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BETWEEN THE UNITARY AND SIMILARITY ORBITS
OF NORMAL OPERATORS

PAUL S. GUINAND AND LAURENT MARCOUX

D. A. Herrero has defined the ( ^ 4- Jf)-orbit of an operator T
acting on a Hubert space i F to be ( ^ + Jr)(Γ) = {R~ιTR: R
invertible of the form unitary plus compact}. In this paper, we char-
acterize the norm closure in £§(%?) of such an orbit in three cases:
firstly, when T is normal; secondly when T is compact; and thirdly,
when T is the unilateral shift. Some consequences of these charac-
terizations are also explored.

1. Introduction. Let %f be a complex, separable, infinite dimen-
sional Hubert space and denote by 3§(%?) the set of bounded linear
operators acting on %?. As usual, 3£{%?) will denote the unique two-
sided ideal of compact operators. There are many interesting ways of
partitioning the set 38{%?) into equivalence classes. We mention two
in particular.

Given T e 33{%T), we define the unitary orbit of T as W{T) =
{U*TU: U e 33{%?) a unitary operator}. Then an operator A e
%(T) if its action on %? is geometrically identical to that of T.
Equivalently, one can think of A as T itself acting on an isomorphic
copy of %r.

Another much studied class is the similarity orbit of T e 3S[^),
namely S?{T) = {S~ιTS: S e 33{fT) an invertible operator}. This
notion of equivalence ignores the geometry of the Hubert space, and
concentrates on the underlying vector space structure.

In general, neither of these sets need be closed. This is in contrast
to finite dimensional Hubert spaces, where %/(T) is always closed
while S*(T) is closed if and only if T is similar to a normal matrix
[Her 1, p. 14]. It is therefore interesting to describe the norm closure
of these orbits, a program which for unitary orbits was undertaken by
D. W. Hadwin [Had], using a result of D. Voiculescu [Voi], and for
similarity orbits was done by C. Apostol, L. Fialkow, D. Herrero, and
D. Voiculescu [AFHV].

One can also turn one's attention to the Calkin algebra s/ffi) =
£%(^)/J?(β?) and consider both unitary and similarity orbits there.
Indeed, one of the major results along these lines is the classification
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of the unitary orbits of normal elements of s/{β^) by L. Brown,
R. G. Douglas and P. Fillmore [BDF].

Denoting the canonical map from £§(%') to $/{%*) by π , their
theorem states that if N and M are in ^{β^) and are essentially
normal, that is, if π(N) and π{M) are normal in $/(βf), then π(N)
and π(M) are unitarily equivalent if and only if

(i) σ(π(N)) = σ(π(M)) in sf{βT) and
(ii) ind(>l/ -N) = ind(λl - M) for all λ e PSF(N) , where ind T =

nul T - nul Γ* is the Fredholm index of an operator T e 3§{^), and
PSF(T) is the semi-Fredholm domain of T. More precisely, psψ(T) =
{2 G C: ranΓ is closed and either nulΓ < oo or nulΓ* < oc},
and its complement is denoted by 0f r e(Γ). We also let ot(T) de-
note σ(π(Γ)), the essential spectrum of T. (Note: here, nulΓ =
dimkerΓ.)

In this paper we propose to study the closure of an orbit which lies
between the unitary and similarity orbits of an operator as defined
above, and is related to the unitary orbit of elements of the Calkin
algebra. In studying various classes of operators in the past (for ex-
ample, biquasitriangular operators or the closure of the set of nilpotent
operators), much profit has been gained by observing that these classes
were invariant under the action of similarity transformations. From
this, spectral invariants have been deduced which produced useful
characterizations of these classes (cf. [Voi 2], [AFV]).

It is our feeling that the ( ^ + ̂ )-orbits defined below may play a
similar role when studying classes of operators closed under unitary
plus compact transformations but not under general similarity trans-
formations. The motivating example here is the class of quasidiagonal
operators and certain of its subclasses. These classes behave very badly
under similarity transformations (cf. [Her 3]). In fact, this orbit first
made its appearance in [Her 2] in relation to a question concerning
quasidiagonal operators. We define this orbit as follows.

First, for a Hubert space %f, let i$ί + &){&) = {R e ^{^): R
is invertible in 3B{%?) and R is of the form unitary plus compact}.
Then, for T e &{&), let

We write T =u+k S if S e (& +&{T)), and note that =u+k is an
equivalence relation on &{&)! Clearly 2T(Γ) c (W + X)(T) c
S^(T)9 and the same obviously holds for their closures. In gen-
eral these orbits need not coincide, although in finite dimensions,
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= S*(T) is clear, since all invertibles are of the form
unitary plus compact.

In §3 we extend this to the case of compact operators, showing that
3 ^ f for all T e J Γ ^ Γ ) . In this case, something

even stronger is true, namely f(T) = (I + 3ί)(T) = {R~ιTR: R
invertible in 3${%?), R of the form identity plus compact}.

In §2 we shall describe the closure of the {% + ^)-orbits of nor-
mal operators in 3B(%?). We shall show that with one other condi-

tion, the list of necessary conditions for membership in ( ^ +
N G £&(%?) normal, as given in [Her 2, p. 481] is complete, and also
constitutes a list of sufficient conditions.

We would like to thank the referee for several useful comments,
and in particular, for pointing out a fatal flaw in our original proof of
Theorem 2.13.

2. The normal case.

2.1. In restricting our attention to the case of normal operators,
we can make a number of observations which simplify our task. For
instance, if we begin with a normal operator N, then not only is
i$ί + <3?){N) contained in the set of essentially normal operators, but

in fact T e (%f + 3f)(N) implies T e (yr+3?)(jr) = {Ae 3g(%T): A
of the form normal plus compact}. (This follows from the fact that
the latter is norm-closed, by [BDF].) Moreover, π(T) and π(N) must
be unitarily equivalent in the Calkin algebra, and so again by [BDF]
we can conclude that there exists an operator K e 3?(%?) and a
unitary U e 3&(%?) such that T = U*NU + K. Our question then
becomes: "How does one absorb the compact perturbation of U*NU
into a similarity transform R~ιNR of N, where R itself is of the
form unitary plus compact?" The answer lies in the following series
of approximations to the main theorem.

2.2. NOTATION. Following [Her 1], for T e 3§{%?) and Δ a clopen
(i.e. closed and open) subset of σ(Γ), we denote by E(A; T) the
corresponding Riesz idempotent and the range of E(A T) is denoted
by ^ ( Δ ; T). If Δ = {λ} is a singleton and d i m ^ ( Δ ; T) is finite,
then λ is called a normal eigenvalue of T. The set of all normal
eigenvalues of T is denoted by &o(T).

2.3. THEOREM. Let N be a normal operator whose spectrum σ(N)
is a perfect subset ofC. Let F = {T e 3g(%T)\ Γ G ( / + 1 ) ( / ) ,
ot(T) = σe(N) = σ(N) and σo(T) = 0 } . Then (&3Γ)(N)^
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Proof. First we show that F c ( ^ + J f ) ( i V ) . From the Weyl-
von Neumann-Berg-Sikonia Theorem [Brg], [Sik], we may assume
that N is a diagonal operator with respect to an orthonormal basis
{en}™=ι and that each eigenvalue of N is repeated with infinite mul-
tiplicity. To see why we may do so, first observe that (%/ + J^)-orbits
are closed under the following transitivity relation: namely, that if
B e (% + 3?){A) and C e (% + 3f){B) for operators i , 5 a n d C ,
then C € (& +J%r)(A) (the proof is not difficult). But then given any
normal N' with σ(N') = σQ(N'), the above theorem implies the exis-
tence of a diagonal operator TV as above with σ(N) = σe(N) = σ(N')
and W(N) =WW). But then (%f

Suppose T e <T and let ε > 0. From [Her 1, Thm. 3.48],
we conclude that there exists K e 3£{%?) with \K\ < e such that
σ(T + K) = σe(Γ + K) = σQ(N) = σ(N). As such, it follows from
[BDF] that T + K = U*NU + L{ for some unitary U and some
Lx e JP^). In other words, T+K e %{N+L) where L = ULλ U* e

. We need only show, therefore, that N + Le
Let Pn be the orthogonal projection onto span{^/}"=1. Then

{Fn = PnLPn}™=ι is a sequence of finite rank operators satisfying
lim^oo \\L — Fn\\ = 0. Moreover, it is not hard to see that N + Fn =
N ®Gn (= denotes unitary equivalence), where Gn — PnNPn + Fn .
Let Fw be the unitary such that N+Fn = V*(N®Gn)Vn . By dropping
down to a suitable subsequence, we may assume that σ(N ® Gn) =
σ(ΛΓ + Frt) C (σ(N))x/n = {A G C: dist(λ, σ(7V)) < 1}. This sim-
ply uses the upper semicontinuity of the spectrum with respect to
σ(N + L) = σ(N) and σ{N + Fn), n > 1.

Thus we can perturb Gn by at most i to obtain a new matrix
GJ, satisfying σ{G'n) C σ(iV) (i.e. consider G^ in upper triangu-
lar form and simply shift the eigenvalues over). Then \\Gf

n - Grt|| <
iimplieslKiV + ̂ ^ - F ^ Θ G ' J ^ I K i and so Vn*(N®Gf

n)Vn also
converges to N + L.

We can now use a technique similar to that found in [Her 2] to
show that N® Gf

n e (%? + 3?)(N), which will clearly be sufficient. We
may assume that G'n is upper triangular, say

G'n =

0
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Consider Do = diaglΛ/}^ , where σ(Gf

n) = {Λ}™i including mul-
tiplicity. Let δ > 0. Using the fact that σ(N) is perfect, at a cost
of some f(δ) (with \imδ_>of(δ) = 0), we can perturb each λj to a
A; e σ(N) so that min / W |λj - ^ | >δ. Let Dn= diagίΛJ}?^ . It now
follows from elementary linear algebra that there exists an invertible
matrix S# so that

Dn=S7l

Sij

0
sδ.

Thus \\G'n-SδDnS^\\ =
and so

i—ΦELl II < /(<*) N o w N - N®D" >

— δfiUnO* )\\ <. JyO).

Letting δ tend to 0 we obtain N®G'ne (& + J?)(N), for all n > 1.
But then lim^oo NΘGf

n = N + Le {% + 3f)(N). From before, we
conclude T + K e (%f + 3?)(N). Finally, since ε > 0 was arbitrary,

To show that {W + 2ί)(N) c y , let Γ e ( ^ + ^ ) ( Λ Γ ) . From
above, Γ e ( ^ +&)(&) and σe(Γ) = σe(Λ^). That σo(Γ) = 0 is an
immediate consequence of the upper semicontinuity of the spectrum,
using the fact that σ(N) is perfect. Thus Γ e J , completing the
proof. D

2.4. In what follows we shall be looking at upper triangular operator
matrices whose strictly upper triangular parts are compact. One of the
main tools we shall use is Rosenblum's Theorem, which we now state.

ROSENBLUM'S THEOREM [cf. Her 1, Cor. 320]. L^/ ^ , ί e

am/ consider τAB: &{&) -> ̂ ( X ) , X H^ ̂ X - XB. Γ/ẑ /7

(i) σ(τAB) = σ(A)-σ(B);
(ii) (f σ(^4) Π σ(B) = 0 then there exists a Cauchy domain Ω such

that σ(A) C Ω, σ(B) n Ω = 0, arcd/or Z G ̂ ( X ) , τ ^ ( Z ) =
-άlJdQ{λI-A)-ιZ(λI-B)-ιdλ.

For our purpose, we shall also need the following observation:
It is not hard to see that we can actually choose Ω to be an analytic

Cauchy domain. Now suppose Z is a compact operator. Then it
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becomes evident from the definition of the integral on the right of the
above equation as a limit of "Riemann sums" that τ~~^B(Z) must also
be compact, as each approximating sum is. Using this observation,
we obtain the following version of the Rosenblum-Davis-Rosenthal
Corollary:

2.5. COROLLARY. Let %fA and J # be two complex, separable Hil-
bert spaces and let A e 3B{&ώ, B e 3&{%B) and Z e 3&{%B , <%Ά) >
Z compact. Assume that σ(A) Π σ{B) = 0 . Then there exists R e
φ + X){%rA θ %B) such that

= 00Proof. By the preceding remarks, if then
we can choose τ ^ ( - Z ) = X compact. Note that R = [$*] then
does the job. The case where d i m J ^ < CXD or d i m ^ < oc is handled
precisely as in [Her 1, Cor. 3.22], only noting the fact that in this case
the similarities are already of the form U + K with U unitary and
K compact. D

2.6. COROLLARY. Suppose

T =

0

is an operator matrix acting in the usual way on the direct sum 0 " = 1 ^T
of Hubert spaces %[, I < i < n. Suppose also that each Z^, 1 < / <
j <n, is a compact operator and that σ{A{) Πσ(Aj) = 0 , 1 < / Φ j <
n. Then T =u+k 0? = 1 At.

Proof. Induction. D

2.7. Along similar lines, we can also obtain some information for
the case when the spectra of the diagonal elements of the operator ma-
trix T are not disjoint. We note that Al-Musallam has independently
obtained this result in his thesis [Al-M], and that the proof there is.
similar to the one below. We include it for completeness.

PROPOSITION. Let

with respect to %Ά θ
and %B be Hubert spaces and let T= [̂

Suppose Z is compact. Then A θ B
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Proof. Without loss of generality, we may assume | |Γ| | < 1.
If %Ά is finite dimensional, then let ε > 0 and set Rε = SIA θ

IB where I A (resp. Iβ) is the identity operator in &{<%A) (resp.
έjp \f^B)) * nen i\ε t ĉc -\- <^ ) \^A Φ SCB ) and J\g 11\£ — i Λ » I

Thus by letting ε tend to 0 we get A®Be {%/ + 5f)(T).

If %?A is infinite dimensional, then as in [BD] we can obtain a
tridiagonal representation of A with respect to a decomposition %fA —
Θ^Li %n where d i m ^ < oo for all n > 1, and moreover we are free
to choose %f\ arbitrarily. Let 0 < ε < \j\fl and choose %?\ large
enough so that \\Z - P(β?\)Z\\ < ε 3 , where P(<%\) is the orthogonal
projection of ^ onto %f\. Then we may write

T =
44

Λ43

Λ33

^ 2 3

0

^ 3 2

^ 2 2

An
0

A2\
An

0

z 4
Z3

z 2Z j

B

and note that

z 4

Now | |Γ| | < 1 implies ||v4|| < 1 and hence ||Λ(7|| < 1 for all
ί', J > 1 We claim that we can find a finite sequence | = δ\ < δ2 <
• • • < δm = 1, where m is a positive integer and m < 4/ε2 + 1 < 5/ε2

such that
(1) \\At i+x - {δiIi)Ai i+ι(δi+ιli+ι)-ι\\ < ε; and
(2) \\Ai+ι i - (d, + i / , + i ) ^ / + i i{δili) ι\\ < ε,

and where /,- is the identity operator in &(£%), \ < i.
To see this, consider the following: Let δ[ = | . For 1 < / < 5/ε2,

let δ'M = δ[{\ + f ) , so that δ'i+ι - δ\ = j;(§) > J{(§) > ε 2/4. Thus
there exists m < 4/ε2 + 1 such that δ'm_x < 1 and δf

m > 1. Let
Si = δ\ for 1 < i < m — 1 and δ( = 1 for / > m. Now note that

for 1 < i < m - 2.
Also, l-δm-ιδ~ι = l-<5 m _! . Now J m _! < 1 but <5m_i(l + §) > 1

since δ'm > 1. Thus ^m_i > 1 - \δm-\ > 1 - §, implying that
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1 -δm.xδ-1 < § . Similarly, δmδ^_χ - 1 = δ^ - 1 < (1 - §
ε/2(l - | ) < ε as ε < 1. Finally note that

- 1 =

(1)

= e ; and

(2) \\AM i - (δi+ιIi+ι)Aι+ι /φ/iΓΊl

<\δi+ιδri-l\\\Ai+ιi\\<e.l=e

for 1 <i <m.
The relevance of the above computations becomes clear when we

define an operator R e ^(^A ®%h)= ^((Θ7=ι ^n) θ %B) by R -
(Φ^li^iΛi) ®/• Since each Hn is finite dimensional and δn = 1
except for 1 < n < m, R e (% + 3?)(%Ά ® %B) - Now consider
RTR~ι: (in the matrix notation we shall abbreviate c^/π to <JΠ).

ί /4
m m+1 mm

As such,

\\A®B-RTR-ι\

^22 ^2^21 ̂ Γ ^2^2
δ\Λ\2δϊl ΛW δ\Z\

0 0 B J

2 max {\\At M - {διIi)Ai

\<i<m

«=2

< ^ε + m - 1 ε3 + ε3 < -ε + ( ̂ ) ε3 + ε3

~ 2 ~ 2 \ε2 '

< —ε + ε3 < 8ε as ε2 < -.

Letting ε tend to 0 yields the desired conclusion. D
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2.8. REMARK. AS was the case in the previous Corollary 2.6, we can
extend this result to an n x n operator matrix with compact strictly
upper triangular part by induction.

For A E 3B{W), we denote by σiso(A) the isolated points of σ(A).
Then σ[so(A) is a countable set which contains σ$(A) and which has
no accumulation points outside of σQ(A). Note that σ[S0(A) need not
be closed in C. We also define σacc(-4) to be the set of accumulation
points of <J(A) . Then σacc(A) is closed. If A is a semi-Fredholm
operator (i.e. if 0 E psψ(A)), then we define the minimal index of A ,
denoted min. ind.(^4) to be the minimum of nulv4 and nul^4*.

By σp(A) we shall denote the point spectrum (i.e., eigenvalues) of
A and for Δ C C, Δ* = {λ: λ E Δ}. Following Apostol, we may
define the regular points of p&{A) as

pr

sΈ = {λ E ρ%ψ{A): mx\{A - μ) and nul(^4 - μ)*

are continuous on some neighbourhood of λ]

as well as the singular points of ρsγ(A) as

Ph = PSF(A)\PI¥(A).

The set plF(A) consists of a countable sequence with no accumu-
lation points in psγ(A). The reader is referred to [Her 1] for more
information regarding these parts of the semi-Fredholm domain.

2.9. THEOREM. Let ^ be a Hubert space and N e &(<%*) be

normal. Suppose Te (^+JΓ)(N). Then
(i) ΓE(^+^)(^);

(ii) σe(T) = σc(N), σ(N)Cσ(T);
(iii) nul(Γ - λ) > nu\(N - λ) for all λ e PSF(T) = pγ{T)
(iv) if {λ} E σ i s o(Γ) Π σ e(Γ), then (λ - T)\β?{λ T) = 0
(v) if {λ} E σo(T), then mnkE(λ T) = r<mkE(λ N).

REMARK. One can also combine conditions (iv) and (v) above to
obtain the equivalent condition

(iv)' if λ E σ i s o(Γ), then (λ-T)\J^(λ T) = 0, and d i m ^ μ T) =

Proof. The necessity of conditions (i) and (ii) is easily verified. As
for conditions (iii), (iv) and (v), we turn to the Similarity Theorem of
[AFHV].
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Let R e 38{%?) and let p: sf(β?) -> &(β?p) be a faithful unital
^representation. If μ is an isolated point of σe(R), then the Riesz
Decomposition Theorem implies that p(π(R)) is similar to μI + Qμ®
Wμ, where Qμ is quasinilpotent and μ φ σ(Wμ). In [AFHV, p. 3]
is defined the function k(λ, π(R)) with domain C as follows:

( 0 iΐλ£σe{R),

n if λ G σiso(R) Π σe(R) and Qλ
k(λ;π(R)) = { .

is a nilpotent of order n,
. oo otherwise.

Also defined is σne(i?) = {λ € C: 1 < k(λ; π(R)) < oo} .
The Similarity Theorem [AFHV, Thm. 9.2] shows that for X e

to be in S^{R), it is necessary (though not sufficient) that
(a) min. ind.(X - λ)k > min. ind.(i? - λ)k for all k > 1 and for all

λ € />SF(Λ)

(b) if A € σo(X), then rank£(λ X) = rank£(λ i?)
(c) if λ G σne(X) n σiso(X), then

rank[(A - X)k\β?{λ; X)} < rank[(λ - R)k\βT{λ; R)]

for all fe
Now condition (b) is exactly condition (v). Meanwhile, since in our

case π(Γ) = π(N), k(λ; π(T)) = k(λ; π(N)) for all λ e C and so
it is easily seen that k(λ; π{T)) = 1 for all λ e σiso(Γ) n σe(T). But
then

rank[(λ - Tγ\^(λ; T)] < rank[(λ - Nγ\β?{λ; N)]

= 0 forAGσ i so(Γ)nσe(Γ).

Thus (A - T)\β?{λ T) = 0, which is condition (iv).
It remains only to show that condition (iii) is necessary. The fact

that T e {/V +3?){β?) implies that ind(Γ - λ)k = 0 for all λ e
Psΐ(T) = pψ[T) = p¥(N) = ρsF(N), and for all k > 1. The same
holds true for N. Thus condition (a) above implies (in our case) that

nul(Γ - λ)k > nul(N - λ)k for all k > 1 and for all λ e ρ¥{T).

But nul(iV - λ)k = nnl(N - λ) for all k > 1 and λ e ρv{T), and so
we may in fact conclude that
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mύ(T-λ)>md(N-λ) for alU € p¥(T),

which is condition (iii). This completes the proof. D

2.10. The main theorem—Theorem 2.14—below asserts that in-
deed, the five conditions above are also sufficient for membership in
( ^ + Jf)(N) and hence characterize this set. The difference between
this theorem and Theorem 2.3 is, of course, that we now allow nor-
mal operators N which have isolated eigenvalues. As it turns out,
those eigenvalues which are also isolated eigenvalues of T can be
(relatively) easily handled using conditions (iii), (iv) and (v) above in
combination with Corollary 2.6. The trouble begins when λ e σiso(iV)
but λ £ criS0(Γ), and this is perhaps best illustrated by the following
example.

2.11. EXAMPLE. Let S denote the forward unilateral shift and B
denote the bilateral shift. Let O\ denote the O operator acting upon a
1-dimensional Hubert space and Q denote an arbitrary—but fixed—
compact, quasinilpotent operator acting on an infinite dimensional
separable Hubert space.

Consider the normal operator N = B ® (Oι)(°°\ and the operator
T = B θ Q. It follows immediately from condition (iv) of Theorem
2.9 that T £ W+~W)(N). If we let R = S ® S* θ β , then σ(R) =
{λ e C: \λ\ < 1}. In other words, we have "filled in the hole" of
σ(N). It is not difficult to see that a simple application of the upper
semicontinuity of the spectrum allows us to approximate (to within
arbitrary ε > 0) Q by a finite rank nilpotent F = F(ε) so that
F = F ' θ O } 0 0 ' , F1 acting on a finite dimensional space, σ{Fr) = {0} .
By Theorem 2.3, S®S*®F' e (%S + 3f){B), while obviously (Oi)(°°> G

Rε = SθS+ΘF'ΘJO^ e (f/

Since \\R - Rε\\ < ε and ε > 0 is arbitrary, R e {W
We have used two main ideas here. First, we were able to "break up"

Q into a finite dimensional piece whose spectrum lay in the hole of
σ(N), and an infinite dimensional direct summand of R correspond-
ing to the isolated point of σe(R) which is not isolated in σ(R).

Secondly, we were able to "glue" that finite dimensional piece onto
an essentially normal operator with non-zero minimum index inside
the hole. While this may generate singular points in the semi-Fredholm
domain of i?, Theorem 2.3 was nonetheless capable of handling
these.
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It will hopefully prove useful to keep the example of R and N in
mind when reading Theorem 2.14. The general case is also compli-
cated by the presence of elements of cro(N) which are not isolated in
σ(T).

2.12. A key step is allowing us to deal with the "holes" of σ(N)
which are "filled in" in σ(T) is the Lemma 2.13 below. This lemma
is an adaptation to suit our specific needs of Lemma 5.1 of [HTW].
Two of the main ingredients in the proof are ApostoΓs triangular rep-
resentation and the decomposition of certain multiplication operators
on L2-spaces. [Apo 2] is a good reference for the former, while [HTW,
§3] is a good reference for the latter. What follows is a (very) brief
synopsis of the salient features involved.

In [Apo 2], C. Apostol showed that every T e 38{%?) admits the
representation

/ 7 ~ τ C ^
τr * *

To *
Tι\

where

= span{ker(λ -T):λe pr

sF(T)}

and

Under this representation, Tr (resp. Tf) is a triangular operator and
all the components of its spectrum intersect the interior of PSF(T) Π
σp(Γ) (resp. of psF(T) Π σp(Γ*)*). Also, σp(ΓΓ*) = σp(7}) = 0 ,
PSF(T) C psF(Tr) Π pxiTi) Π (C\σo(Γo)) and p\¥(T) C σo(To).

As for the multiplication operators, let Ω be a non-empty bounded
open subset of C and let 31 (Ώ) denote the uniform closure of the
rational functions with poles outside Ω. As mentioned in [HTW],
one can find an appropriate measure μ on <9(Ω) so that the opera-
tor M(dΩ) e &(L2(dΩ, dμ)) of "multiplication by A" admits the
following decomposition:

]
0

where H2(dΩ) is the L2-closure of 3${Ώ) . This representation has
a multitude of special features:
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(i) H2(dΩ) is a rationally cyclic invariant subspace of L2(dΩ),
with eo(λ) = 1 being a rationally cyclic vector for M+(dΩ)

(ii) M(dΩ) is normal, σp(M(9Ω)) = 0 ;
(iii) M+(<9Ω) and M_(<9Ω)* are pure subnormal operators such

that σ(M+(0Ω)) = σ(M_(dΩ)0 = Ω, σe(M+(3Ω)) = σe(M_(9Ω)) =
σe(Af (0Ω)) =_eτ(Af(0Ω)) = <9(Ω)

(iv) Ω\<9(Ω) - σp(M_(<9Ω)) - σp(M+(<9Ω)*)*
(v) ind(A - M-(dΩ)) = nul(λ- M_-(dΩ)) = nul(λ - M

- ind(λ - M+(dΩ)) for all λ e Ω\d(Ω) and
(vi) Z(dΩ) is compact.

2.13. LEMMA. Let T e 3§{^) be an essentially normal operator,
and let τ be a component of PSF(T) Π interior[σp(Γ)n<7p(Γ*)*]. Then,
given ε > 0, there exists Kε e JΓ(^F) with \\Ke\\ < e such that

1 " Kε - [ o
where

(i) iV(τ) w α compact perturbation of a normal operator;
(ii) σ(N(τ)) = τ, σe(N(τ)) = d(τ)

(iii) σp(iV(τ)) = σ p(^(τ)*r = τ\5(τ),
nul(JV(τ) - λ) = nul(JV(τ) - A)* = 1 /or α// A G τ\θ(τ)

(iv) σe(Tε) = σe(Γ), /> S F(^) = PSF(T')

(v) ind(Γε - λ) = ind(Γ - λ) for all λ e ρsF(T)
(vi)

n u l ( Γ - λ ) - l ifλeτ,

nul(T-λ) ifλepsF(T)\τ

(vii)

nu\(T-λy-l ifλeτ,

Proof. If we let Ω = τ\d(τ), then we can consider the normal
operator M = M(dΩ) as above. Note that σ{M) = σe(Af) = ΘΩ =
d(τ), and that Ω = τ. To save on notation, we shall write

M+ Zλ H2(dΩ)

0 M_J L2(ΘΩ)θH2(dΩ).
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Now d(τ) C σe(T) and therefore, since T is essentially normal, we
can find Ko e JΓ(JΓ), ||Ao|| < § such that T-KQ = T®M®M
([Sal]). By furthermore applying ApostoΓs triangular representation
of T, we obtain

M+ 0 0 0 0 0
M- 0 0 0 0
Z M+ 0 0 0

Tr Xx Xl
To X3

z
0
0
0
0
0

The operator Tr is triangular. Let Δ be that component of σ(Tr)
which intersects τ non-trivially (note: τ C σ{Tr) and thus the com-
ponent is unique). By the Riesz Decomposition Theorem,

ΠP r^j Tr(A)
0 T'r ; Tr)

and j r ( Δ ; Tr) = span{ker(A - Γ,)λ l e Δ n σp(Γ r), fc > 1} . Thus
7>(Δ) is triangular (cf. [Her 1, p. 73]). Moreover, since σ(Tr(A)) n
σ{Tr) = 0 , ind(r r - λ ) = ind(ΓΓ(Δ) - λ ) > 0 for all λ e ftF(Γr)nΔ,
while ind(Γr(Δ) - λ ) = 0 for all λ <£ A, since σ{Tr{A)) c Δ. Thus
we may write

Tr(A) * * *

r; * *
To *

Tι

The operator M + Θ 7) (Δ) is quasitriangular (that is,

ind((M+ θ Γr(Δ)) - λ) > 0 for all A G /?SF(M+ θ Γr(Δ))

see [Her 1; Thm. 6.4]). Since the spectrum of this operator has
no isolated points, we are now in a position to apply the results of
[Her 4] to obtain a compact operator K\, ||AΓi || < f such that Ar =
{M+ @ Tr(A)) - K\ is triangular with diagonal entries {^j}JLι with
respect to some orthonormal basis {ej}JLλ, and so that λj G 9 ( T ) C
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σlre(M+ © Tr(A)), for all j > 1 (cf. [Her 4, Cor. 2.4]). This forces
σp(Λ )* C σ l r e(Λ) moreover,

ind(Γr(Δ) -

ifλe/>sF(ΓΓ(Δ))\τ.

Now let Pn be the orthogonal projection onto span{^}"= 1. Since

Z ' = [o ] i s compact, limn^oo \\Z'-PnZ'\\ = 0 . Thus there exists K2

a compact operator, | | ^ 2 | | < ε/6, such that

M_ 0

Z' Λ

M_ 0 0

0 6 Ar ,

(for some sufficiently large n), where

= Ar\τanPn), and

* n+\

(^4r>rt = ^4r|kerPw) has the same characteristics as Ar (cf. [Her 4] or
[HTW, Lemma 5.1]).

Observe that the spectrum of

M_ 0
P Ύ' F

n^ Γr,n

is equal to σ(M_) U σ(Fr,n) = τ and ρsF(Rn) Π σ(Rn) = p+r(Rn) =
τ\d(τ). Furthermore, Rn is essentially normal and ind(Rn - λ) = 1
for all λeτ\d(τ).

By Proposition 3.4 of [HTW], there exists AΓ3 compact, ||A"3|| < ε/6
such that R = Rn — Kj, is essentially normal, σp(i?) = p^F(Rn) =
τ\d(τ), σp(R*)* = P;F(Rn) = 0, σe(R) = d(τ) and nul(i? - A) =
ind(J? - λ) = 1 for all λ e ϊ \ d ( τ ) .
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Moreover,

nul -λR * 1 Λ . ,(\R *
0 ArJ-λ)=™d{[θ A,.

= ind(i? - λ) + ind(Λ,« - A)

= n\Λ(R -λ) + mή{Ar,n - λ) for all λ € psF(Tr(A)).

Summing up, there exists KQ compact, ||A"Q|| < ||A"i|| + ||i
S"3|| < ε/2 such that

Z
0

0 0
M+ 0

0 Γr(Δ)J
-KQ =

R *
0 By

where Br = Ar>n. Let N(τ) = M+ ©i?. Clearly conditions (i), (ii)
and (iii) are met.

In a similar vein, 7]* is triangular. Letting Δ' be that component
of σ(Tf)* which intersects τ non-trivially, we can again use the Riesz
decomposition to write

77 *T>*[Vi
where σ(Γ/(Δ')) = Δ' and Γ/(Δ')* is triangular. Also, ind(Γ/(Δ')-A) =
ind(7) - /I) < 0 for all A € />SF(7/) n Δ'.

Since σ(Γ/(Δ') θ M _ ) = σ(Γ/(Δ')) U τ has no isolated points, and
ind((7/(Δ')θM_)-A) < 0 for all A € /)sF(7}θΛ/_), by using the results
of [Her 4] we can find a compact operator KQ , \\KQ\\ < ε/2 such that
Bι = (Tι(A') θ M-) — KQ is the adjoint of a triangular operator whose
diagonal entries belong to δ(τ) C σire(7}(Δ') φ A/1). It follows that
σp(5/) c σlre(7}(Δ') θ Af_) c σ l r e(Γ), and

ind(Bι -λ) =
ind(Γ/(Δ')-λ)

ind(Γ,(Δ'))

ifλeτ,

We conclude that there exists a compact operator Kε = KQ + (KQ
0®K'Q'), \\Kε\\ <ε such that

•N(τ) 0

— Kp =

0
*
*

To

0
*
*
*
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Finally, let

τε =

Br * * * *

rr * * *
To * *

mt *
Bi

τ;

As in [HTW, Lemma 5.1], with the help of [Her 1, Chapter 3], one
can verify that Tε has the desired characteristics. D

The idea behind this lemma is perhaps obscured by its technical de-
tails. One may think of it as follows: if an operator T e (yV+Jf)^)
has the same spectrum, essential spectrum, index and minimum in-
dex as our operator R = S Θ S* Θ Q of Example 2.11, then we can in
fact find an invariant subspace for a small compact perturbation of T
where this perturbation of T behaves like S@S*. The corresponding
Tε then behaves like B@Q. Since Γ e («/Γ + X){&), so is Tε, and
W is compact. Another small perturbation allows us to "pull out" the
0-direct summand and proceed as before.

2.14. THEOREM. Let %f be a Hubert space and N e 3&{%?) be
normal Then

( ^ + JΓ)(Λ0 = {Te 3B{2tr): T satisfies conditions (i), (ii), (iϋ),

(iv) and (v) of Theorem 2.9}.

In particular, the only difference in the spectra of N and of T is that
σ(T) may have fewer holes, while the index of (T - λ) must equal 0
for all λ e psγ(T) = PF(T) in these holes. Moreover, if {λ} e σiso(T),
then the compression of T to the corresponding eigenspace %?{λ\ T)
is a scalar, and dim ̂ {λ T) = d i m ^ ( λ N).

Proof. The necessity of conditions (i), (ii), . . . , (v) for membership
in (%/ + 5P)(N) is precisely Theorem 2.9. We content ourselves now
with showing their sufficiency. First we may assume without loss of
generality as in Theorem 2.3 that N is a diagonal operator with all
eigenvalues in σe(N) repeated with infinite multiplicity ([Brg], [Sik]).

Step One: The isolated points of σ(T). Let U/}^=1 (0 < μ < oo)
denote the countable set σiS 0(Γ), in decreasing order of distance to

(Note that if criso(Γ) has infinite cardinality, then in fact
{=1 t e n d t 0 d(σc(T)).) Now if λ e σo(T), then by (iii) and (v),
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we find that d im^(A; T) = nul(N-λ). Morever, by (v), %*(λ\ T) =
ker(Γ - A). Similarly, by (iv), if {A} c σ i so(Γ) (Ί σ e(Γ), then we find
that {A} c σe(7V) and %T{λ Γ) - ker(Γ - A).

Because of the countability of o ιso(T), we can choose e > 0 arbi-
trarily small yet subject to the condition that #((σ a c c(Γ)) e) nσϊS0(Γ) =
0 . Having chosen such an ε > 0, let Ωε = (σa c c(D)ε and let
{Ai, A2, . . . , A,j} be an enumeration of σ(T)\Ωε. If μ < oc, we
choose ε > 0 small enough so that σ i so(Γ) n Ωε = 0 . We then note
that Γ admits the representation

'0 J

where %[, ^2 ? . ? ^ , ^0 are so defined that φ ^ = 1 ^ j coincides
with 0 ) = 1 ^ ( A 7 ; T) for 1 < fc < n and 0 ^ = o ^ / = %T. Then
7} = AZ7, for 1 < / < n, where // is the identity operator acting on
%[. Since T e {JV +3ίr){J%ί?), an easy computation now shows that
each Tij 9 1 < / < n, 0 < j < n, above is compact. Moreover, by
simple index considerations, we get back that not only is TQ essentially
normal, but in fact, Γo G {JV + ^ Π ( ^ o ) . Note in particular that
dim^-7 = nul(N - A/), 1 < / < π and that Az £ σ(Γ 0), 1 < / < n .

Now TV is normal and {A/}?=1 C (Tiso(7V). Also, nul(7V - A/) =
dimJ^i allows us to write N = ( 0 " = 1 A///)θ7Vo with respect to the de-
composition SIT = (φf= 1 ^ ) θ ^ , where JV0 - ΛΓ|(0?=1 X(A, TV))1.
Note that 7V0 is normal with (τacc(TV0) = σacc(Λ )̂, σ{N0) = σ(N)\{λi}

tϊ=ι

= σ(7V) Π Ω ε . Obviously the multiplicities are preserved.
Suppose, temporarily, that we can show that there exists Vo e

such that \\V-ιN0V0-TQ\\<7ε. Then

N=

λ2l2
T

by Corollary 2.6.
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Thus

N =u+k

= N" =

Ii)®V-ι\N>\\ψIιj®V0

hh •i) T20

But then \\T - N"\\ = \\T0 - V0-
ιN0V0\\ < Ίε. Since ε >

be chosen arbitrarily small, we see that T
it suffices to show that dist(Γ0, ( ^ + ^)(7V0)) < 7ε. We therefore
proceed in this direction.

0 can

( ^ + J f ) ( i V ) . Thus

Step Two: σo(N)\σiso(T). Essentially we have reduced the original
problem to the case where λ G σ(T0) implies dist(λ, σaCc(7o)) < £•
The spectrum of TQ looks like that of NQ , except that some of the
holes (i.e., bounded components of P(NQ)) of σ(iVo) may be filled in.
In much the same way that we dealt with σiS 0(Γ), we shall now deal
with the points β £ GQ(N) which lie in a hole of σ(N), but which are
not isolated in σ(T).

Let {βiYi=x (0 < v < oo) denote the countable set σo(N)\σiSO(T) =
^(NoίVisoC^b) in decreasing order of distance to tfaCc(No) Q ̂ e(̂ Vo)
Let bi = mxl{No- βi) for / > 1. Then b\ < nul(Γ 0-^/) by condition
(iii), for / > 1 (it is not hard to see that we may indeed use Γo and
NQ here instead of T and N).

As before, because of the countability of σ"oCNb)\σϊso(̂ b) > w e c a n

choose 0 < βi < ε such that d((σacc(N0))ει) n {βiYi=ι = 0 Having
done so, let {βi}p

i=i denote those elements of {βiYi=χ which do not
lie in (σacc(ΛΓo))ε1 (Again, if v < oo, choose ε\ > 0 small enough
so that p = v.) Then bi < nul(Γ0 - βi), 1 <i<p, implies that To

admits the representation

π =

Ao
βij

βpl'p βpO

Ά j
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where 1\ is the identity operator acting on a space Jίi of dimension
bi, \<i<p. Again, using the fact that To e (yF+3?)(<%o), a simple
matrix computation shows that T\ is essentially normal, while index
considerations and [BDF] imply that Tx e (Jf + 5tr)(J?o). In fact, a
simple computation shows that σ(T\) = σ(Γ 0), σe(T\) = σe(7b), and
nul(Γ! - β) = nul(Γ0 - β) if β e PsF(Tι)\{βi}p

i=ι.
Since No is normal and /?/ G CΓO(NO) for each 1 < / < p , we can

also decompose iV0 as iV0 = (0f= 1 βify®N\ with respect to the same
decomposition ^g — (Θf=i ^/) Φ ̂ b The key reason for doing this
is that βi φ. σ(N\) for 1 < / < p. In particular, if β e σ(N\), then
either dist(β, cJacc(M)) = ^cc(N) < ε or β e σG(Nx) = σQ(N0) and
β is in some hole of σ(N\), but β is not isolated in σ(T\). (This is
the situation illustrated by Example 2.11.)

Step Three: Emptying the "Big Holes" of σ{T\). Since σ(T\) =
σ(Γo), it also looks like σ(N\) with some of the holes filled in. Now
σ{N\) is compact, and as such it can have at most countably many
holes. By {τ;}J=1 (1 < η < oc) we shall denote the holes of σ(N\)
which lie in σ{T\). Again using the compactness of σ(Nχ), the se-
quence {t/}y=1 must be decreasing in the sense that given ε2 > 0,
there exists N = N(ε2) > 0 such that {τ ; }]=Λr+1 c (craCc(^i))£2. Let
us therefore fix 0 < ε2 < ε/2 and find the appropriate N = N(ε2).
The holes {τj}f=ι we shall call "big", while {τj}η

j=N+ι we shall think
of as "small". (As usual, if η < oc, we choose ε2 small enough so
that N = η, i.e., all holes are "big".)

Suppose min. i n d . ^ -a) = Kj for all λ G τ} Πpr

s¥(Tι), 1 < j < N.

Let /c = X ̂ j κ ; , and let 0 < ε3 < ε2/κ.
We can now apply Lemma 2.13 to T\, first setting τ (there) equal

to x\ and ε (there) equal to ε^. We obtain a compact operator Λ^
such that || AΊ || < ε^ and

0 7

with N\(τ\) (resp. T[) playing the role of iV(τ) (resp. Te). The_
point is that the nullity of (T[ - a) is one less than the nullity of
(Γi - α) for all λeτ{Π p&(T{).

If we reiterate this process on T[ (κ\ -1) more times using τ\, and
then (KJ) more times using τ/, 2 < j < N, the result is a compact
operator K2 , with \\K2\\ < (Σ/Li ^y)^ < ε2 , such that
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W "1

r 2 0

where

(i) each iV/(τ7) is a compact perturbation of a normal operator;
(ii) σ(Ni(τj)) = Tj , σe(iVz (τ7)) = 9(τ7)

(iii) σp(Λi (τy )) = σp(JV, (τ;)) )* = τ, \0(τ, ), nulW(τ 7 ) - A) =
nul(iV; (τ7 ) - A)* = 1 for all A e τj\d(τj)

(iv) σe(T2) = σe(Γi), ρsF(T2) = PSF(TΊ)

(v) ind(Γ2 - A) = ind(Γ! - A) = 0 for all A e PSF(Ά);

(vi)

nul(Γ! -λ)-κj iϊλeτj,\<j<N,

nul(Γ!-A) ifA^UyLi^ ;
nul(Γ2 - A) =

(vii)

•{
n u l ( Γ i -λ)*-κj ifλeτj,l<j<N9

nul(Γ2-A)"

Moreover, as T\ G {JV' +3f)(^), using (i) and still another matrix
calculation of the same type as above, we find that each W^, 1 <
i• < k, 0 < j < k, is compact and that Tι is essentially normal. As
always, index considerations show that T2 G (JV +J?)(JO) .

Conditions (iv), (v), (vi) and (vii) together show that cro(Γ2) =

σo(Ά) U (/>s

s

F(Γ0 Π (UjLi τ 7 θ). Moreover,

σ ( Γ 2 ) =

Fowr: Factoring out the singular points of T2. Let us now con-
sider T2. We know σe(Γ2) = σe(Tx) = σe(Γ0) = σe(iV0) = σe(iVi).
Since both T2 and iVi are of the form normal plus compact, it fol-
lows from [BDF] that there exists a compact operator L\ e
and a unitary operator U: JHQ —* Jo such that

Γ2 = i U* + L! = + L) J7*,
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where L = U*L\U e J?(Jίo). Now we adopt an approach similar
to that of Theorem 2.3. Namely, we let {e/}^ be an orthonormal
basis for Λίo with respect to which N\ is diagonal (recall that N\ is
a direct summand of N, which we assumed was a diagonal normal
operator). Let Pm be the orthogonal projection onto span{β/}^j ,
m > 1. Then {i7; = P/LP/}^ is a sequence of finite rank operators
satisfying l i m / ^ \\L - Ft\\ = 0.

Now

Vij

ϊm]

Θdiag{y, }/>„,,

and the upper semicontinuity of the spectrum ensures us that by choos-
ing m large enough, we get

(i) | | ( 7 V 1 + F m ) - ( 7 V 1 + L ) | | < ε
(ii) σ(Nι+Fm)c(σ(Nι+L))e =

Clearly σe(ΛΓi + i7™) = σe(Nx + L).
Now σo(Nι+Fm) C {y/}^! and since cτo(A/Γ

1+/Γ

/w) forms a sequence
with no accumulation points in psψ(N\ + Fm) — psγ(Nχ), we can find

> m such that dist(yz, σe(N\)) < ε for i > m$. Consider

7\

7m

Θdiag{yz}^o

w+1 and M = diag{y/}i>/W(),

so that Nι + Fm = Gm® M. If yt e σ(M), then dist(y,, σG(M) =
σG(N\)) < ε, and so clearly we can choose /(/) > mo so that y\ =
ym e {yj}j>m0 so that y\ = ym e {yj}j>m0 n σe(iVi) satisfies
|7/ - y[\ < ε. Let Mi = diag{y;}l>wlo. Then \\MX - M\\ < ε and
σ(M\) — aQ{M\) — σe(N\). Note, therefore, that if / > mo and
V'i £ UjLi *j > then dist(y;, σa c c(M)) < β2 < β .

As for G m , σ(Gm) c σ(N{ + F w ) c (σ(T2))£, and so for 1 < / <
m 0 , either γt e \jf=ι τj, or dist(y/, σ a c c(^i)) < 2ε. If yz ^ IjJL
for some 1 < i < mo, then choose y\ e σacc(N\) such that |yz -
2ε . Otherwise, let y = yz.

Letting

Gm =

Li τj
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\G'm-Gm\\= max
\<i<m0

2β and

σ(G'm)C

Now | | ( iV 1 + J F w )-(^ΘM 1 ) | | < 2ε. Hence
3ε, and so | |Γ2 - U(G'm θ Mi)l/*|| < 4ε.

Let ^ € ^ ( ^ o ) J AΓ2 = 0 θ UΓ2 with respect to the decomposition
L . Then | |££| | = H^ll < «2 and

β\0

βpO

(Tι-K2)j

βχl[ Ί l cIΛ: Q o

C
p ,

If we now conjugate this by (/φ U) with respect to the decomposi-
tion <%o = ( / 0 ) x θ /o, and then replace U*T2U by G'm®Mx, we see
that

C10ί/

P

Now, since each C^U, I < i < p, and W^U, 1 < / < JO, is com-
pact, we can approximate them individually to within ε/(κ + p) by
finite rank operators C o = (CioU)Pr and J^'o = (WP/oί7)Pr fo r some
r > mo sufficiently large, r independent of / in each case. Let £>r+i =

Consider G'm Θ diag{^}^=m + 1 . Let {ω/}( = 1 denote the

?m Θ diag{y;}^=m + 1 ) which liessubset (including multiplicity) of
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i n ({jf=\τj)> a n d ^ e t {ωiYi=t+ι denote the remaining eigenvalues.
Clearly we can find a new orthonormal basis for G'm Θ diag{y/

i}
r

i=m + 1

such that
c cίt

C\10

^P P -pO
rio

rκ0

c:Pθ

rio

I/"'
Vκ0

ω,

"1+1

ive: Rebuilding TQ from NQ . We are now (finally!) in a
position to show that Γo is close to ( ^ + Jf)(N0).

For 1 < j < N, τ] C ae(iV0. Thus ^ = α (®7= 1 iV'(τ,-)) Θ JV,,
where N'(XJ) is a normal operator whose spectrum is the perfect set

*7
Moreover, since ω, e (σacc(^Vi))e2 for / + 1 < / < r, we can find

{di}rr\ e σaccί^o) satisfying

(i) diφdj, \<iφj<r-t;

(ii) |ί// - ωt+i\ <2ε2<ε, 1 < / <r -t;

(iii) rf, ^ {βjYJ=ι, 1 < / < r- t; and

(iv) 4 £ ( U j L i * ; ) 1 < * < r - ί -

Since dt e aaCc(iVi) c σe(iV,) for 1 < / < r-t, Nι =a d i {
JVi. Thus

JVb=β

Choose i?i € θ ΦJfp) such that

M ^7

This is a simple application of Corollary 2.6, as d i m ^ < oo, 1 <
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Choose R2 e (& + Jt)(J\ Θ θ J^ θ span{^}[.==1) such that

Vκ0 < ε.

This can be done since the second operator in this difference satisfies
the conditions of Theorem 2.3 with respect to the normal operator
Θ/Li N'(τj) Choose i ? 3 e ( ^ + ̂ )(span{^};= ί + 1) such that

ωt+it+j

dt-r]

This is again Corollary 2.6. Then

ωt+l

= max \dj - ωt+A < ε.
Ki<t-r

Now

=u+k

1=1

a n d s i n c e t h e s p e c t r a o f t h e d i a g o n a l e l e m e n t s o f t h e 3 x 3 o p e r a t o r
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matrix are disjoint, we conclude by Corollary 2.6 that

u+k

c\10 c;10

c:
y\o

W"

But finally

= σ(N)\({λi}lιu{βi}
p

ί=ι),

while

Since the Hausdorff distance dfί{σ{N\), σe(Nι)) < ε, it follows from
[Dav 2] that dist(A +i, %{Nλ)) < ε. Choose R4 unitary such that
HA-+! - R4NιR*4\\ < ε. Then

ί = l

. - 1
V-Ί1 *-ΊIK

cpl. cpκ

c10 C10

c: c

R,

MO

F κ 0

and | | 7 o - Λ 5 | | < 7 e .
But as we saw at the end of Step One, this is indeed sufficient tα3

prove our theorem. D

2.15. Let N e 38{&) be normal. Let W{π{N)) be the (neces-
sarily closed) unitary orbit of π(N) in s/(^) (cf. [BDF]). Let
π-ι(&(π(N))) = {T e &(JT): π(T) e %f(π(N))} be the lifting to
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of%f(π(N)). Since Γ e ( ^ + J)(JV) implies T e S*(N) n
, it is natural to ask whether or not {% + 3?){N) =

. The answer is yes.

COROLLARY. Let Ne^{β^) be a normal operator. Then

Proof. Again, (& + Jf)(ΛQ c ^7(iV)nπ-1(^(π(7V))) is easily seen.
As in Theorem 2.9, if T G ̂ (ΛΓ), then T must satisfy condi-

tions (iii), (iv) and (v) of that theorem, and moreover, σ(N) C σ(T).
If Γ e π-H^WJV))), then we also have that σe(T) = σe{N), so
that T satisfies (ii), and from [BDF], we can also deduce that T €

&){&), so that T satisfies (i). Thus T € {% + &)(N), com-
pleting the proof. •

2.16. Question. In general, for A € £%{%?), %S(π(A)) need not be
closed [Day]. Nevertheless, we can define π~ι(%\π(A))) as above. Is
it true in general that

= S?{A) n π

2.17. COROLLARY. Let N e 38{%f) be a normal operator. Then
+ 3?)(N)+3?(jr) = &(N)+3f(Jr). In particular, (%S + Jf)(N)+

is closed.

Proof. Clearly &(N) + &{&) c (^ + X){N) + %{&). But if
T G {& + JΓ)(N), then π{T) G ̂ (π(iV)), and so by [BDF], T =
U*NU+K for some unitary U and some compact operator K. That
is, T G W(N)+3gr(%'). Now %S(N)+3f(jr) = π'ι(^(π(N))), again
by [BDF], and since %{π{N)) is closed, so is π~ι(%'(π{N))), as was
to be shown. D

2.18. COROLLARY, (jr + X){βT) = (% + 5f)(yV(β?)), where
is the set of normal operators on XT, and

N G

Proof. Suppose T = N+K where N G JV{&) and K e 3?(^). As
before, it suffices to consider the case where iV is diagonal with respect
to an orthonormal basis {̂ /}~i for %?. Let Pm be the orthogonal
projection onto span{e/}^j. Let ε > 0.
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Consider

Tn = 1

' a n

0

PnKPn

" 1 2 ••

<*22 ••

0 ••

• Zl
OLnn

• 0

0
0

0
diag{dj}i>n

Choose Mnξ,jy{%f) such that Mn = diag{ί/( («)}^j satisfies
(a) di{ή) = dι, i>n;
(b) \di(ή) - au\ < ε/n and
(c) dj{n) φ dk{n) iΐ i<jφk<n. Then

Mn =

α l n

0

and \\Rn - Tn\\ = maxi</<n

dist(7\ (&

Since T =

0
0

dn(ή) 0
0 ••• 0 diagK} ί > n .

i) — α/j| < ε/n. Thus

<\\T-Tn\\ + \\Tn-Rn\\

<\\T-Tn\\+ε/n.

ΓΛ, letting n tend to oo does the trick. α

3. The compact case. In this section we consider the case of compact
operators. Let (I+&)(&) = {Re ^{β?)\R is invertible and R is of
the form identity plus compact} (note: (I+&){%') c (%+&){%')).
For Γ e J ( / ) let (I + JT)(T) = {R~ιTR\R € (I+ &)(&)}. We
show that for K a compact operator

(and hence (& + 5?){K) = <9>(K)).
After submitting this paper for publication, we learnt that Al-Musal-

lam has independently obtained a characterization of ( + ^){K) in
the case of a compact operator K (cf. [Al-M]). The methods used
and the characterization of ( ^ + 3ί)(K) given there are substantially
different from those below, and are more along the lines of our Theo-
rem 2.14. The development here is indeed much shorter, and actually
identifies (& + JΓ)(K) with both (I + JT)(K) and ~P{K) •
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3.1. LEMMA. Any compact operator K e 3P(%?) is the norm limit
of finite rank operators Fn which are invertible when restricted to the
subspace

Proof. Let F'n be a sequence of finite rank operators converging
in norm to K. For each n one can find a μn, 0 < μn < 2~n, such
that ^+μ«jPSupp(F/)' w here Psupp^') is the orthogonal projection onto

( ^ ) , has the desired property. α

3.2. LEMMA. The action of a similarity induced by 5 Έ ^ ( / ) on a
finite rank operator F of the form of the previous lemma can be induced
by an operator S" e (I+ &)(#') such that \\S'\\ \\S'-{\\ < \\S\\ \\S~ι\\.

Proof Let F' = S~ιFS. We have dimsupp(F) = dimsupp(F')-
Decompose & as J^eJ^1 where %[ = span{supp(^), supp(jF;)}
We can find a unitary U = U\@ld with respect to this decomposition
such that if F" = ( 7 * ^ ^ then supp(F) = supp(F / ;). Let R = 51/.

Now consider the decomposition J ^ = supp(i7)0(supp(i7))-L. With
respect to this decomposition we have

F{\ 01 _ \Fn 0
0 Oj " [ 0 0

As F[\ and F\ \ are invertible when restricted to supp(F) this implies
that Λj2 = i?2i = 0. Thus the operator R' = Rn φ Id implements
the similarity of F and F". Thus we have F' = UR'-χFR'U*. We
also have \\R'U*\\ WUR'^W < \\S\\ \\S~ι\\ and R'U* is of the form the
identity plus a compact. D

3.3. THEOREM. If K e J f ( X ) then the closures of the
orbit of K and the similarity orbit coincide.

Proof. Let Fn be a sequence of finite rank operators of the type
constructed in Lemma 3.1 converging in norm to K. Let T e
and let 5Ί* e £%{%?) be a sequence of invertible operators such that
SiKS'1 -> T. Let Si9n e g&{&) be the invertible operator in
(/ + t%

r)(^) constructed in the previous lemma such that
si,nFnSΓ9

l

n = SiFnSr* and \\SiJ\ \\Srι

n\\ < \\Si\\ \\S~ι\\. We have

<\\Si\\\\Fn-K\\\\S^\
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By passing to a subsequence Fn^ of the Fn we can force this to go

to zero as i goes to infinity. Hence Sι,n(i)Fn(i)Sϊ~l

n(ή converges to T.

The same subsequence gives

<\\SiMi)\\ \\Fn{ι) -K\\ \\S-'n{ι)\\.

As \\SiMη\\ \\S~\{ί)|| < \\Si\\ \\S~ι\\, the right-hand side converges to

zero. Hence Sj^^KS^,^ converges to T, completing the proof. D

3.4. COROLLARY. If K is a compact quasinilpotent then 0 e

Proof. By a result of Rota [Rot], 0 e S^{K). D

3.5. COROLLARY. The closure of the (I + K) orbit of a compact
quasinilpotent which is not nilpotent consists of all compact quasinilpo-
tents.

Proof. Apostol [Apo] has shown that the result holds for the simi-
larity orbit. D

3.6. REMARK. It is worth noting that for K e JΓ(J^), the answer
to Question 2.12 is again positive. In this case,
of course, yielding, i$ί + 3£){K) = S?{K) Π ^{^) =

3.7. The coincidence of ^ ( Γ ) and (^ + t%
r){T) for T e

is, understandably, a very special phenomenon. In fact we have the
following

PROPOSITION. For Te^(JT), S^{T) - (^ + JΓ)(Γ) if and only
if T is of the form scalar plus compact.

Proof. That &(T) = (%S + X){J) when T is a scalar plus compact
follows immediately from Theorem 3.3.

Let T be such that <9>(T) = ψΎ^W) Note that if A e
( ^ + <%r)(T), then ||7r(^4)|| = | |π(Γ)| | the essential norm is preserved.
Consider a decomposition of %? = %[ Θ ̂  into two infinite dimen-
sional subspaces. Let R e ^ ( ^ , <%Ί) be an arbitrary operator from
%2 \o %{. With respect to this decomposition we have the following
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application of a similarity to T.

/ R] \Tn Tl2] \I -R

o / [τ2l τ22\ [o i
Tn+RT2l ~(Tn*

T2\ T22 - T2XR J

In order for this latter operator to have the same essential norm as T
for all such possible R, T2X must be compact (or else we could scale R
as we wished to increase the essential norm of the bottom right-hand
corner). A similar calculation with R in the lower left-hand corner
shows that Tx2 must also be compact. The same argument also forces
RT22- TnR to be compact for all Re&(%2,%[).' Passing to the
Calkin algebra we have

π(R)π(T22) - π(Tn)π(R) = 0 for all R e<^(J%, %[).

Putting R = I we have π(T22) = π(Tu). Thus π(Tn) is in the
commutant of sf(%Ί)9 so that π(Tn) = π(T22) = λπ(I) for some
λeC. Lifting back to 38{%?) we have T is of the form scalar plus
compact. D

4. Further comments. Having described the ^ + 3£ orbit of a
normal operator, one would like to obtain similar results for essentially
normal operators. In this direction we have the following results which
describe the % + Jf orbit of the forward unilateral shift.

4.1. LEMMA. Let S be the forward unilateral shift and let λ be a
complex number such that \λ\ < 1. Then XV © S e (%f + J?)(S),
where V is the identity operator acting on a one-dimensional space.

Proof. As |Λ| < 1, J is an eigenvalue of multiplicity one for S*. Let
Xo be an associated eigenvector. Then S has a matrix representation
of the form

ΓλΓ 0
A S'

By Proposition 2.7, λΓ®S' € (%f +3?)(S). Since the restriction of S
to a cyclic invariant subspace is unitarily equivalent to S ([RR, Thm.
3.33]), it suffices to show that {xo}1- is a cyclic subspace. Direct com-
putation shows that the orthogonal projection of the standard basis
vector eo (with respect to S) onto the subspace {xo}1 is indeed a
cyclic vector. D
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4.2. COROLLARY. Let {λ\, . . . , λn} be complex numbers of modu-
lus less than one. When S is restricted to the invariant subspace formed
by (sρan{ker(£ - λ/J)*}?^)-1-, the resulting operator is unitarily equiv-
alent to S.

Proof. Induction. D

4.3. COROLLARY. Let {λ\, . . . , λn} be distinct complex numbers of
modulus less than one. Then there exists an operator C such that

~Fd 0

c s
where Fd is the n x n diagonal matrix Fd —

Proof. Consider the decomposition

%T = (span{ker(S - A,-/)*}^) Θ (span{ker(S - V Π L i ) 1

to get S = [c° s]> w i t h σ(F0) = {A,}f=1 . By the above Corollary,
SQ = S. Since FQ has no repeated eigenvalues, it is similar to Fd via
a matrix R. Apply the similarity transformation [^ °r] e
to S to obtain

c c \Fd 0

~u+k [ c s
with C = C0R. •

4.4. COROLLARY. If A is a shift of arbitrary multiplicity and F is
an operator on a finite dimensional space whose spectrum lies inside
the unit disk, then F ®Ae {W

Proof. Let ε > 0. We can clearly approximate F by an operator G
such that \\F - G\\ < ε, the eigenvalues of G still lie inside the disk,
and the eigenvalues of G all have multiplicity one. From above, we
know that

o ~ \Gd 0
Λ =u+k r o

L

for some operator C, where Gd is the diagonal matrix with the same
eigenvalues as G. Now Gd is similar to G, say G — R~ιGdR. Thus

R O r 1 \Gd 01 \R 0] _ Γ G 0

0 I\ [C S\[0 I\~[CR S

By Proposition 2.7, [g J ] e(& + &){S). Thus

dist((F θ S), (%f + 3f)(S)) < ε.

Since ε > 0 was arbitrary, F ®S e JW~+WJ{S). π
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4.5. LEMMA. An operator of the form
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c
2l

where Fd is a diagonal matrix is similar to S if and only if the diagonal
entries {λ\, ... , λn} of Fd are distinct and have modulus less than
one, and the /th column of C2\ is not in ran(S - λj), 1 < / <
n. Moreover, the similarity can be implemented by an operator in

Proof, The necessity of the restrictions on the A/ 's is immediate
from spectral considerations. To see the necessity that the zth column
of C21 not be in ran(S - A//), consider adjoints, that is,

C* =
0

21

which is similar to £*. We are now concerned with whether or not
the /th row of C\x is perpendicular to ker(S* - IZ7). Assume / = 1.
Then

ΓO

C
λn — λ\

21

0

Obviously the first basis element is in the kernel. Let υ be a non-zero
vector in the kernel of S* —J\I. Consider the action of C* -J\I on
the vector

" 0
a2

v

The resulting vector is (using ~C[ to denote the /th row of

~C\ V

( λ 2 —~λ\)θL2 + C2'V

( λ n - ϊ \ ) θ L n +Cn-V

0
0
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An appropriate choice of the α, causes the entries below the first
one to be zero. As C* is similar to S*, the kernel of C*—λ\I must be
one dimensional and hence is just the span of the first basis element.
Thus cx-υφQ. Thus, as ran(S -λxl)= ker(S* - 1\I)L , cx is not in
the range of S - λ\I, where C\ is the /th column of C2\.

To demonstrate the sufficiency, first note that given λ\, . . . , λn sat-
isfying the above conditions, Lemma 4.3 says that there is an operator
of the form

Fd 0
B2l S

such that B =u+k S. Next consider the equation

I 0]\Fd 0]\ I 0]_\Fd 0
D l\ [B2l S\ [-D I\ [C2l S

which is equivalent to SD-DFd = B2\ - C2\. The /th column of the
left-hand side is given by (S - A|7, )rf, , where di is the /th column
of D. Thus one can find a D to implement the similarity provided
that the /th column of B2\ - C2\ is in ran(S - A//). Note that as
5 - A// is Fredholm, ran(S - λ,7) is closed. By acting on B with
similarities of the form [^ ^ ] , Rd a diagonal matrix, the columns of
2?2i can be scaled by arbitrary non-zero scalars. Note also that as Fd

is diagonal these similarities do not change Fd. Since both the /th
column of B2Ϊ and the /th column of C2\ are not in ran(S - Λ/7),
which is of codimension one, this suffices to get the /th column of
Bi\-Ci\ into ran(S-/l//). Observe that the similarities used are all
in (&+ &)(#'). D

4.6. COROLLARY. If C is an operator of the form

c \ F d 0
[c2i S

where Fd is a diagonal matrix with distinct diagonal entries of modulus
less than one, then C €(%? + .

Proof. An arbitrarily small perturbation of C will get the /th col-
umn of C2\ out of range(S-Λ;/). Then by the lemma this perturbed
operator is in ( ^ + Jf)(S). Hence C e ( ^ + ̂ ) ( 5 ) . α
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4.7. THEOREM. Let S be the {forward) unilateral shift on a Hilbert
space %*. Then

(i) T is essentially normal,

(ii)

(iii)

(iv) ind(Γ - λ) = -1 for all λ e {z e C : \z\ < 1}}.

Alternatively, {$£ + <%r){S) consists of all essentially normal operators
T having the same spectrum and essential spectrum as S, and satisfy-
ing ind(Γ - λ) = ind(S - λ) for all λ not in the essential spectrum.

Proof. That these conditions are necessary is easily verified. We
now consider their sufficiency.

By [BDF], if T satisfies the above conditions, then T = U*SU +
L = U*(S+ULU*)U, where U is unitary and K=ULU* is com-

pact. Thus it suffices to show that S + K e (%S + ̂ ){S). Let {en}™=ι
be the standard orthonormal basis for %? with respect to which S is a
shift, and let Pn be the orthogonal projection onto span{^/}^=1. The
sequence {S + PnKPn}™=ι of operators converges to S + K. These
operators are of the form

By passing to a subsequence (if necessary) and by using the upper
semicontinuity of the spectrum, we may perturb Fn to get a new
operator Gn such that

(i) HC-/^ll < I;
(ii) σ(Gn)c{zeC: \z\ < l};and

(iii) Gn has no multiple eigenvalues.

Clearly the sequence Tn = [c

n

 s] still converges to S + K. Now
n

if Gd(n) is the diagonal matrix whose eigenvalues are exactly those
of Gn, then by Corollary 4.3 there exists an operator Bn such that
S ^u+k [G£n)s]. Moreover, Gn = R-χGd{n)Rn for some similar-

n

ity Rn since all eigenvalues here are of multiplicity one. Thus, by
Corollary 4.6,

\Gd(n) 0'
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implying that
G" °
Cn S

Since Tn e {W + X){S) for all n > 1, T = S + K = lim^oo Tn e
(%f + Jf)(S), completing the proof. α

4.8. It is also reasonable to ask about the strong and weak operator
closures of the (^+^)-orbitsof bounded linear operators i o n J .
In this context Hadwin, Nordgren, Radjavi and Rosenthal [HNRR]
have shown that

(1) If Γ G i%{&) and T is not the sum of a scalar and a finite
rank operator, then S(T) is strongly (thus weakly) dense in &§{%?)
and

(2) If T e 3§{%f) and rank (T-λI) = m<oo for some scalar λ,
then the strong (weak) closure of S(T) is {λl + F: rank/7 < m}.
As might be expected, the same results hold true if S(T) is replaced
by (2f + <%r)(T). The proofs are identical to theirs, noting only that
the invertible operator A which appears in their proofs of Theorem
1 and Theorem 2 ([HNRR]) can be taken to be of the form unitary
plus compact.
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