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COMMUTANTS OF TOEPLITZ OPERATORS
ON THE BERGMAN SPACE

ZELIKO CUCKOVIC

This paper describes the commutants of certain analytic Toeplitz
operators. To underline the difference between the Bergman and
Hardy spaces, we first prove that on the Bergman space L2 the only
isometric Toeplitz operators with harmonic symbols are scalar mul-
tiples of the identity. If T denotes the norm closed subalgebra of
L(L;‘;) generated by Toeplitz operators, we show that for each posi-
tive integer n, {7,-}' NT is the set of all analytic Toeplitz operators.
This result is also valid for the Hardy space. Here {7,.}' denotes
the commutant of T~ . Finally we prove the analogous result for 7 » ,
where u is an analytic, one-to-one map of the unit disk onto itself.

Introduction. Let D denote the open unit disk in the complex plane
and let dA4 denote the usual Lebesgue area measure on D. The com-
plex space L?(D, dA) is a Hilbert space with the inner product

f, g) = /D fgdA.

The Bergman space L2 is the set of those functions in L?(D, dA)
that are analytic on D. The Bergman space is a closed subspace
of L?(D,dA), and so there is an orthogonal projection P from
L*(D, dA) onto L2. For ¢ € L*(D, dA), the Toeplitz operator
with symbol ¢, denoted T, , is the operator from L?, to L?, defined
by T,f = P(pf). For more information about the Bergman space
and its operators see [4].

The algebra of bounded analytic functions on D will be denoted
by H*. If ¢ € H®, then T, is called an analytic Toeplitz operator.

For a Hilbert space H, L(H) denotes the algebra of all bounded
linear operators on H. If S ¢ L(H), then S’ = {B € L(H): AB =
BA for all A € S} is the commutant of S. In this paper we are
interested in finding commutants of certain analytic Toeplitz operators
acting on the Bergman space.

Much work has been done in studying commutants of analytic
Toeplitz operators on the Hardy space. Some of those results can
be extended to the Bergman space case. The complex space L%(9D)
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is a Hilbert space with the inner product
_dt
(fa g>—Lng2n‘

For each integer n, let e, denote the function e,(z) = z" for |z| =
1. Then {e,} is an orthonormal basis for L?>(D) and the Hardy
space H2(dD) is, by definition, the subspace span{e,: n > 0}~ . For
@ € L*(dD), the Toeplitz operator with symbol ¢, denoted again by
T,,on H?(AD) is defined in the analogous way. For the basic prop-
erties of the Hardy space Toeplitz operators see Douglas [9]. Shields
and Wallen [15] studied commutants of certain multiplication opera-
tors in a Hilbert space of analytic functions and introduced interesting
function theoretic methods. Deddens and Wong [8] studied the prob-
lem using operator theory and raised six questions. Abrahamse [1]
answered some of Deddens-Wong questions negatively. Baker, Ded-
dens and Ullman [6] found {7}’ if f is an entire function. In a
series of papers [16]-[19], Thomson used function theoretic methods
to find commutants or intersection of commutants of certain analytic
Toeplitz operators. Finally, C. Cowen continued their work in [7] and
found the commutant of Toeplitz operators whose symbol is a finite
Blaschke product or a covering map.

It is well known that the Hardy space Toeplitz operator T, is an
isometry if and only if ¢ is inner. If ¢ is a nonconstant inner func-
tion, then T, is a pure isometry and is unitarily equivalent to a unilat-
eral shift, whose commutant can be characterized matricially. On the
Bergman space, a Toeplitz operator whose symbol is a nonconstant
inner function is not an isometry. We will prove even more (Theo-
rem 1.1): The only Toeplitz operator with harmonic symbol that is an
isometry is a scalar multiple of the identity.

Our first result about commutants concerns Toeplitz operator with
symbol z". Let T be the norm closed subalgebra of L(L2) gener-
ated by all Toeplitz operators. We show (Theorem 1.4) that for each
positive integer n, {T,-} NT is the set of all analytic Toeplitz oper-
ators. This result is also valid for the Hardy space. Then, we prove
the analogous result for 7., where u is an analytic, one-to-one map
of D onto itself.
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1. Commutants. At first we will underline the difference between the
Bergman and Hardy space Toeplitz operators. We will prove that on
the Bergman space there are no nontrivial isometries with harmonic
symbols. We need some facts about the maximal ideal space of H .
Good references are Hoffman [12] and Garnett [10].

The set of all multiplicative linear functionals on H® is called the
maximal ideal space of H> and we denote it by M. The Gelfand
transform ~: H® — C(M) is defined by f(¢) = ¢(f), for p € M.
The Gelfand transform is an isometry from H* — C(M), so that
we can identify H> with the uniformly closed subalgebra of C(A).
Hoffman ([13, Lemma 4.4]) has proved that C(M) is identical to the
sup norm closure of the algebra generated by the bounded harmonic
functions. If m; and m, are in M, the pseudohyperbolic distance
between m; and m, is defined as

p(my, my) = sup{|f(my)|: fe H®, |fI <1, f(m)=0}

The relation m; ~ m, if and only if p(m;, m;) < 1 is an equivalence
relation on M . The corresponding equivalence classes are called the
Gleason parts of M . The set of one-point parts in M will be denoted
by M;. Let

J={peC(M):9=0o0n M}

Let T(C(M)) be the closed subalgebra of L(L2) generated by {7, :
¢ € C(M)} and let C be the commutator ideal of T(C(M)). Mc-
Donald and Sundberg [14] proved that the sequence

0— J — C(M) — T(C(M))/C — 0

is exact. This implies that C(M)/J is isomorphic to T(C(M))/C
with isomorphism
Yp+J)=Ty+C

for p € C(M).

Another Banach algebra we need is L>*°(0D). The maximal ideal
space of L>*°(dD), denoted by M (L), plays an important role here.
Since we may regard H*> as a closed subalgebra of L>*°(0D), we may
think of M (L>) as a subset of M. It turns out that M(L>) is a
subset of M, .

Now, we can prove our theorem.

THEOREM 1.1. Suppose that h € L>*°(D, dA) is harmonic and that
T, is an isometry. Then h is a constant function of modulus 1.
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Proof. Suppose that T}, is an isometry, i.e., T; 7, = I. Since & is
harmonic, Hoffman’s result shows that # and & € C(M). Applying
the isomorphism ¥~!, we obtain (A +J)-(h+J) =1+ J, and by
the definition of J we have
(1.1) lp(h)| =1
for every ¢ € M(L>). It is well known that the Gelfand trans-

form of L°°(0D) maps L>°(dD) isometrically and isomorphically
onto C(M(L*)) (see Hoffman, [12, p. 170]), so that we have

sup{|h(z)| : z € D} = ||hllz=ap) = I hllcomz=))

= sup{|p(h)| : ¢ € M(L™)}.
Hence (1.1) implies sup{|A(z)|:z€ D} =1. If |h(z)|=1 for some
z € D, then & is constant by the Maximum Principle. If |A(z)| < 1
for all z € D, then

n = |[11> = 1T, 1> = |Ph|* < ||4)* = /D |h(2)]>dA < /D dAd=m,

a contradiction. Here | - | denotes the L*(D, d4)-norm. Therefore
h is a constant function, and since 7}, is an isometry, |#|=1. o

We can slightly generalize this result and get the following:

COROLLARY 1.2. Suppose that Tj, is an isometry, where h = f-g",
where f is inner, g € L>(D, dA) is harmonic, and n € N. Then h
is a constant function of modulus 1.

J. Thukral asked for which harmonic 4 is 7} a partial isometry.
If T}, is a partial isometry, then by Halmos [11, Problem 98], 7}, =
T,T; T, . Similarly as before, this means

p(W[1 = lp(h)’1=0
for every ¢ € M(L*®). If @(h) = 0 for every ¢ € M(L*), then
h=0. If p(h) # 0 for some ¢ € M(L>®), then sup{|a(z)|: z €
D} =1 and % must be a constant function. Thus we have proved the
following theorem:

THEOREM 1.3. Suppose that h € L>*(D, dA) is harmonic and that
T}, is a partial isometry. Then h is either a constant function of mod-
ulus 1 or h is identically 0.

In [5] S. Axler and the author characterized commuting Toeplitz
operators with harmonic symbols. Now, we are going to consider the
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related problem—the commutants of some analytic Toeplitz opera-
tors. At first we will be interested in finding the commutant of 7,-,
for arbitrary positive integer n. Before we state and prove our result,
recall the following definitions.
For ¢ € L>*°(D, dA), the Hankel operator with symbol ¢, denoted
H, , is the operator from L2 to (L2)' definedby H,f = (I-P)(pf).
For an analytic function f on D we set

I./lz = sup{(1 - |z|*)|f'(2)| : z € D}.
The Bloch space B is the set of all analytic functions f on D for
which || f]|p < co. The quantity |f(0)|+ ||f||zp defines a norm on B,
and B equipped with this norm is a Banach space. Contained in the
Bloch space is the little Bloch space By, which is by definition the set
of all analytic functions f on D for which
(1-1z)f(z) >0 as|z|— 1.

For the basic properties of the Bloch space see [2].
Let n € N be fixed.

THEOREM 1.4. Let S € T commute with T,». Then S = T, for
some y € H®.

Proof. The equation ST,» = T,»S gives us the following:
Let g;=Sz!,for i=0,1,...,n—1. Then for any such i
Sz" = STz! = TSz = z"g;

Szknti = zkng.  fork=0,1,2....

Let
Xo=span{e;,:k=0,1,2,...}7,

X, =span{eg,.1:k=0,1,2,...}7,

X,—1 =span{expi(n_1):k=0,1,2,...}".

Then L2=X,® X, ®---® X,_;, i.e., each f € L2 can be written as
a a

f=h+hi+ -+ fua,
fieX;,i=0,1,2,...,n—1. Each fy € Xy has its Fourier series
expansion

ﬁ) = Z(f()s ekn)ekn

k=0
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ie., fo = limsy, where s, = Y 1 o(fo, €kn)ekn - Since the point
evaluations are bounded on L2, we have fy(z) = limsy,(z), for each
z € D, so that

(1.2) (Jo - 80)(2) = lim(sm - g0)(2)

for each z € D. Since Szk" = zkngy, k=0,1,2, ..., it follows
that Ss,, = s, - 8o, for every m € N. By continuity of S, we have

(Sfo) =1lim Ssy,, = limsy, - g,

so that
(1.3) (Sf0)(z) = im(s, - go)(z)
for each z € D. Comparing (1.2) and (1.3) we conclude that

S.fb=g0’.f6a

for each f; € Xy. Repeating the above reasoning, we get that Sf; =
g1fi/z, for fi € X; and so on. Thus the operator S can be described
as

(1.4) Sf=gh+Sfi+Sht o+
Let’s observe another property of S, being an element of T.

Claim. ST, — T,S € K, where K denotes the ideal of all compact
operators.
At first, assume S =T,, ¢ € L°(D, dA). Then

T¢Tz - TzT¢ = Tzq) - TzT¢ = H;H¢.
Because z € By, the operator H} is compact (see [3]), so that T, T, —

T.T, is compact. If IT: L(L2) — L(L2)/K denotes the natural pro-
jection, then

(1.5) I(T,)I(T;) = TI(T;)TK(T,)

for every ¢ € L*(D,dA). If S =T, ---T, then, because of (1.5),
II(ST, — T,S) = 0 so that ST, — T,S € K. An arbitrary operator
S in T is the limit of sums of operators of the form 7, --- T, . In
that case S = limS;, each S; is of the form } 7, ---T, , and so
ST, — T,S =1im(S;T, — T,S)) € K. Hence the claim is proved.

Now, let’s express ST, — 7.5 in terms of (1.4). It is easy to see
that g g
ST:f = gifo+2fi+ 3+ + 28 fu-1.
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From this and (1.4) we obtain
(ST: = T28)f = fo(g1 — 280) + N (% - gl)
gn—
(B E) s (- )

By the claim, (ST, —73.5)| x, =M —z¢; Xo— L3 is compact (Mg ;4
is a multiplication operator). Let ¢ = g, — zgy. Now, it imme-
diately follows that M| X, is compact, for all j = 1,...,n -1,
since M| X = M_,(My| x)(M,-| XJ). Hence M, is compact on
Xo® X, ® - ® X,y =L2. Thus ¢ =0 and therefore gy = g;/z.

Similarly, (ST — T.S)| X, = Mg2 Jz-g," X — Lg is a compact op-
erator. Thus M . o M;|x, = Mg _;¢: Xo — L2 is compact. As
before, this means that g, — zg; = 0 so that g; = g,/z and therefore
g = £/z2. If we continue this way, (1.4) shows that

Sf=g0'f=Tg0f

for every f € L2. The function g must be an H> function as
a multiplier of L2 (see [15]). If we let ¥ = go, the theorem is
proved. a

REMARK. From the proof of the theorem it is clear that we can
replace the assumption S € T by the weaker assumption S7,—7,S €
K. Also, slightly modified arguments give a proof for the Hardy space
case.

We can extend this result. Let Aut(D) denote the set of analytic,
one-to-one maps of D onto D. Let u € Aut(D) and define an oper-
ator V: L2 — L2 by Vf= fou!. Clearly, V is a bounded linear
operator, with the inverse operator V' ~!f = fou. Observe that

T,V =VT,,
and therefore
(1.6) T,V =VT,

for every n € N.
Suppose now that S € T and ST,» = T,»S for some n. Formula
(1.6) implies
SVIT .V =V IT,.VS

and we conclude that
VSsv-le{T,Y}.
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The operator B = V'SV ~! has the property that BT, — T,B isin K
(because u € By), so by the remark following Theorem 1.4, it follows
that B = T,, for some ¢ € H*®. Thus S = V-IT, V. If we let
v = ¢ ou, we have proved the following corollary:

COROLLARY 1.5. Let u € Aut(D) and let S € T commute with T,
for some neN. Then S =T, forsome y € H®.

The results in this paper raise the following questions.

The McDonald-Sundberg functional calculus is the crucial tool in
proving Theorem 1.1. Is this theorem true without the assumption on
the symbol to be harmonic? If 4 is in C(A), then the McDonald-
Sundberg calculus is still valid, but it is not true in general that
sup{|h(z)| : z € D} = sup{|p(h)| : ¢ € M(L>®)}. However, we guess
that there are no nontrivial isometries among Toeplitz operators on
the Bergman space.

Suppose S € L(L2) is such that ST,—~T,S € K. If ST,»—T,»S =0
for some #, then Theorem 1.4 shows that S must be an analytic
Toeplitz operator. What is the set of all functions f such that ST, —
TS = 0 implies that S is an analytic Toeplitz operator?
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