,:Tu + RT5; —(T11R+ RTyR)+ Ty, +RT22]
Bl Ty Ty~ TR

In order for this latter operator to have the same essential norm as 7'
for all such possible R, T,; must be compact (or else we could scale R
as we wished to increase the essential norm of the bottom right-hand
corner). A similar calculation with R in the lower left-hand corner
shows that 77, must also be compact. The same argument also forces
RT,; — T1;R to be compact for all R € % (#, #) . Passing to the
Calkin algebra we have

n(R)n(Ty;) — n(Ty)n(R) =0 forall Re B (4, Z).

Putting R = I we have 7n(7») = n(7T1,). Thus #(7Ty;) is in the
commutant of & (#]), so that n(T},) = n(Ty) = An(I) for some
A € C. Lifting back to Z(#Z) we have T is of the form scalar plus
compact. ]

4. Further comments. Having described the % + % orbit of a
normal operator, one would like to obtain similar results for essentially
normal operators. In this direction we have the following results which
describe the % + .% orbit of the forward unilateral shift.

4.1. LEMMA. Let S be the forward unilateral shift and let 1 be a
complex number such that |A| < 1. Then AI' S € (# +%)(S),
where I' is the identity operator acting on a one-dimensional space.

Proof. As |A| < 1, 1 is an eigenvalue of multiplicity one for S*. Let
X be an associated eigenvector. Then S has a matrix representation
of the form '

S = [/11 "0 ] Cxp

Y (Cxp)*~

By Proposition 2.7, AI'®S’ € (% + Z)(S) . Since the restriction of S
to a cyclic invariant subspace is unitarily equivalent to S ([RR, Thm.
3.33)), it suffices to show that {x}* is a cyclic subspace. Direct com-
putation shows that the orthogonal projection of the standard basis
vector ¢y (with respect to S) onto the subspace {xp}* is indeed a
cyclic vector. o
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4.2. COROLLARY. Let {Ay, ..., An} be complex numbers of modu-
lus less than one. When S is restricted to the invariant subspace formed
by (span{ker(S —A;1)*}_ 1)L , the resulting operator is unitarily equiv-
alent to S'.

Proof. Induction. 0

4.3. COROLLARY. Let {4y, ..., Ay} be distinct complex numbers of
modulus less than one. Then there exists an operator C such that

~ F; 0
i O
where Fy is the n x n diagonal matrix F; = diag{A;}"_, .

Proof. Consider the decomposition
# = (span{ker(S — A,I)*}"_,) & (span{ker(S — 4;,1)" "t
to get S = [g" g |, with ¢(Fy) = {4,}",. By the above Corollary,
0 -0
Sp = S. Since F; has no repeated eigenvalues, it is similar to F; via
amatrix R. Apply the similarity transformation [X9] € (#+.%)(#)
to S to obtain
~ F; 0
—wtklc s>

with C = CyR. O

4.4. COROLLARY. If A is a shift of arbitrary multiplicity and F is
an operator on a finite dimensional space whose spectrum lies inside
the unit disk, then F @ A€ (Z + Z)(A).

Proof . Let &€ > 0. We can clearly approximate F by an operator G
such that ||F — G|| < ¢, the eigenvalues of G still lie inside the disk,
and the eigenvalues of G all have multiplicity one. From above, we

know that
- G; O
=u+k cC S

for some operator C, where G, is the diagonal matrix with the same
eigenvalues as G. Now G is similar to G, say G = R"!G4R. Thus

R 017'[G, O][R O G 0
[0 1] [c? SHO I]z[CR S]E(?/J“%)(S)'
By Proposition 2.7, [§ %] € (% +.%)(S). Thus
dist(F @ S), (Z + Z)(S)) < e.

Since ¢ > 0 was arbitrary, F &S € (Z + .7 )(S). O
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4.5. LEMMA. An operator of the form

[F; 0
c-lé 5]
where F,; is a diagonal matrix is similar to S if and only if the diagonal
entries {iy, ..., Any of F; are distinct and have modulus less than

one, and the ith column of C,y is not in ran(S — A4, 1), 1 <1 <
n. Moreover, the similarity can be implemented by an operator in
(% + F)Z).

Proof. The necessity of the restrictions on the A;’s is immediate
from spectral considerations. To see the necessity that the ith column
of C,; not be in ran(S — A;1), consider adjoints, that is,

Fy G5

0o &

which is similar to S*. We are now concerned ‘with whether or not
the ith row of (7, is perpendicular to ker(S*—4;I). Assume i = 1.
Then

C*:[

"0 -
Ay =7

Cr == e 3,
An - ;Ll _
| 0 S* — 41 |
Obviously the first basis element is in the kernel. Let v be a non-zero
vector in the kernel of S* — A,. Consider the action of C* — 4,/ on

the vector

Fo"

o)

Qp
L U -
The resulting vector is (using ¢; to denote the ith row of C3)):

r B _Z]"U 7
(A=A +Cy-v
(Zn "Il)an +Cp-v
0
0
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An appropriate choice of the «; causes the entries below the first
one to be zero. As C* is similar to S*, the kernel of C*—2,/ must be
one dimensional and hence is just the span of the first basis element.
Thus ¢, -v # 0. Thus, as ran(S — A;J) = ker(S* — A, 1)+, ¢, is not in
the range of S — 4,1, where ¢; is the ith column of Cj;.

To demonstrate the sufficiency, first note that given 4, ..., 4, sat-
isfying the above conditions, Lemma 4.3 says that there is an operator
of the form

F; O
B= [321 S ]

such that B =,,, S. Next consider the equation

I O|[F; O I 0] [F; O
b s slln 1) [é 5]
which is equivalent to SD— DF; = By; — Cy; . The ith column of the
left-hand side is given by (S — 4;1;)d;, where d; is the ith column
of D. Thus one can find a D to implement the similarity provided
that the ith column of B,; — C,; is in ran(S — A;I). Note that as
S — A;I is Fredholm, ran(S — A;I) is closed. By acting on B with
similarities of the form [% 9], R, a diagonal matrix, the columns of
B, can be scaled by arbitrary non-zero scalars. Note also that as Fy
is diagonal these similarities do not change F,. Since both the ith
column of B,; and the ith column of C,; are not in ran(S — 4;I),
which is of codimension one, this suffices to get the ith column of

By, — (51 into ran(S — 4;1). Observe that the similarities used are all
in (% +%)(%). a

4.6. CorOLLARY. If C is an operator of the form

[F 0
C_[Czl S]

where F,; is a diagonal matrix with distinct diagonal entries of modulus
less than one, then C € (# + % )(S).

Proof. An arbitrarily small perturbation of C will get the ith col-
umn of C,; out of range(S—A;I). Then by the lemma this perturbed
operator is in (#Z +.Z)(S). Hence C € (Z + % )(S). m]
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4.7. THEOREM. Let S be the (forward) unilateral shift on a Hilbert
space # . Then

(% +Z)S)={T e B(Z):
(i) T is essentially normal,
(i) o(T)={zeCl|z| <1},
(iil)) o0e(T)={z€eC:|z| =1},
(iv) ind(T-A)=-1forallle{zeC:|z| < 1}}.
Alternatively, (Z + % )(S) consists of all essentially normal operators
T having the same spectrum and essential spectrum as S, and satisfy-
ing ind(T — A) = ind(S — A) for all A not in the essential spectrum.

Proof. That these conditions are necessary is easily verified. We
now consider their sufficiency.

By [BDF], if T satisfies the above conditions, then 7 = U*SU +
L =U*(S+ ULU*U, where U is unitary and K = ULU* is com-
pact. Thus it suffices to show that S+ K € (Z +.7)(S). Let {e,}32,
be the standard orthonormal basis for /# with respect to which S is a
shift, and let P, be the orthogonal projection onto span{e;}?_, . The
sequence {S + P,KP,}> . of operators converges to S + K. These

n=1
operators are of the form

S+ PKP, = [F" O] (P7)

Co S| (P#)-

By passing to a subsequence (if necessary) and by using the upper
semicontinuity of the spectrum, we may perturb F, to get a new
operator G, such that

(1) ”Gn "Fn“ < '},‘Q
(i) a(Gn) C{zeC:|z|< 1};and
(iii) G, has no multiple eigenvalues.

Clearly the sequence T, = [or o] still converges to S+ K. Now

if Gy4(n) is the diagonal matrix whose eigenvalues are exactly those
of G,, then by Corollary 4.3 there exists an operator B, such that

= [G;,(")g]. Moreover, G, = R;!G,4(n)R, for some similar-
ity R, since all eigenvalues here are of multiplicity one. Thus, by
Corollary 4.6,

i 3| emTm).
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implying that

_[G, O
"TC, S
_[Rz! 0][Gy(n) O][Ry O] _or——sro
= [ 0 1] [CnR;I s|lo 1|€#+F)S)
Since T, e (' +Z)(S) foral n > 1, T =S+ K =limy,oc Ty €
(Z + % )(S), completing the proof. ]

4.8. It is also reasonable to ask about the strong and weak operator
closures of the (% +.%')-orbits of bounded linear operators 7' on 7 .
In this context Hadwin, Nordgren, Radjavi and Rosenthal [HNRR]
have shown that

()WIf T e #Z(H) and T is not the sum of a scalar and a finite
rank operator, then S(7') is strongly (thus weakly) dense in % (%) ;
and

Q) If Te #(#) and rank (T — AI) = m < oo for some scalar 4,
then the strong (weak) closure of S(7) is {A] + F: rank F < m}.
As might be expected, the same results hold true if S(7T) is replaced
by (Z + Z)(T). The proofs are identical to theirs, noting only that
the invertible operator 4 which appears in their proofs of Theorem
1 and Theorem 2 ([HNRR]) can be taken to be of the form unitary
plus compact.
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