ON AMBIENTAL BORDISM

Carlos Biasi

Abstract

Let M^{m} be a closed and oriented submanifold of a closed or oriented manifold N^{n}, such that $[M, i]=0 \in \Omega_{m}(N)$, where $i: M \rightarrow N$ is the inclusion and $\Omega_{m}(N)$ is the m th oriented bordism group of N. If $n=m+2$ or $m \leq 3$ or $m \leq 4$ and $n \neq 7$ then M bounds in N.

Introduction. Let us consider M^{m} a closed submanifold of N^{n}. In this paper, we study the possibility that there exists submanifold $W^{m+1} \subset N^{n}$ such that $\partial W=M$. If $M=S^{m}$ and $N=S^{m+2}$, such that a submanifold W is called a Seifert surface knot S^{m}. In [5], Sato showed that every connected closed and oriented submanifold M^{m} of S^{m+2} is a boundary of an oriented surface of S^{m+2}.

In [4], Hirsch studies the following problem: If a compact connected and oriented manifold M^{m} bounds, does there exist embedding from M^{m} into \mathbb{R}^{n} which is a boundary in \mathbb{R}^{n} ?
The answer is yes, if $n \geq 2 m$.
The difference between the two problems is that, in our case, the embedding from M into N is fixed.

There is an obvious necessary condition for the existence of W, when M and N are oriented manifolds.

Let $\Omega_{m}(N)$ be the m th oriented bordism group of N [2]. If $i: M \rightarrow N$ is the inclusion map, we can define an element $[M, i]$ in $\Omega_{m}(N)$ and see that $[M, i]=0$ if M bounds in N.

Generally, the converse in not true, but sometimes the vanishing of [M, i] guarantees the existence of W, for example if the codimension $n-m$ is large.

We prove the following theorem.
Theorem 5.2. Let us suppose that $M^{m} \subset N^{n}, n>m+1$, is such that $[M, i]=0$ in $\Omega_{m}(N)$. Then M bounds in N if one of the following conditions occurs:
(a) $n=m+2$,
(b) $m \leq 3$,
(c) $m \leq 4$ and $n \neq 7$.

In his Doctoral thesis [1] the author proved that, when $n=2 m+$ 1 , and M and N are closed and oriented, a submanifold $M \subset N$ bounds in N if, and only if, $[M, i]=0 \in \Omega_{m}(N)$.

1. A more general problem of ambiental bordism. Let

$$
G \subset O(n-m-1), \quad n>m+1
$$

be a closed transformation group and let $\gamma_{G} \rightarrow B G$ be the classifying fiber bundle of $(n-m-1)$-vector bundles which have a G-structure.

Let us consider $M G$ the Thom space of γ_{G}. We have:

$$
\pi_{i}(M G)= \begin{cases}0, & i<n-m-1 \\ \mathbb{Z}, & i=n-m-1 \text { and } G \subset \mathrm{SO}(n-m-1) \\ \mathbb{Z}_{2}, & i=n-m-1 \text { and } G \not \subset \mathrm{SO}(n-m-1)\end{cases}
$$

Let us consider now N^{n} to be a closed connected manifold which we assume to be oriented if $G \subset \mathrm{SO}(n-m-1)$. (If $G \not \subset \mathrm{SO}(n-m-1)$ we drop the orientability hypothesis.)

Let $M^{m} \subset N^{n}$ be a closed submanifold and let us suppose that the normal fiber bundle ν_{M} of M in N has a cross section s, nowhere zero, such that $\nu_{M}=\{s\} \oplus \xi$, where $\{s\}$ is a subbundle generated by s and ξ is a $(n-m-1)$-vector bundle endowed with a G-structure.

We shall say that a submanifold $W \subset N$ satisfies condition (*) if it has the properties:
(i) $\partial W=M$ and s is the inward-pointing vector field on ∂W.
(ii) the normal fiber bundle ν_{W} has a G-structure which agrees with the given G-structure of ξ over M. (Observe that $\xi=\nu_{W} \mid M$.)
2. Primary obstruction to the existence of W. Let V be a closed tabular neighborhood of M in $N, A=\partial W$ and $X=N-\stackrel{\circ}{V}$. We can think s a function $s: M \rightarrow A$. Then $s(M)$ is a submanifold of A, whose normal fiber bundle is isomorphic to ξ. By the Thom construction there exists a function $f: A \rightarrow M G$ such that, if ∞ is the point at infinity to $M G$, then f is differentiable on $A-f^{-1}(\infty)$, f is transversal to $B G$ and $f^{-1}(B G)=(M)$ [6].

We shall take $\pi_{m-n-1}(M G)$ as the cohomology coefficient group. Let $e \in H^{n-m-1}(M G)$ be the fundamental class of the space $M G$. We know that $f^{*}(e)=\alpha$, where α is the dual class of $s_{*}\left(\mu_{M}\right)$ and μ_{M} is the fundamental class of M.

If $f: A \rightarrow M G$ extends to a map $\bar{f}: X \rightarrow M G$, then we can suppose, up to homotopy, that \bar{f} is differentiable in $X-\bar{f}^{-1}(\infty)$ and that \bar{f} is transversal to $B G$. Taking $W_{1}=\bar{f}^{-1}(B G)$ we obtain a submanifold of X whose boundary is $s(M)$.

Let us observe that this submanifold can be extended to a submanifold W which satisfies condition (*).

We conclude then that there exists W, satisfying (*), if and only if f extends to X.

The class $\delta f^{*}(e)$ is the obstruction to the extension of f to the $(n-m)$-skeleton of X, where $\delta: H^{n-m-1}(A) \rightarrow H^{n-m}(X, A)$ is the coboundary operator.

Consider the commutative diagram:

We conclude that the primary obstruction to the extension of f, up to duality, is the element $s_{*}\left(\mu_{M}\right) \in H_{m}(N-M)$ (regarding s as function from M into $N-M$).

Hence, we have:
Proposition 2.1. f extended to the $(n-m)$-skeleton of X if, and only if, $s_{*}\left(\mu_{M}\right)=0$ in $H_{m}(N-M)$.

Assuming that $s_{*}\left(\mu_{M}\right)=0$, let us consider two cases:

1. $G=O(n-m-1)$.

Here, f extends up to the $(n-m+1)$-skeleton of X, because $\pi_{n-m}(M G)=0$ and, if $n-m=2$, then f extends to all of X since $M O(1)$ is a $K\left(\mathbb{Z}_{2}, 1\right)$ space.
2. $G=\mathrm{SO}(n-m-1)$.

Since $\pi_{n-m+i}(M G)=0, i=0,1,2, f$ extends up to the $(n-m+3)$-skeleton of X. Hence, if $\operatorname{dim} M \leq 3, f$ extends.

On the other hand, if $n-m=2$ or 3 then $M G$ is a $K(\mathbb{Z}, 1)$ or $K(\mathbb{Z}, 2)$, respectively. In any case, f extends globally.
3. Oriented ambiental bordism. From now on, all manifolds and submanifolds will be considered to be oriented.

Theorem 3.1. Let us suppose that:
(a) $H_{j}(X)=0,0<j<m-3$.
(b) The canonical homomorphism $\pi_{n-1}(\mathrm{MSO}(n-m-1)) \xrightarrow{\varphi} \Omega_{m}$ is injective.

There exists W satisfying (*) if, and only if, $s_{*}\left(\mu_{M}\right)=0 \in H_{m}(X)$ and M is a boundary.

Proof. Let us use the notation $\pi_{i}=\pi_{i}(\operatorname{MSO}(n-m-1))$. If $s_{*}\left(\mu_{M}\right)=0$, then f extends to the $(n-m)$-skeleton of X.

From hypothesis (a) and Lefschetz duality, we conclude that

$$
H^{j}\left(X, A, \pi_{j-1}\right)=0, \quad n-m<j<n .
$$

Let D be an open disk of $X-A$. Since X is orientable, $H^{j}\left(X-D, A, \pi_{j-1}\right) \cong H^{j}\left(X, A, \pi_{j-1}\right)=0, n-m<j<n$. Hence, there exists an extension $\bar{f}: X-D \rightarrow Y$ of $f: A \rightarrow Y$, where $Y=\operatorname{MSO}(n-m-1)$.

Let us consider $S=\partial D$ and $h=\bar{f} \mid \partial D: S \rightarrow Y$. We may suppose that h is transversal to $\operatorname{BSO}(n-m-1)$ and let

$$
M^{m}=h^{-1}(\operatorname{BSO}(n-m-1)) .
$$

Consider $\bar{W}=\bar{f}^{-1}(\mathrm{BSO}(n-m-1))$, a bordism between M_{1} and $s(M)$. Since $s(M)$ is a boundary, M_{1} also is.

We have also that $\psi([h])=\left[M_{1}\right]=0$ and since ψ is a monomorphism, h is homotopic to a constant map and so h extends over D.

The converse is straightforward.
4. On the existence of normal vector fields homologous to zero in $N-M$. In the next section, we show that in certain situations it is possible to obtain a cross-section $s: M \rightarrow S\left(\nu_{M}\right)$ such that $s_{*}\left(\mu_{M}\right)=$ $0 \in H_{m}(N-M)$, where $S\left(\nu_{M}\right) \rightarrow M$ is the normal sphere bundle of M in N.

Proposition 4.1. The Euler class of the normal bundle of M^{m} in N^{n} is zero if and only if $i_{*}\left(\mu_{M}\right) \subset \operatorname{im} j_{*}$, where μ_{M} is the fundamental class of M and $i: M \rightarrow N, j: N-M \rightarrow N$ are inclusion maps.

Proof. Let us consider $e \in H^{n-m}(M, \mathbb{Z})$, the Euler class of the normal bundle ν_{M}, and let $D_{A}: H^{n-m}(M: \mathbb{Z}) \rightarrow H_{m}(N, N-M ; \mathbb{Z})$ be the Alexander duality. We have that $D_{A}(e)=\alpha_{*}\left(\mu_{M}\right)$ where α_{*} is induced by the inclusion map $\alpha:(N, N-M)$.

Using the exact sequence of pair ($N, N-M$) it follows that $\alpha_{*}\left(\mu_{M}\right)$ $=0$ if, and only if, $i_{*}\left(\mu_{M}\right) \subset \operatorname{im} j_{*}$.

Corollary 4.2. If $M^{m} \subset N^{n}$ is homologous to zero, $n-m=2$ or $n \geq 2 m$, then M has a normal vector field that is nowhere zero.

Proof. By Proposition 4.1 the Euler class of ν_{M} is zero. Then there is a nowhere zero normal vector field on the $(n-m)$-skeleton
of M, which can be extended to all M, because $n-m \geq m$ or $\pi_{i}\left(R^{2}-0\right)=0, i>1$ in the case $n-m=2$.

Let $\pi: E \rightarrow M^{m}$ be a differentiable $\mathrm{SO}(n+1)$-bundle with fiber S^{n} and base M^{m} (and oriented manifold).

If $s: M \rightarrow E$ is a cross-section, let θ_{s} be the Poincare dual to $\bar{s}_{*}\left(\mu_{M}\right)$, where $\bar{s}=-s$ is the opposite cross-section to s.

Having fixed a cross-section $s_{0}: M \rightarrow E$, the following diagrams are commutative:
$[M, E]$

$$
H_{m-n}(M) \xrightarrow{\Delta} H_{m}(E) \xrightarrow{\pi_{*}} H_{m}(M)
$$

where $[M, E]$ is the set of homotopy classes of cross-sections, $\xi([s])=$ $\bar{s}^{*}\left(\theta_{\bar{s}_{0}}\right) ; \varphi([s])=\theta_{\bar{s}_{0}}-\theta_{\bar{s}}$, is Poincaré duality and last line is a portion of the generalized Gysin sequence.

We define $\psi:[M, E] \rightarrow H_{m}(E)$ by $\psi([s])=s_{s_{*}}\left(\mu_{M}\right)-s_{*}\left(\mu_{M}\right)$ and observe that $\psi=D \circ \psi$.

If $m \leq n+1$ or $n=1$, then the function ξ is onto and so the image of ψ is the kernel of π_{*}.

This fact will be applied in the proof of Proposition 4.3 below, where the fiber bundle to be considered is $S\left(\nu_{M}\right) \rightarrow M$.

Proposition 4.3. Let $M^{m} \subset N^{n}, n=m+2$ or $n \geq 2 m$, be an oriented submanifold homologous to zero in an oriented manifold N. Then there exists a cross-section $r: M \rightarrow S\left(\nu_{M}\right)$ such that its image is homologous to zero in $H_{m}(N-m)$.

Proof. Let $s_{0}: M \rightarrow S\left(\nu_{M}\right)$ be a cross-section that is nowhere zero (Corollary 4.2) and let us consider the commutative diagrams:

where $s_{*}=l_{*}\left(s_{0_{*}}\right)$ and l_{*} is induced by the inclusion $S\left(\nu_{M}\right) \rightarrow$ $(N-M)$.

We have $j_{*} s_{*}\left(\mu_{M}\right)=i_{*} \pi_{*} s_{0}\left(\mu_{M}\right)=0$ implying that $s_{*}\left(\mu_{M}\right)$ belongs to the kernel of j_{*} which is the image of $\partial: H_{m+1}(N, N-M) \rightarrow$ $H_{m}(N-M)$.

Let us consider the following commutative diagram:

It follows that there exists an element $\mu \in H_{m}\left(S\left(\nu_{M}\right)\right)$ such that $\mu \in \operatorname{Ker} \pi_{*}$ and $j_{*}=s_{*}\left(\mu_{M}\right)$.

Since $\operatorname{im} \psi=\operatorname{ker} \pi_{*}$, there exists a cross-section $r: M \rightarrow S\left(\nu_{M}\right)$ such that $\psi([r])=\mu$.

But $\psi([r])=s_{0}\left(\mu_{M}\right) \rightarrow r_{*}\left(\mu_{M}\right)$ so $j_{*} r_{*}\left(\mu_{M}\right)=0$ in $H_{m}(N-M)$. Hence, the image of $r: M \rightarrow S\left(\nu_{M}\right)$ is homologous to zero in $N-M$.
5. A theorem on ambiental bordism. Let us consider $\Omega_{j}(N)$ to be the j th bordism group of N.

If $H_{j}(N)=0,0<j<m-3$, it is possible using the bordism spectual sequence [2] to show that the function $\Omega_{m}(N) \rightarrow H_{m}(N) \oplus$ Ω_{m}, which associates to each pair $[M, f]$ the element $\mu([M, f])+$ [M], is an isomorphism, where μ is the canonical homomorphism.

In the proof of Theorem 5.2, we are going to use the following lemma, which has been proved in [1] (the proof, if $q>m$, is due to Thom [6]).

Lemma 5.1. The homomorphism $\varphi: \pi_{q+m}(\operatorname{MSO}(q)) \rightarrow \Omega_{m}, q \geq$ m, is an isomorphism.

Theorem 5.2. Let us suppose $M^{m} \subset N^{n}, n>m+1$, is such that $[M, i]=0$ in $\Omega_{m}(N)$. Then M bounds in N if one of the following conditions occurs:
(a) $n=m+2$,
(b) $m \leq 3$,
(c) $m \leq 4$ and $n \neq 7$.

Proof. Any one of the conditions (a), (b) and (c), based on previous results, imply that normal bundle ν_{M} has a cross-section nowhere zero such that, considering s as a function from M into $N-M$, $s_{*}\left(\mu_{M}\right)=0 \in H_{m}(N-M)$.

If (a) or (b) occurs, the theorem follows from case 2 , already discussed in $\S 2$

If $n=4$ and $n \geq 8$, we apply Theorem 3.1.

REMARK 1. If $n=m+2$ or $m \leq 3$, then $[M, i]=0 \in \Omega_{m}(N)$ if, and only if, M is homologous to zero in N.

Remark 2. When $m=4$ and $n \neq 7$, although we shall prove that $[M, i]=0$ implies the existence of a normal section nowhere zero (Th. 5.3) we are not able to prove that there exists a normal vector field homologous to zero in $N-M$, which in this case would be sufficient to prove the conclusion of Theorem 5.2.

Theorem 5.3. Let us suppose $M^{4} \subset N^{7}$. If $[M, i]=0$ in $\Omega_{4}(N)$ then ν_{M} has a cross-section which is nowhere zero.

Proof. There exists $W \subset N \times I$ such that $\partial W=M \times 0 \subset N \times I$ [1].

Let ν_{W} and ν_{M} be the normal fiber bundles of W in $N \times I$ and of M in N, respectively. We can also suppose that $\nu_{W} \mid M \times 0=\nu_{M}$.

Let us consider $\bar{W} \subset N \times \mathbb{R}$ to be the double of W and let $i: \bar{W} \rightarrow$ $N \times \mathbb{R}$ and $j: N \times \mathbb{R} \rightarrow \bar{W} \rightarrow N \times \mathbb{R}$ be inclusion maps.

Since $i_{*}\left(\mu_{\bar{W}}\right) \subset \operatorname{im} j_{*}$, then \bar{W} has a normal vector field which is nowhere zero in $N \times \mathbb{R}$ up to the 3 -skeleton of \bar{W}.

Hence, there exists a 2-dimensional oriented vector bundle ξ over M such that $\nu_{M} \mid M^{(3)}=\xi \otimes \mathscr{E}^{1}$.

Let us consider e to be the Euler class of ξ in $H^{2}\left(M^{(3)}\right)$ and let $\bar{e} \in H^{2}(M)$ be such that $i o^{*}(\bar{e})=e$, where $i: M^{(3)} \rightarrow M$ is the inclusion map.

Let $\bar{\xi}$ be a 2-dimensional vector bundle over M such that its Euler class is \bar{e}. Let us observe that $\bar{\xi} \mid M^{(3)}=\xi$.

Let $f, g: M \rightarrow \mathrm{BSO}(3)$ be classifying maps $\bar{\xi} \oplus \mathscr{E}^{1}$ and ν_{M}, respectively.

Since the Euler classes of $\bar{\xi} \oplus \mathscr{E}^{1}$ and of ν_{M} are equal, then their second Stiefel-Whitney classes are equal.

Let \tilde{p}_{1} be the Pontryagin class of the classifying fiber bundle $\tilde{\gamma} \rightarrow$ $\operatorname{BSO}(3)$ and let \tilde{e} be the Euler class of $\tilde{\gamma}$. Since $f^{*}\left(\tilde{p}_{1}\right)=g^{*}\left(\tilde{p}_{1}\right)$. Hence, the vector bundles $\xi \oplus \mathscr{E}^{1}$ and ν_{M} are equivalent [3].

References

[1] C. Biasi, L-equivalent and ambiental bordism of submanifolds, (Doctoral Thesis), ICMSC-USP, São Carlos (1981).
[2] P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Springer-Verlag (1964).
[3] A. Dold and H. Whitney, Classification of oriented sphere bundles over a 4complex, Ann. of Math., 69 (1959), 667-677.
[4] M. Hirsch, On embedding of bounding manifolds in euclidean space, Ann. of Math., (2), 74 (1961), 494-497.
[5] N. Sato, Cobordism of semiboundary links, Topology Appl., 18 (1984), 225-234.
[6] R. Thom, Quelques propriétés globales de variétés différentiable, Comment. Math. Helv., 28 (1954), 17-86.

Received November 13, 1991 and in revised form November 19, 1992.
ICMSC-USP
Departamento de Matemática
Rua Dr. Carlos Botelho, 1465
Caixa Postal 668
13560-970-São Carlos-SP-Brasil

