ADJOINT LINEAR SYSTEMS ON A SURFACE OF GENERAL TYPE IN POSITIVE CHARACTERISTIC

TOHRU NAKASHIMA

Let X be a minimal surface of general type defined over an algebraically closed field of positive characteristic p. For a given divisor D, we consider the spannedness properties of adjoint linear systems |K+D| on X. Under some numerical conditions on p and D, the failure of spannedness of |K+D| implies the existence of divisors with special properties. This leads to the following result: Let L be an ample line bundle and assume $p \geq 5$. Then |m(K+L)| is base point free for $m \geq 2$ and very ample for $m \geq 3$. Our proof is based on a technique of Shepherd-Barron using unstable vector bundles.

1. Introduction. After Reider introduced a new method ([R]), many results have been obtained concerning adjoint linear systems on algebraic surfaces defined over an algebraically closed field of characteristic 0. Recently, Shepherd-Barron ([SB]) treated the positive characteristic case and obtained results on pluricanonical systems, improving the work of Ekedahl ([E]). He also showed Reider's analysis holds for surfaces of special type except the quasi-elliptic ones. His method is, as in [R], based on the theory of unstable vector bundles in the sense of Bogomolov.

In the present note we shall consider adjoint linear systems on a minimal surface of general type in characteristic p and prove some results of Reider's type.

Let X be a minimal surface of general type defined over an algebraically closed field k of char k=p>0 and let D be a nef divisor such that D-K is nef and big. We shall prove the following

THEOREM 1. Let X and D be as above and let $d := D^2$.

- (i) Suppose that one of the following conditions holds:
- (1) $p \ge 2$, $d \ge 5$ and X is not uniruled,
- (2) p = 3 and $d \ge 12$,
- (3) p = 5 and $d \ge 6$,
- (4) $p \ge 7$ and $d \ge 5$.

If |K+D| has a base point, then there exists an effective divisor Δ such

that

either
$$D \cdot \Delta = 1$$
, $\Delta^2 = 0$,
or $D \cdot \Delta = 0$. $\Delta^2 = -1$.

- (ii) Suppose that one of the following conditions holds:
- (1') $p \ge 2$, $d \ge 10$ and X is not uniruled,
- (2') p = 3 and $d \ge 30$,
- (3') p = 5 and $d \ge 13$,
- (4') p = 7 and $d \ge 11$,
- (5') $p \ge 11$ and $d \ge 10$.

If |K + D| is not very ample, then there exists an effective divisor Δ such that

either
$$D \cdot \Delta = 0$$
, $\Delta^2 = -1$, -2 ,
or $D \cdot \Delta = 1$, $\Delta^2 = -1$, 0 ,
or $D \cdot \Delta = 2$, $\Delta^2 = 0$.

As a corollary of the above theorem, we obtain the following result on pluri-adjoint systems:

COROLLARY 2. Let L be an ample divisor on X.

- (i) Suppose that one of the following conditions holds:
- (1) $p \ge 2$, $m \ge 2$ and X is not uniruled,
- (2) p = 3 and $m \ge 3$,
- (3) $p \ge 5$ and $m \ge 2$.

Then |m(K+L)| is base point free.

- (ii) Suppose that one of the following conditions holds:
- (1') $p \ge 2$, $m \ge 3$ and X is not uniruled,
- (2') $p = 3 \text{ and } m \ge 4$,
- (3') $p \ge 5$ and $m \ge 3$.

Then |m(K+L)| is very ample.

Proof. Apply the theorem to
$$D = (m-1)K + mL$$
.

2. Proof of the theorem. Let p be a base point of |K+D| in (i) (resp. p, q be the points not separated by |K+D| in (ii)) and let $\pi: \widetilde{X} \to X$ be the blowing up at p in (i) (resp. at p and q in (ii)). Put $l := \pi^{-1}(p)$, $m := \pi^{-1}(q)$, and $\widetilde{D} := \pi^*D - 2l$ in (i) (resp. $\widetilde{D} := \pi^*D - 2(l+m)$ in (ii)).

Since we have $H^1(\widetilde{X}, \mathscr{O}_{\widetilde{X}}(-\widetilde{D})) \neq 0$, we have a nonsplit sequence on \widetilde{X} :

$$0 \to \mathscr{O}_{\widetilde{Y}} \to E \to \mathscr{O}_{\widetilde{Y}}(\widetilde{D}) \to 0.$$

Since E satisfies the inequality $c_1(E)^2 > 4c_2(E)$, by Theorem 1 in [SB], there exists a Frobenius map $F^e: \widetilde{X} \to \widetilde{X}$ and an exact sequence

$$0 \to \mathscr{O}_{\widetilde{X}}(p^e\widetilde{D} - \Delta_1) \to \widetilde{E} \to \mathscr{I}_Z \otimes \mathscr{O}_{\widetilde{X}}(\Delta_1) \to 0.$$

Here $\widetilde{E}:=(F^e)^*E$, Z is a 0 cycle and Δ_1 is some effective divisor such that $p^e\widetilde{D}-2\Delta_1$ is contained in the positive cone of \widetilde{X} . We write $\Delta_1=\pi^*\Delta+rl$ in (i) (resp: $\Delta_1=\pi^*\Delta+rl+sm$ in (ii)) where r, s are some integers and Δ is an effective divisor on X.

If $p^e = 1$, Reider's argument shows Δ satisfies the properties stated in the theorem (cf. [R]). We shall show that the case $p^e \geq p$ never occurs under our assumption.

Suppose $p^e \ge p$. Then there is a purely inseparable covering $\rho: Y \to \widetilde{X}$ of $\deg \rho = p^e$ and we have the following estimates (cf. [SB]).

LEMMA 3. Assume $d := D^2 \ge 5$ in (i) (resp. $d \ge 10$ in (ii)). Then

$$D \cdot \Delta \le \left(\frac{d}{2} - \sqrt{\frac{d^2}{4} - d}\right) p^e$$

and

$$\chi(\mathcal{O}_Y) \geq \left(\chi(\mathcal{O}_X) + \frac{p^e - 1}{12}[(2p^e - 1)\widetilde{D}^2 - 3\widetilde{D} \cdot K_{\widetilde{X}}]\right)p^e.$$

Since both D and D-K are nef and big, the Hodge index theorem yields $K \cdot D \le d-3$ and $K^2 \le d-5$ in (i) (resp. $K^2 \le d-6$ in (ii)). By these estimates, we have

$$\begin{split} \omega_Y \cdot \rho^* \pi^* D &= 2(p^e - 1)D \cdot \Delta + p^e (K \cdot D - (p^e - 1)D^2) \\ &\leq 2(p^e - 1) \left(\frac{d}{2} - \sqrt{\frac{d^2}{4} - d} \right) + p^e (d - 3 - (p^e - 1)d) \\ &= (d - 3 - (p^e - 1)\sqrt{d^2 - 4d})p^e. \end{split}$$

Thus we obtain $\omega \cdot \rho^* \pi^* D < 0$. Therefore Y is ruled and hence X is uniruled. Let q(X) be the irregularity of X. Then by Lemma 34 in [SB], we have $\chi(\mathscr{O}_Y) \leq 1 - q(X) \leq 1$. Assume we are in the case

(i). Then Corollary 30 and Proposition 35 in the same paper yield

$$\begin{split} \chi(\mathscr{O}_{Y}) & \geq \left(\chi(\mathscr{O}_{X}) + \frac{p^{e} - 1}{12}[(2p^{e} - 1)\widetilde{D}^{2} - 3\widetilde{D} \cdot K_{\widetilde{X}}]\right)p^{e} \\ & \geq \left(-\frac{K^{2}}{10} + \frac{p^{e} - 1}{12}[(2p^{e} - 1)(D^{2} - 4) - 3(D \cdot K + 2)]\right)p^{e} \\ & \geq \left(-\frac{d - 5}{10} + \frac{p^{e} - 1}{12}[(2p^{e} - 1)(d - 4) - 3(d - 3) - 6]\right)p^{e}. \end{split}$$

Similarly in the case (ii) we obtain

$$\chi(\mathscr{O}_Y) \ge \left(-\frac{d-6}{10} + \frac{p^e-1}{12}[(2p^e-1)(d-8) - 3(d-3) - 12]\right)p^e.$$

However, under the assumption that one of (1) to (4) (resp. (1') to (5')) holds, we have $\chi(\mathscr{O}_Y) > 1$. This is a contradiction and hence the theorem is proved.

REFERENCES

- [E] T. Ekedahl, Canonical models of surfaces of general type in positive characteristic, Publ. Math. I.H.E.S., 67 (1988), 97-144.
- [R] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math., 127 (1988), 309-316.
- [SB] N. I. Shepherd-Barron, Unstable vector bundles and linear systems on surfaces in characteristic p, preprint.

Received March 18, 1991.

TOKYO METROPOLITAN UNIVERSITY TOKYO 192-03, JAPAN