ON AMBIENTAL BORDISM

CARLOS BIASI

Let M^m be a closed and oriented submanifold of a closed or oriented manifold N^n , such that $[M\,,\,i]=0\in\Omega_m(N)$, where $i\colon M\to N$ is the inclusion and $\Omega_m(N)$ is the mth oriented bordism group of N. If n=m+2 or $m\le 3$ or $m\le 4$ and $n\ne 7$ then M bounds in N.

Introduction. Let us consider M^m a closed submanifold of N^n . In this paper, we study the possibility that there exists submanifold $W^{m+1} \subset N^n$ such that $\partial W = M$. If $M = S^m$ and $N = S^{m+2}$, such that a submanifold W is called a Seifert surface knot S^m . In [5], Sato showed that every connected closed and oriented submanifold M^m of S^{m+2} is a boundary of an oriented surface of S^{m+2} .

In [4], Hirsch studies the following problem: If a compact connected and oriented manifold M^m bounds, does there exist embedding from M^m into \mathbb{R}^n which is a boundary in \mathbb{R}^n ?

The answer is yes, if $n \ge 2m$.

The difference between the two problems is that, in our case, the embedding from M into N is fixed.

There is an obvious necessary condition for the existence of W, when M and N are oriented manifolds.

Let $\Omega_m(N)$ be the *m*th oriented bordism group of N [2]. If $i: M \to N$ is the inclusion map, we can define an element [M, i] in $\Omega_m(N)$ and see that [M, i] = 0 if M bounds in N.

Generally, the converse in not true, but sometimes the vanishing of [M, i] guarantees the existence of W, for example if the codimension n-m is large.

We prove the following theorem.

THEOREM 5.2. Let us suppose that $M^m \subset N^n$, n > m+1, is such that [M, i] = 0 in $\Omega_m(N)$. Then M bounds in N if one of the following conditions occurs:

- (a) n = m + 2,
- (b) $m \le 3$,
- (c) $m \le 4$ and $n \ne 7$.

In his Doctoral thesis [1] the author proved that, when n = 2m +1, and M and N are closed and oriented, a submanifold $M \subset N$ bounds in N if, and only if, $[M, i] = 0 \in \Omega_m(N)$.

1. A more general problem of ambiental bordism. Let

$$G \subset O(n-m-1)$$
, $n > m+1$,

be a closed transformation group and let $\gamma_G \to BG$ be the classifying fiber bundle of (n - m - 1)-vector bundles which have a G-structure.

Let us consider MG the Thom space of γ_G . We have:

$$\pi_i(MG) = \begin{cases} 0, & i < n - m - 1, \\ \mathbb{Z}, & i = n - m - 1 \text{ and } G \subset SO(n - m - 1), \\ \mathbb{Z}_2, & i = n - m - 1 \text{ and } G \not\subset SO(n - m - 1). \end{cases}$$

Let us consider now N^n to be a closed connected manifold which we assume to be oriented if $G \subset SO(n-m-1)$. (If $G \not\subset SO(n-m-1)$ we drop the orientability hypothesis.)

Let $M^m \subset N^n$ be a closed submanifold and let us suppose that the normal fiber bundle ν_M of M in N has a cross section s, nowhere zero, such that $\nu_M = \{s\} \oplus \xi$, where $\{s\}$ is a subbundle generated by s and ξ is a (n-m-1)-vector bundle endowed with a G-structure.

We shall say that a submanifold $W \subset N$ satisfies condition (*) if it has the properties:

- (i) $\partial W = M$ and s is the inward-pointing vector field on ∂W .
- (ii) the normal fiber bundle ν_W has a G-structure which agrees with the given G-structure of ξ over M. (Observe that $\xi = \nu_W | M$.)
- 2. Primary obstruction to the existence of W. Let V be a closed tabular neighborhood of M in N, $A = \partial W$ and $X = N - \mathring{V}$. We can think s a function $s: M \to A$. Then s(M) is a submanifold of A, whose normal fiber bundle is isomorphic to ξ . By the Thom construction there exists a function $f: A \to MG$ such that, if ∞ is the point at infinity to MG, then f is differentiable on $A - f^{-1}(\infty)$, f is transversal to BG and $f^{-1}(BG) = (M)$ [6].

We shall take $\pi_{m-n-1}(MG)$ as the cohomology coefficient group. Let $e \in H^{n-m-1}(MG)$ be the fundamental class of the space MG. We know that $f^*(e) = \alpha$, where α is the dual class of $s_*(\mu_M)$ and μ_M is the fundamental class of M.

If $f: A \to MG$ extends to a map $\overline{f}: X \to MG$, then we can suppose, up to homotopy, that \overline{f} is differentiable in $X - \overline{f}^{-1}(\infty)$ and that \overline{f} is transversal to BG. Taking $W_1 = \overline{f}^{-1}(BG)$ we obtain a submanifold of X whose boundary is s(M).

Let us observe that this submanifold can be extended to a submanifold W which satisfies condition (*).

We conclude then that there exists W, satisfying (*), if and only if f extends to X.

The class $\delta f^*(e)$ is the obstruction to the extension of f to the (n-m)-skeleton of X, where $\delta \colon H^{n-m-1}(A) \to H^{n-m}(X,A)$ is the coboundary operator.

Consider the commutative diagram:

$$H^{n-m-1}(A) \xrightarrow{\delta} H^{n-m}(X, A)$$

$$\downarrow D \qquad \qquad \downarrow D$$

$$H_m(A) \xrightarrow{s_*} H_m(X) \cong H_m(N-M).$$

We conclude that the primary obstruction to the extension of f, up to duality, is the element $s_*(\mu_M) \in H_m(N-M)$ (regarding s as function from M into N-M).

Hence, we have:

PROPOSITION 2.1. f extended to the (n-m)-skeleton of X if, and only if, $s_*(\mu_M) = 0$ in $H_m(N-M)$.

Assuming that $s_*(\mu_M) = 0$, let us consider two cases:

1.
$$G = O(n - m - 1)$$
.

Here, f extends up to the (n-m+1)-skeleton of X, because $\pi_{n-m}(MG)=0$ and, if n-m=2, then f extends to all of X since MO(1) is a $K(\mathbb{Z}_2,1)$ space.

2.
$$G = SO(n - m - 1)$$
.

Since $\pi_{n-m+i}(MG) = 0$, i = 0, 1, 2, f extends up to the (n-m+3)-skeleton of X. Hence, if dim $M \le 3$, f extends.

On the other hand, if n - m = 2 or 3 then MG is a $K(\mathbb{Z}, 1)$ or $K(\mathbb{Z}, 2)$, respectively. In any case, f extends globally.

3. Oriented ambiental bordism. From now on, all manifolds and submanifolds will be considered to be oriented.

THEOREM 3.1. Let us suppose that:

- (a) $H_j(X) = 0$, 0 < j < m 3.
- (b) The canonical homomorphism $\pi_{n-1}(\mathrm{MSO}(n-m-1)) \xrightarrow{\varphi} \Omega_m$ is injective.

There exists W satisfying (*) if, and only if, $s_*(\mu_M) = 0 \in H_m(X)$ and M is a boundary.

76

Proof. Let us use the notation $\pi_i = \pi_i(MSO(n-m-1))$. If $s_*(\mu_M) = 0$, then f extends to the (n-m)-skeleton of X.

From hypothesis (a) and Lefschetz duality, we conclude that

$$H^{j}(X, A, \pi_{j-1}) = 0, \quad n-m < j < n.$$

Let D be an open disk of X-A. Since X is orientable, $H^j(X-D,A,\pi_{j-1})\cong H^j(X,A,\pi_{j-1})=0$, n-m< j< n. Hence, there exists an extension $\overline{f}\colon X-D\to Y$ of $f\colon A\to Y$, where $Y=\mathrm{MSO}(n-m-1)$.

Let us consider $S = \partial D$ and $h = \overline{f}|\partial D \colon S \to Y$. We may suppose that h is transversal to BSO(n - m - 1) and let

$$M^m = h^{-1}(BSO(n - m - 1)).$$

Consider $\overline{W} = \overline{f}^{-1}(BSO(n-m-1))$, a bordism between M_1 and s(M). Since s(M) is a boundary, M_1 also is.

We have also that $\psi([h]) = [M_1] = 0$ and since ψ is a monomorphism, h is homotopic to a constant map and so h extends over D.

The converse is straightforward.

4. On the existence of normal vector fields homologous to zero in N-M. In the next section, we show that in certain situations it is possible to obtain a cross-section $s: M \to S(\nu_M)$ such that $s_*(\mu_M) = 0 \in H_m(N-M)$, where $S(\nu_M) \to M$ is the normal sphere bundle of M in N.

PROPOSITION 4.1. The Euler class of the normal bundle of M^m in N^n is zero if and only if $i_*(\mu_M) \subset \operatorname{im} j_*$, where μ_M is the fundamental class of M and $i: M \to N$, $j: N - M \to N$ are inclusion maps.

Proof. Let us consider $e \in H^{n-m}(M, \mathbb{Z})$, the Euler class of the normal bundle ν_M , and let $D_A \colon H^{n-m}(M \colon \mathbb{Z}) \to H_m(N, N-M; \mathbb{Z})$ be the Alexander duality. We have that $D_A(e) = \alpha_*(\mu_M)$ where α_* is induced by the inclusion map $\alpha \colon (N, N-M)$.

Using the exact sequence of pair (N, N-M) it follows that $\alpha_*(\mu_M) = 0$ if, and only if, $i_*(\mu_M) \subset \text{im } j_*$.

COROLLARY 4.2. If $M^m \subset N^n$ is homologous to zero, n - m = 2 or n > 2m, then M has a normal vector field that is nowhere zero.

Proof. By Proposition 4.1 the Euler class of ν_M is zero. Then there is a nowhere zero normal vector field on the (n-m)-skeleton

of M, which can be extended to all M, because $n - m \ge m$ or $\pi_i(R^2 - 0) = 0$, i > 1 in the case n - m = 2.

Let $\pi: E \to M^m$ be a differentiable SO(n+1)-bundle with fiber S^n and base M^m (and oriented manifold).

If $s: M \to E$ is a cross-section, let θ_s be the Poincaré dual to $\overline{s}_*(\mu_M)$, where $\overline{s} = -s$ is the opposite cross-section to s.

Having fixed a cross-section $s_0: M \to E$, the following diagrams are commutative:

$$[M, E]$$

$$\downarrow^{\xi}$$

$$H^{n}(M) \xrightarrow{\pi^{\star}} H^{n}(E)$$

$$\downarrow^{D} \qquad \downarrow^{D}$$

$$H_{m-n}(M) \xrightarrow{\Delta} H_{m}(E) \xrightarrow{\pi_{\star}} H_{m}(M)$$

where [M, E] is the set of homotopy classes of cross-sections, $\xi([s]) = \overline{s}^*(\theta_{\overline{s}_0})$; $\varphi([s]) = \theta_{\overline{s}_0} - \theta_{\overline{s}}$, is Poincaré duality and last line is a portion of the generalized Gysin sequence.

We define $\psi: [M, E] \to H_m(E)$ by $\psi([s]) = s_{s_*}(\mu_M) - s_*(\mu_M)$ and observe that $\psi = D \circ \psi$.

If $m \le n+1$ or n=1, then the function ξ is onto and so the image of ψ is the kernel of π_* .

This fact will be applied in the proof of Proposition 4.3 below, where the fiber bundle to be considered is $S(\nu_M) \to M$.

PROPOSITION 4.3. Let $M^m \subset N^n$, n = m + 2 or $n \geq 2m$, be an oriented submanifold homologous to zero in an oriented manifold N. Then there exists a cross-section $r: M \to S(\nu_M)$ such that its image is homologous to zero in $H_m(N-m)$.

Proof. Let $s_0: M \to S(\nu_M)$ be a cross-section that is nowhere zero (Corollary 4.2) and let us consider the commutative diagrams:

$$H_m(M) \xrightarrow{S_{0_*}} H_m(S(\nu_M)) \xrightarrow{\pi_*} H_m(M)$$

$$\downarrow l_* \qquad \qquad \downarrow i_*$$

$$\downarrow s_* \qquad H_m(N-M) \xrightarrow{j_*} H_m(N)$$

where $s_* = l_*(s_{0_*})$ and l_* is induced by the inclusion $S(\nu_M) \rightarrow (N-M)$.

We have $j_*s_*(\mu_M) = i_*\pi_*s_{0_*}(\mu_M) = 0$ implying that $s_*(\mu_M)$ belongs to the kernel of j_* which is the image of $\partial: H_{m+1}(N, N-M) \to H_m(N-M)$.

Let us consider the following commutative diagram:

$$H_{m+1}(D(\nu_M), S(\nu_M)) \xrightarrow{\partial} H_m(S(\nu_M))$$

$$\downarrow^{exc} \qquad \qquad \downarrow^{j_*}$$

$$H_{m=1}(N, N-M) \xrightarrow{\partial} H_m(N-M).$$

It follows that there exists an element $\mu \in H_m(S(\nu_M))$ such that $\mu \in \text{Ker } \pi_*$ and $j_* = s_*(\mu_M)$.

Since im $\psi = \ker \pi_*$, there exists a cross-section $r: M \to S(\nu_M)$ such that $\psi([r]) = \mu$.

But $\psi([r]) = s_{0}(\mu_M) \to r_*(\mu_M)$ so $j_*r_*(\mu_M) = 0$ in $H_m(N-M)$. Hence, the image of $r: M \to S(\nu_M)$ is homologous to zero in N-M.

5. A theorem on ambiental bordism. Let us consider $\Omega_j(N)$ to be the jth bordism group of N.

If $H_j(N) = 0$, 0 < j < m-3, it is possible using the bordism spectual sequence [2] to show that the function $\Omega_m(N) \to H_m(N) \oplus \Omega_m$, which associates to each pair [M, f] the element $\mu([M, f]) + [M]$, is an isomorphism, where μ is the canonical homomorphism.

In the proof of Theorem 5.2, we are going to use the following lemma, which has been proved in [1] (the proof, if q > m, is due to Thom [6]).

LEMMA 5.1. The homomorphism $\varphi: \pi_{q+m}(\mathrm{MSO}(q)) \to \Omega_m$, $q \ge m$, is an isomorphism.

THEOREM 5.2. Let us suppose $M^m \subset N^n$, n > m + 1, is such that [M, i] = 0 in $\Omega_m(N)$. Then M bounds in N if one of the following conditions occurs:

- (a) n = m + 2,
- (b) $m \le 3$,
- (c) $m \le 4$ and $n \ne 7$.

Proof. Any one of the conditions (a), (b) and (c), based on previous results, imply that normal bundle ν_M has a cross-section nowhere zero such that, considering s as a function from M into N-M, $s_*(\mu_M) = 0 \in H_m(N-M)$.

If (a) or (b) occurs, the theorem follows from case 2, already discussed in §2

If n = 4 and $n \ge 8$, we apply Theorem 3.1.

REMARK 1. If n = m + 2 or $m \le 3$, then $[M, i] = 0 \in \Omega_m(N)$ if, and only if, M is homologous to zero in N.

REMARK 2. When m = 4 and $n \neq 7$, although we shall prove that [M, i] = 0 implies the existence of a normal section nowhere zero (Th. 5.3) we are not able to prove that there exists a normal vector field homologous to zero in N - M, which in this case would be sufficient to prove the conclusion of Theorem 5.2.

THEOREM 5.3. Let us suppose $M^4 \subset N^7$. If [M, i] = 0 in $\Omega_4(N)$ then ν_M has a cross-section which is nowhere zero.

Proof. There exists $W \subset N \times I$ such that $\partial W = M \times 0 \subset N \times I$ [1].

Let ν_W and ν_M be the normal fiber bundles of W in $N \times I$ and of M in N, respectively. We can also suppose that $\nu_W | M \times 0 = \nu_M$.

Let us consider $\overline{W} \subset N \times \mathbb{R}$ to be the double of W and let $i : \overline{W} \to N \times \mathbb{R}$ and $j : N \times \mathbb{R} \to \overline{W} \to N \times \mathbb{R}$ be inclusion maps.

Since $i_*(\mu_{\overline{W}}) \subset \operatorname{im} j_*$, then \overline{W} has a normal vector field which is nowhere zero in $N \times \mathbb{R}$ up to the 3-skeleton of \overline{W} .

Hence, there exists a 2-dimensional oriented vector bundle ξ over M such that $\nu_M|M^{(3)}=\xi\otimes\mathscr{E}^1$.

Let us consider e to be the Euler class of ξ in $H^2(M^{(3)})$ and let $\overline{e} \in H^2(M)$ be such that $io^*(\overline{e}) = e$, where $i \colon M^{(3)} \to M$ is the inclusion map.

Let $\overline{\xi}$ be a 2-dimensional vector bundle over M such that its Euler class is \overline{e} . Let us observe that $\overline{\xi}|M^{(3)}=\xi$.

Let f, $g: M \to BSO(3)$ be classifying maps $\overline{\xi} \oplus \mathscr{E}^1$ and ν_M , respectively.

Since the Euler classes of $\overline{\xi} \oplus \mathscr{E}^1$ and of ν_M are equal, then their second Stiefel-Whitney classes are equal.

Let \tilde{p}_1 be the Pontryagin class of the classifying fiber bundle $\tilde{\gamma} \to BSO(3)$ and let \tilde{e} be the Euler class of $\tilde{\gamma}$. Since $f^*(\tilde{p}_1) = g^*(\tilde{p}_1)$. Hence, the vector bundles $\xi \oplus \mathscr{E}^1$ and ν_M are equivalent [3].

REFERENCES

- [1] C. Biasi, L-equivalent and ambiental bordism of submanifolds, (Doctoral Thesis), ICMSC-USP, São Carlos (1981).
- [2] P. E. Conner and E. E. Floyd, *Differentiable Periodic Maps*, Springer-Verlag (1964).
- [3] A. Dold and H. Whitney, Classification of oriented sphere bundles over a 4-complex, Ann. of Math., 69 (1959), 667-677.
- [4] M. Hirsch, On embedding of bounding manifolds in euclidean space, Ann. of Math., (2), 74 (1961), 494-497.
- [5] N. Sato, Cobordism of semiboundary links, Topology Appl., 18 (1984), 225–234.
- [6] R. Thom, Quelques propriétés globales de variétés différentiable, Comment. Math. Helv., 28 (1954), 17-86.

Received November 13, 1991 and in revised form November 19, 1992.

ICMSC-USP Departamento de Matemática Rua Dr. Carlos Botelho, 1465 Caixa Postal 668 13560-970-São Carlos-SP-Brasil