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THE SOFT TORUS AND APPLICATIONS
TO ALMOST COMMUTING MATRICES

RUY EXEL

The "Soft Torus" Ae is defined to be the universal C* -algebra
generated by a pair of unitaries for which the commutator has norm
less than or equal to ε . We show that the AΓ-theory of Aε is naturally
isomorphic to the A -theory of the algebra of continuous functions on
the two-torus although these algebras are not homotopically equiv-
alent. This result is applied to give a new proof of the equality of
certain invariants associated to almost commuting unitary matrices.

1. Introduction. The C*-algebra C(T2) of all continuous complex
valued functions on the two-torus is well known to be the universal
C*-algebra generated by two commuting unitary elements.

Softening the commuting condition we define for all ε in the real
interval [0, 2] the "Soft Torus" Aε to be the universal C*-algebra
generated by a pair of elements uε and υε, subject to the relations
u\uε = uεu\ = 1 = v*υe = vεv* and \\uευε - vεuε\\ < ε.

Clearly if ε is taken to be zero then Aε is nothing but an isomorphic
model of the "hard torus" C(T 2 ). On the opposite extreme if ε = 2
then Aε is the full C*-algebra of the free group on two generators.
The reader is referred to [1] for more information on the theory of
C*-algebras defined by generators and relations.

One of the main goals of this work is the computation of the K-
theory groups of Aε. It turns out that Aε has the same K-groups as
C(T2) when ε < 2 (if ε = 2 it is well known that K0(Aε) = Z and
K\(Aε) = Z Θ Z [4]). However we shall show that Aε is not in the
homotopy class of C(T 2 ) .

We say that two elements u and v in a C*-algebra are ^-almost
commuting if the commutation error \\uv - vu\\ is less than or equal
to ε.

Several authors [3], [5], [8], [9], [10], [13], [17], [18] have investi-
gated the properties of almost commuting complex matrices in what
has been called, after Brown, Douglas and Fillmore's work on essen-
tially normal operators [2], "quantitative BDF theory".

Recent works by Loring, Choi and myself [13], [3], [8] have in-
troduced invariants which can detect obstructions to the existence of
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commuting approximations to given almost commuting pairs of uni-
tary matrices.

Among these are the "winding invariant" and the "K-theovy in-
variant" (defined below), denoted ω(u, v) and φ , v) respectively,
which are integers associated to pairs of unitary matrices u and v
such that the commutation error is less than some constant c.

By its very definition Aε is the universal algebra for the almost
commuting phenomenon as far as unitaries are concerned. That is, to
every pair of ε-almost commuting unitaries in a C*-algebra A there is
a unique homomorphism (always assumed to preserve the star opera-
tion) from A£ to A such that the given unitaries are the images of uε

and vε. Therefore, in a sense, studying Aε one studies simultaneously
all almost commuting pairs of unitaries.

As we shall see the introduction of Aε provides a clearer under-
standing of the nature of the invariants κ(u9v) and ω(w, v) men-
tioned above. The latter is related to the rotation number [6], [14] of
a certain automorphism while κ{u,v) is related to the trace on the
ΛVgroup of the corresponding crossed product (as already indicated
by Loring [13]).

Once we see things from this perspective we are able to give a new
proof of the main result of [9] which states that κ(u, v) — ω(u, v).
Our proof, unlike that of [9], falls entirely within the scope of K-
theory and has the advantage of allowing the largest possible constant
c that is 2 (in the original definition of κ(u,υ) the constant is not
explicit).

2. The soft torus. Let z and w denote the coordinate functions
on the two-torus so that z and w represent two unitary elements in
C(T 2 ) . Since z and w commute, there is for every ε in [0, 2] a
unique homomorphism φε: Aε —• C(T2) such that φε{uε) = z and
φε{vε) = w .

Our goal in this section is to prove that φε induces isomorphisms
at the level of ΛT-groups as long as e < 2.

2.1. LEMMA. Let u and v be unitary elements in a C*-algebra
A with \\u - v\ = ε for some ε < 2. Then there exists a continuous
path {by a path we shall always mean a continuous function on the unit
interval) u(t) of unitaries in A such that u(0) = u, u{\) — v and
\\u(t) - u(s)\\ <ε for all t and s in [0,1] .

Proof. Note that || 1 - u~ιv\\ — ε < 2 so that - 1 is not in the spec-
trum of u~ιv . Let log denote the principal branch of the logarithm
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and put h = \\og(u~ιv). One has \\h\\ = 2arcsin(|).
Let u{t) = ueith so that

\\u(t) - u(s)\\ = ||1 - eW\\ = 2sin ^ 2»'"»j < 2sin \^ψJ = β

so that u(t) is the desired path. D

In order to compute the A^-theory of φε we shall first show that Aε

is isomorphic to a crossed product Bε xa Z. Here Bε is defined to
be the universal C*-algebra generated by a countable set {un: n e Z}
subject to the conditions that each un is unitary and that ||wΛ+i -
un\\ <ε for all n.

If z denotes the canonical generator of the algebra C(Sι) of con-
tinuous functions on the unit circle, we let ψε: Bε -* C(S1) be the
unique homomorphism such that ψε(un) = z for all n .

2.2. THEOREM. Ifε < 2 then ψε is a homotopy equivalence between
B£ and C(Sι).

Proof. Let σ: C(Sι) —> Bε be given by σ(z) = UQ . Clearly ψεσ is
the identity map of C ( S ! ) . We now prove that σψε is homotopic to
the identity of Bε.

For any integer p > 0 let u£(t) and u~(t) be continuous paths of
unitaries in Bε such that

satisfying the conditions of Lemma (2.1). In particular we have
\\uf(t)-u±p\\<ε for all t.

Concatenating these paths and performing a reparametrization we
obtain paths y+{t) and γ~(t), defined for 0 < t < 1, such that for
all p > 0 one has y ± ( ^ γ ) = u±p . Moreover we may require that

p + l ~ - p + 2 ]]/ κ J

For each integer n define a path vn in 5 ε by

i fθ<ί< l ϊ ig τ

Here sgn(w) should be taken to be " + " or " - " according to the
sign of n. Note that regardless of the choice made for sgn(0) one
has that Vo(t) is constantly equal to UQ .
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Observe that for all t and n one has that

\\vn+x{t)-vn{t)\\<ε.

Therefore for all t in [0, 1] we let Ht be the unique endomorphism
of Bε such that Ht(un) = vn(t). Clearly this yields a homotopy from
σ ψε to the identity map of Bε.

A pictorical description of our argument is this: think of a long road,
in the middle of which there is a post-office. Two postmen leave the
post-office in opposite directions and when the clock shows -^ each
postman delivers the nth letter to the nth house (the Oth letter was
delivered to the post-office itself). Although the postmen will have to
reach an infinite speed to achieve such a difficult task, each individual
letter will have been safely delivered by then. No letter will ever lose
sight of the next because either they are both in the post-bag or one
has been delivered while the postman travels a short distance to the
next house or they both finally lie in neighbouring post-boxes. This
concludes the proof. D

Let aε be the automorphism of Bε specified by aε(un) = un+\ .

2.3. PROPOSITION. For all ε e [0, 2] one has that A£ is isomorphic
to the crossed product Bεxa^ϊ.

Proof. Let y be the canonical implementing unitary of Bε xa Z so
that yuny~ι = un+\. Then \\u^y -yu$\\ = ε. Therefore there exists a
unique homomorphism φ: Aε —> Bε xa Z such that φ(uε) — UQ and
φ{υε) =y.

On the other hand note that \\v^xuεvε

{n+x) - v%uev~n\\ < ε. So
there is a homomorphism ψ: Bε —> Aε with ψ(un) = v"uev~n . Since
vεψ(un)v~x = ψ(un+\) one can extend ψ to Bε xa^ Z such that
ψ{y) — vε - Clearly φ and ψ are each others inverse. D

Recall that φε\ Aε —• C(T2) is defined by ψε{uε) = z and φε(vε) —
w .

2.4. THEOREM. If ε < 2 then

is an isomorphism for i = 1, 2.

Proof. Regard C(T2) as C{Sι) x l d Z where the copy of C{Sι) is
generated by z, the generator of Z is identified with ?/; and the action
considered is the trivial action.
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Note that ψε is a covariant map which therefore extends to a
homomorphism between the corresponding crossed product algebras
Bε XaεZ and C(Sι) x i d Z .

Identifying Aε with Bε xa Z according to Proposition (2.3) this
extended map is clearly the same as φ£.

Note that in the Pimsner-Voiculescu exact sequence [15] for these
crossed products the maps usually denoted " 1 —a~ι " both vanish. The
naturality of the Pimsner-Voiculescu maps thus provides the following
commutative diagram with exact rows.

0 -> Ki(Be) - Ki(Ae) - K^iiBe) - 0

0 -> 2 Λ
An application of the five lemma thus completes the proof. D

2.5. COROLLARY. If ε < 2 then K0(Aε) = Z φ Z and Kx(Aε) =
Z θ Z .

The Bott element, as it is sometimes called, is the element b G
KQ(C(Ύ2)) characterized (up to a sign convention) by the fact that
b generates the kernel of τ*: KQ(C(Ύ2)) —• Z where τ* is the map
induced by any unital trace τ on C(T 2).

Another characterization of b (up to the same sign convention)
is that it generates the second spherical homology group H2(C(Ύ2))
(see [7]). The image of b under the connecting map d: A^0(C(T2)) —•
K\(C(S1)) is a generator of the latter group. We choose our sign
convention so that d(b) equals the Kλ-class of z~ι .

Denote by bε the element in K0(Aε) defined by bε = φ~ι(b).
The reader should however be warned that be doesn't share the same
properties of b. In fact we have the following

2.6. THEOREM. If ε < 2 then the unital traces of Aε, once dropped
to KQ, form a separating family of maps.

We shall pospone the proof of this result to the next section. Nev-
ertheless the following consequences should be noted.

2.7. COROLLARY. If ε < 2 then the second spherical homology
group H2(Aε) is zero. Therefore Aε is not homotopically equivalent to
C(T 2).
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Proof. Traces vanish on elements of the second spherical filtration
subgroup F2KQ(A£) [7] which are representatives of elements in H2 .
Therefore the conclusion follows from Theorem (2.6). D

A last important remark should perhaps be made before concluding
this section. That is, elements in KK(A, B), where A and B are
C*-algebras, are known to induce homomorphisms at the level of K~
groups [12]. Nevertheless these maps are not required to preserve
the corresponding spherical filtrations. In other words the argument
above does not rule out the existence of a /^-equivalence between
the "soft" and the "hard" tori.

3. Invariants for almost commuting unitaries. Let A be a C*-algebra
and (u, v) be a pair of unitaries in A such that \\uv - vu\\ < ε for
some ε < 2. As mentioned in the introduction there is a unique
homomorphism p: Aε —• A such that p{uε) — u and p{vε) = v .

The "^-theory invariant" of the pair (u9 v) is the element of K0(A)
defined by

κ{u9 v) = p*(bε).

This invariant was introduced by Loring [13] for small values of ε in
order to give a AΓ-theoretical proof of a former result of Voiculescu
[17] asserting that some pairs of almost commuting unitaries cannot be
approximated by commuting pairs (see also [3]). Observe that κ(u, υ)
does not depend on ε as long as ε > \\uv - υu\\.

In the case where A is the algebra of complex nxn matrices then
KQ(A) = Z so we may think of κ(u, v) as an integer identifying it
with its image under Tr* (here as in the sequel Tr denotes the standard
trace on the algebra of complex matrices).

Still assuming that A = Mn(C) we define the "winding invariant"
of the pair (u,υ), denoted ω(u, υ), to be the winding number of
the closed complex path

γ(t) = det(tυu + (1 - t)uυ)

around zero. That γ is never zero follows from \\uv — υu\\ < 2.
The main theorem of [9] asserts that κ(u, v) = ω{u, v) as long as

\\uv-vu\\ < c for some small constant c (which according to the mam
rule of this game is independent of ή). The purpose of the present
section is to give a new proof of this fact which has two advantages.
First it is a purely ^-theoretical proof. Second it works for the largest
possible value of c that is 2.
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3.1. LEMMA. Let u and v be unitary nxn complex matrices with
\\uv — vu\\ = ε for some e < 2. Then

ω(u, v) = τr-.Tr(\og(vuυ~ιu~1)),
ini

where log denotes the principal branch of the logarithm.

Proof. First note that the right-hand side is well defined since || 1 -
vuv~ιu~ι\\ < 2 implies that - 1 is not in the spectrum of vuv~ιu~ι.
Therefore let h = \\og(vuv~xu~x) and note that \\h\\ = 2arcsin(|).

We claim that the paths

t\-^eιthuυ and t *-+ tvu + (1 - t)uυ

are homotopic (end points fixed) in GLΠ(C). In fact the linear path
(in the space of curves in GLΛ(C)) provides such a homotopy. To see
this it is enough to check that

\\tvu + (1 - ήuv - eithuv\\ < 1

for all t since eιthuv is unitary. But

\\tvu + (\-t)uv-eithuv\\ = \\teih + {\ -t)-eith\\

which can be proven by the spectral theorem and elementary trigonom-

etry to be less than or equal to 1 - J\ - (§)2 .

Thus ω(«, v) equals the winding number of

t »-• det(eithuv)

which can be easily computed and equals ^ Tr(Λ). D

The major tool we shall need in the following is a theorem on ro-
tation numbers for automorphisms of C*-algebras [6], [14]. A brief
description of this result is in order.

Let a be an automorphism of a unital C*-algebra A and let τ be
an α-invariant trace on A such that the pair (A, τ) is an integral
algebra (in the sense that the range of τ* on K0(A) is contained in
Z) .

Denote by d: KQ(A xa Z) —> K\(A) the connecting map of the
Pimsner-Voiculescu sequence [15].

Theorem (V.I2) of [6] asserts that for every x in K0(A xa Z) one
has

exp(2π/τ*(x)) = detτ(a(u~ι)u)

where u is any unitary matrix over A whose K\-class is d(x).
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Here the occurrence of τ in the left-hand side refers to the canonical
extension of τ to A xa Z, while detτ is a determinant associated to
τ [6], [11].

With this at hand we may now prove the main theorem of this
section.

3.2. THEOREM. Let u and υ be unitary n x n complex matrices
with \\uv — vu\\ — ε for some ε < 2. Then κ(u, v) = ω(u, υ).

Proof. Denote by p: Aε —> Mn (C) the unique homomorphism such
that ρ(uε) = u and p(υε) = υ . Define a unital trace on Aε by

Identify Bε as a subalgebra of Aε under the isomorphism of Propo-
sition (2.3). So τ gives by restriction an αε-invariant trace on Bε.

Note that τ is an integral trace on Bε although ^Tr is not an
integral trace on Mn(C), the reason being that on the homotopy class
of C(S1) any unital trace is integral!

Whenever a trace on a C*-algebra is invariant under a given auto-
morphism it is possible to extend it in a canonical way to the crossed
product of the algebra by Z. According to this let τ be the canonical
extension of τ|# to Aε but beware that τ is often different from τ
on Aε. Nevertheless τ* = τ* on KQ(A£) as shown below.

3.3. LEMMA. Let a be an automorphism of a C*-algebra A and
let τ\ and %2 be traces on A xa Z such that τ\ — τ-χ on A. Then
τi^ = τ2 φ on K0(A x α Z ) .

Proof. Without loss of generality we may assume A unital. Let p
be a projection (selfadjoint idempotent) in Mk(A xa Z) for some k .
It suffices to prove that τ\(p) = τi{p).

Again without loss of generality we assume that k = 1. Let a be the
dual action of S1 on A xQZ. For / = 1,2 observe that τ/(άz(/?))
does not depend on z £ S1 since close projections are equivalent.
Thus

/ τi(άz(p))dz =

where E is the canonical conditional expectation [16] from A xa Z.
to A. Hence τ\{p) = τiip). •

Returning to the proof of Theorem (3.2) we have

τ*(δε) = τ*(6ε) = -Tr*/?*(£ε) = -κ(u, υ).
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Next observe that the class of u^1 in K\{Bε) is d(be), a fact which
follows from the sign convention we made when introducing the Bott
element and the naturality of the Pimsner-Voiculescu connecting
maps. So if we apply Theorem (V.I2) of [6] we obtain

exp

On the other hand we have

so

ε (w o )W X) =o ) =

But

T ( ( l ( 1)))

Therefore

( / ( g ( i o ) ) )

= —Ύτ(\og(vuv~ιu~1)) = ω(u, v).
n n

(2πi , Λ (2πi . Λ
exp I κ(u, v) I = exp I a)(u, v) I

s o t h a t * ( " > * ) - * > { * > v ) e Z .

To conclude the proof observe that upon replacing u by u@Im and
υ by v@Im where Im is the mxm identity matrix, neither κ(u, υ)
nor ω{u9 v) will change. Thus we conclude that κ{u'v)

n^
{u'v) e Z

for all m. That is κ(u, v) = ω(u, v). D

The success in exploiting the K-theory of the soft torus may lead
one to believe that something along these lines could be tried for the
"soft" algebra related to almost commuting selfadjoint matrices, the
first and perhaps the least understood of all "almost commuting prob-
lems".

We mean of course the universal C*-algebra Cε generated by a pair
of selfadjoint elements hε and kε subject to the conditions ||Λe|| < 1,
||fcβ||< 1 and \\hεkε - kεhε\\ < ε.

However Cε is a contractible C*-algebra as it is easily seen by
considering the path ft of endomorphisms of Cε given by ft(hε) = thε

and ft(kε) = tkε.
To conclude let us give a proof of Theorem (2.6).
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Proof of Theorem 2.6. Recall that Voiculescu's unitaries [17] (see
also [8]) Sn and Ω^ are defined for all n > 2 by

/0 1\ fωn \

1 0
1 0

1 0/

and
cot

K)
where ωn = elπιln . It can be easily shown that H S^Ω^ —QnSn\\ tends
to zero as n tends to infinity.

Given ε let ΠQ be such that | |5 r tΩn — Ω,nSn\\ < ε whenever n > ΠQ .
For each n > ΠQ let pn: Aε -+ Mn(C) be defined by pn(uε) = Sn

and pn{ve) = Ωn. Let τn be the unital trace on Aε given by τn =
^ Tr o/^ . We claim that the set

{τn/. n > n0}

is a separating family.
In fact denote by [1]Q the AΓo-class of the unit and note that K0(Aε)

is then generated by [l]o and bε. We have that τ^([l] 0 ) = 1 while

*n(be) = ^κ(Sn, Ωn) = i ω ( 5 π , Ωn) = X-

where the last step follows by direct computation.
So for r , 5 G Z we have

Dfrom which the conclusion follows.
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