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WEIGHTED MAXIMAL FUNCTIONS AND DERIVATIVES
OF INVARIANT POISSON INTEGRALS OF POTENTIALS

PATRICK AHERN AND WILLIAM COHN

In this paper we prove LP estimates for weighted maximal func-
tions of invariant Poisson integrals of potentials. From this it follows
that the exceptional sets of the Poisson integrals of potentials are sets
of zero Hausdorff capacity.

Let S denote the boundary of Bn , the unit ball in Cn , and let dσ
be the unusual rotation invariant measure defined on S. If £ is a
function belonging to the usual Lebesgue space Lx(dσ) of functions
defined on the sphere then by P[g] we will mean the invariant Poisson
integral of g defined by the equation

where z e Bn.
In this paper we will continue the work of Ahern and Cascante [ACa]

and study invariant Poisson integrals of potentials of distributions in
the atomic Hardy spaces H%t where 0 < p < 1. Precisely, if v
denotes a distribution in the space H%t defined by Garnett and Latter
and if 0 < β < n and ζ G S define the (non-isotopic) potential of υ

Let f(z) = P[IβV](z) and denote by f* the admissible maximal
function of / defined on the sphere S associated with the admissible
approach region of aperture a. Thus, for each fixed a > 1

= sup |/(^)|,
wera(ζ)

where Γa(ζ) is the admissible approach region

Γ α ( C ) = {weBn:\l- (w,ζ)\ < f (1 - M 2 ) } .

Suppose that μ is a positive measure on S satisfying the condition

(1) to
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for every Koranyi ball

B{ζ;δ) = {ηeS:\l-{η9ζ)\<δ}

centered at ζ of radius δ contained in S. In [ACa] the following
result is proved.

THEOREM 1. Suppose that β is an integer between 0 and n -1. Let
μ be a positive measure satisfying condition (1). Then with υ and f
related as above, there is a positive constant C, depending on a but
independent of v, such that

i \H>

In this paper we will remove from Theorem 1 the restriction that β
be an integer. In order to explain the method we pursue we first recall
the basic idea used to establish Theorem 1.

For z eBn let JR be the operator given by

7=1

where Dj = £- and let R be the operator given by

7=1

where T)j• = g=-. If z = rζ where ζ e S then it is easily verified that

£-(rf(rζ)) = (R + R +id) f(z).

From this it follows that

(2) (k - l)!/(z) = j l log*"1 Q ) (R + R + id)kf(tz) dt.

In [ACa] it is shown that if v e Hp

at and / = P[h^], then the ad-
missible maximal function of (R + R + id)kf(z) belongs to LP . The
argument used in [A] then can be applied to derive the conclusion of
Theorem 1. For the case we are considering, that is, / = P[IβV] where
β is not an integer, in order to use an argument patterned on the one
above, we must find a suitable replacement for equation (2). The dif-
ficulty we face is that if we tailor the definition of (R + R + id)kf(z)
for non-integral k in such a way that equation (2) still holds then
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the methods of [ACa] are no longer sufficient by themselves to show
the other fact that is needed, namely that the admissible maximal
function of {R + Λ + id)kf(z) is in LP . (This problem does not oc-
cur if v belongs to the Hardy space Hp of holomorphic functions;
see [A].) We circumvent this obstacle in the following fashion. With
f(z) = P[Iβ](z) let

where k is an integer greater than β but less than n. It can be
verified that

(3) (k - l)\\z\f(z) = £l (log(^)) {\-tγ-ku{tζ)dt9

where z = rζ, and ζ e S. The main result of this paper will be the
following theorem.

THEOREM 2. Let v e Hp

at, 0 < β < n - 1, and f = P[IβV].
If k is an integer greater than β but less than n, then the function
u(z) = (1 - \z\)k~P(R+TΪ+id)kf(z) has admissible maximal function
in LP.

Theorem 2 and the representation given by equation (3) can be used
to apply the method of [A] to estimate f* the idea is that the factor
(log(ψ))k-ι(l - tγ~k will serve just as well as the factor (log(j)/-1

appearing in (2). We thus obtain the following corollary.

COROLLARY 1. Theorem 1 remains true for all values of β between
0 and n-\.

We will need to make use of the following objects. Let ζ £ S and
for 1 < j , k < n define the complex tangential vector field

T 7 d Ύ d

and let T, *. be the conjugate of Tj>k. Furthermore, let

and
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If / is a function defined on Bn then for z e Bn with z = rζ and
ζ e S we define

where the right-hand side is computed by holding r fixed and inter-
preting f(rζ) as a function defined on the sphere. Then other opera-
tors above are also extended to act on functions on the ball in a similar
fashion. We will need the following observations. Suppose that g is
a smooth function of one complex variable. Let ζ and η range over
the sphere S. Then

(4) Lζg{(ζ9η))=τηg((ζ9η))9

where the subscripts on the operators denote which variable the deriva-
tives are taken with respect to. Furthermore, there is a second func-
tion, h, of one complex variable, such that

(5) Lζg((ζ,η)) = h((ζ,η)).

In fact, direct calculation shows that formula (4) is valid and that both
expressions are equal to

(1 - | ( C , η)\2)DDg{(ζ, η)) - (n - l)(ζ, η)Dg((ζ, η))9

where D and Z) denote the usual operators D = \{jfc - i-j^) and

+ i-jjy) - This proves the second assertion as well.
The following variants of the Poisson kernel used by Geller in [G]

will also be of importance. For integers j and / let PJJ be the kernel

(1 - \z\2)n+J+ι

P / ( Z η) =

These kernels will concern us when j and / are non-positive integers
whose sum is greater than -n. Notice that PQ,O is the usual Poisson
kernel.

Before proceeding to the proof of Theorem 2 we will need some
preliminary results. We remark that in what follows we will follow the
custom of using the letter C to stand for a positive constant which
changes its value from one appearance to another while remaining
independent of the important variables.

LEMMA 1. Let g and h be bounded functions defined on the unit
ball in C1 and suppose ζ and η are points on the sphere in Cn . Then

[ g((ζ, ω»λ«ω, η))dσ(ω) = [h((ζ, ω))g((ω9 η))dσ(ω).
s Js
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Proof. Denote by L(ζ, η) the left-hand integral in the statement
of the theorem and by R(ζ, η) the right-hand integral. For each
ζ both expressions are continuous functions in the variable η. The
desired conclusion will therefore follow if we show that for any smooth
function φ defined on the sphere we have the equality

/ φ(η)L(ζ, η) dσ(η) = f φ(η)R(ζ, η) dσ{η).
Js Js

This in turn will follow if we show it to be true for all functions φ
belonging to the space H(p, q) of restrictions to S to homogeneous
harmonic polynomials of bidegree (p, q) for all p and q. Now,

/φ(η)L(ζ,η)dσ(η)
s

= f g((ζ,ω)) fh{(ω,η))φ(η)dσ(η)dσ{ω).
Js Js

Let the inside integral of the right-hand side of the last equation define
the operator

T(φ)(ω)= ίh((ω,η))φ(η)dσ{η).
Js

It is easily checked that T commutes with the usual action of the
group of unitary operators on S. By Theorem 12.3.8 in [R] it follows
that for all φ e H(p, q)

where Q is a constant depending only on h, p and q. Therefore

/ φ(η)L(ζ, η) dσ(η) = Ch f g((ζ, ω))φ(ω) dσ{ω)
Js Js

and by the same reasoning it follows that

'S

An identical argument gives the formula

[φ{η)R(ζ9η)dσ(η) = C
Js

for all φ G H(p 9q)9 where the constants Cg and Q are the same as
before. This completes the proof. D

REMARK. The hypothesis that h and g be bounded is clearly not
the weakest on h and g which allows some version of the conclu-
sion of Lemma 1 to hold. If, for example, we assume only that the
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functions used in the proof are integrable on the sphere and therefore
permit the application of Fubini's theorem, the argument will show
that the equality of Lemma 1 holds almost everywhere dσ(ζ) dσ(η).
In what follows, we will use this version of Lemma 1 whenever the
hypotheses on g and h satisfy these less restrictive conditions.

While there is no natural group structure that allows us to define
convolution, the Hermitian inner product provides a well-known sub-
stitute. If £ is a function defined on the unit ball in C1 and ζ e S
for a function F defined on the sphere let F * g be given by

F*g(ζ)= ίF(η)g((ζ9η))dσ(η).
Js

The integral will be well-defined whenever F e Lι(dσ) and g(ζ\) €
Lι(dσ). Here, of course, by ζ\ we mean the first coordinate of the
variable ζ e Cn. As a corollary of Lemma 1 we have the following
result.

COROLLARY 2. Let g and h be functions defined on the unit ball in
C1 such that both g(ζx) and h(ζx) are in L{(dσ). Let F eLι(dσ).
Then

(F*g)*h = (F*h)*g.

Proof. The proof is accomplished through Fubini's theorem and the
remark following Lemma 1. D

We will also need to notice that "convolution" commutes with the
operators L and L.

LEMMA 2. Let F be a smooth function on S and g a smooth
function of one complex variable. Let X be either L or L. Then

Proof. Use integration by parts and formula (4) to compute that

X(F * g)(ζ) = Xζ I F(η)g((ζ, η)) dσ(η)
Js

= ίF(η)Xζg((ζ,η))dσ(η)
Js

= ίF(η)Xηg((ζ9η))dσ(η)
Js

= fxF(η)g{(ζ9η))dσ(η)
Js

= {XF*g)(ζ),

as claimed.
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We will also need pointwise estimates on the derivatives of an in-
variant harmonic functions. See Theorem 1.2 of [G] for the analogous
estimates associated with the Heisenberg group. Let a e Bn and for
e > 0 define

Q(a;e) = {weBn:\l-{w,a)\<e}.

LEMMA 3. Let U be an invariant harmonic function defined on Bn.
IfaeBn let

(a) = sup{U+(a) = sup{|C/(tι/)| :

Then for each pair of non-negative integers j and I there is a constant
C = C(j, /) independent of a or U such that

\RjRιU(a)\ < C(l - \a\)-j-ιU*{a).

Proof. The proof is based on the same idea as the proof of Theorem
1.2 in [G]. For each a e Bn let φa be the automorphism of the ball
given on page 25 of [R]. Let ψ be a smooth nonnegative function of
a real variable supported on the interval [0,5*]. We may choose s so
small that for all a φa maps the ball in Cn centered at the origin
of radius s into Q(a ^ l ) . Next, let Ψ(w) = ψ(\w\) for w eBn.
The argument used in [G, p. 130] (see also [ACa, equation 1.2]) shows
that there is a constant C independent of U or a such that

U(a) = C ί U(w)Ψ(φa(w))dv(w),

where dv is the invariant measure

dV(w)
dv{w) =

and dV is Lebesgue measure on Cn. The desired estimate fol-
lows now by first differentiating under the integral sign, then using
the fact that Ψ(φa(w)) is supported on the set Q[a\ ^~γ^) together
with the formula for φa(w) to bound the resulting expressions by
C(l — \a\)~J~ι, and finally observing that the invariant measure of
Q(a; ^—^-) is bounded by a constant independent of a. This com-
pletes the proof. D

We are now ready to give the proof of Theorem 2.
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Proof of Theorem 2. At times we will simplify the notation by sup-
pressing the dependence of the admissible maximal function on the
parameter a determining its aperture. The atomic decomposition of
Garnett and Latter shows that Theorem 2 is a consequence of the
following assertion.

Claim. Let a be a (p, oo) atom in Hp

ai. Suppose / = P[Ipa]
and u(z) = (1 - \z\)k-P(R + R)kf(z). Then there is a constant C
depending only o n α , fc, and p, but not a such that

Is (u*aYdσ<C.
s

We first give a detailed proof of the claim for the case where 0 <
β < 1 and k = 1. Since all the ideas necessary to establish the
claim in full are present in this situation we will only sketch how the
argument goes in general. Assume then that 0 < β < 1, k = 1, and a
is a (p, oo) atom in Hp

at. We may assume that a is an atom centered
at e\ supported in the Koranyi ball

where ex = (1, 0, . . . , 0). Recall that

\a\<δ~nlp,

and that a has vanishing moments up to a certain order depending
on p see [GL] for details. We note for later use that the construction
of the atomic decomposition given in [GL] shows that this order may
actually be taken to be arbitrarily large. Let

For λ a complex number in the unit disk and r < 1 define

(1 -r2)n

P r W = \l - rλ\i» '

If z = rζ with ζ G S and F e Lι(dσ) then we may write

By Corollary 2 it follows that

P[Iβa](z) = (a * Iβ) * Pr(ζ) = (a * Pr) * Iβ(ζ).

Let V be the invariant harmonic function given by V = P[a]. Since
R + R = r§-r it follows that

(6) (R + R)P[Iβa](z) =(r—a*Pr\* Iβ(ζ).
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The right-hand side may be rewritten as

Notice that the operator R + R now acts on the variable rη. We may
therefore write u as the sum of

(7) Uι(z) = (1 - Izl) 1 -

and a similar expression, U2(z), which is obtained from the formula
for u\ by replacing R by ]?. We proceed to show that there is a
constant C independent of a such that

/\u\)pdσ<C.
Js

The same argument will establish the same inequality for 112, and
complete the proof for the case we are considering.

We first split U\ into two parts. Let ψ be a non-negative ^ ^
function supported on the disk in the complex plane centered at the
origin of radius \ which is identically 1 on the disk centered at the
origin of radius \. For 0 < r < 1 and ζ and η in S let

Then

uχ(z) = Jι(z) + J2(z),

where

(8)

and

(9) h

.(*) = ( ! -

( z ) = ( l -

Consider first J\. Let ξ eS and suppose that z = rζ e. Ta(ξ) for
some aperture α. Since the integrand in J\ vanishes for |1 —(C> /̂)l >
\{ 1 — r) it is easy to see that on the support of ψr(ζ, 7/) we may apply
Lemma 3 to RV(rη) to get the estimate

(10) \RV(rη)\<C(l-r)-ιV*(ζ),
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provided that the maximal function F* is taken with respect to an
aperture equal to a fixed constant c times a, where c is independent
of the atom a. It follows that

If we use again the fact that ψr(ζ, η) is supported on a Koranyi ball
centered at ζ of radius 1 - r then the integral in the last inequality
may be estimated as in [ACo, p. 427] to yield the conclusion that

\Jι{z)\<CV*{ξ).

From this it follows easily from the fact that a is a (p, oo) atom that

f(Jΐ)pdσ < C ί(Vηpdσ < C;
Js Js

see [GL].
The analysis necessary to handle Jι will be more complicated. We

first make use of Theorem 1 and Lemma 1.4 from [ACa] together with
Lemma 2 above to write

(11) -(n

We remark that the equality of the first and last terms above may be
verified directly by showing that

In any event, let

(1 -

°r{λ) =

so

-{n - \)RV{rη) = RP[a)(rη) = ZJ>0,-i[«]("/) = L(a * Gr)(η)

Next let

-(n - l)Kr(λ) ={l-ψ ( 7 3 7 ) ) I1 " λ\ β~ n

Then we may write

Integration by parts shows that

(L(a * Gr)) * Kr(ζ) = I L(a * Gr(η))Kr((ζ, η)) dσ(η)
Js

= f{a*Gr{η))LKr((ζ9η))dσ(η).
Js
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By formula (5) TKr((ζ, η)) is, for fixed r, a function of (ζ, η). In
fact, a calculation shows that LKr((ζ, η)) is the sum of

and three other terms each of which has a factor which is a derivative
of ψ. Now, differentiating ψ yields a function which is supported
on the region

These terms can then be handled in the same fashion as J\ above.
We therefore are left with the final task of estimating the admissible
maximal function of

L\l-(ζ,η)f-n(a*Gr(η))dσ.

To simplify the notation, let

Qr((ζ, η)) = (1 -rγ~β [\-ψ ( ^ ^ Z l l - (ζ, η)\β~*,

where Qr is a function of one complex variable; equation (5) shows
that this is possible. We therefore obtain the formula

J3{z) = (a*Gr)*Qr(ζ).

Recall that the atom a is supported on the Koranyi ball

B(eι;δ) = {ηeS:\l-ηι\<δ}9

where e\ = (1, 0, . . . , 0). We will need to partition unity in a manner
that lets us take advantage of the support of α. It is possible to
find smooth functions φo and φ defined on the complex plane such
that φo is supported on the unit disk, φ is supported on the annulus
{ A G C 1 : 1 / 2 < | A | < 2 } and

1 = 1 _
7=0

For η and τ € S and rη e Bn let
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and for j = 1, 2, . . . , TV let

It follows that
N

7=0

where TV is a sufficiently large integer which depends only on δ.
We now write

N

a * Gr{η) = P0,-ι[a](rη) = Y^Aj(rη),
7=0

where

Aj(rη) = / P0,-i(rη, τ)Φj(rη, τ)a(τ)dσ(τ).
Js

We claim that there is an integer m that we may choose to be
arbitrarily large (and whose choice will depend on p) such that

(i) A$(rη) is supported on the set

{rη:\l-rηι\<32δ};

(ii) \Ao{nj)\<Cδ-»/P 9

(iii) For j = 1, ... , N, Aj(rη) is supported on the set

{rη : V~ιδ < |1 - r ^ | < 32 Vg}d\

(iv) For j=l,...,N

\Aj(rη)\ < C{2j)-n-m+nlp{Vδ)-nlp.

Properties (i), (ii) and (iii) follow immediately from the definition
of Φj, the support and size of the atom a, and the triangle inequal-
ity for the pseudometric d(z, w) = |1 - (z, w)\ιl2 proved in [R]?

Proposition 5.1.2. To verify property (iv) we must use the cancella-
tion properties of the atom a in the usual way. For 2j~ιδ < |1 - rηχ\
estimate that

\Aj(rη)\ < \Ja(τ)[Pθ9-ι(rη, τ)Φj(rη, τ) - Γm(τ? ex)]dσ(τ)

where for each fixed rη, Tm(τ,e{) is the non-isotropic Taylor poly-
nomial for Poy_ι(rη, τ)Φj(rη, τ) expanded about β\ of degree m;
see [GL] for the precise details. Since
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we may estimate that

δm

, τ)Φjirη, τ) - Tm(τ, ex)\ < C(2^

It follows that

as claimed.
We now write

7=0

where

Fj(rζ)= ί Aj(rη)Qr(ζ,η)dσ(η)
Js

and proceed to estimate FJ for each j . From the formula for Qr(ζ, η)
it is not hard to see that

[\Qr(ζ,η)\dσ(η)<C
Js

for a constant C independent of r we have used the fact that Qr(ζ, η)
vanishes identically on the Koranyi ball centered at ζ of radius 1 - r
as well as the estimates found in [R] Proposition 1.4.10. It follows
therefore that for each j

\\Fj\\oo <

and therefore

(12) \\Fj\\oo < C{V)-n-m+n!p{2jδ)-nlp .

Recall that the admissible maximal region depends on the parameter
a which controls its aperture. Set M — 1000a. We will use inequality
(12) above to estimate FJ on the set {ξeS:\\-ξ\\< MVδ] .

Assume then that |1 - ξ\\ > M2Jδ, and let rζ e Γa(ξ). From
properties (i) and (iii) it follows that Fj(rζ) vanishes unless 1 — r <
32 2jδ so we may as well assume that 1 - r < 32 2jδ . Let

Uj9r((η, τ))=P0,-i(rη, τ)Φj{rη, τ ) ,

where, for each fixed r, UjfΓ is a function of one complex variable;
notice that the definition of Φ/(π/, τ) makes this possible. Then by
Corollary 2
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Thus

Fj(rζ)= fa*Qr(η)Uj9r((ζ,Ί))dσ(η).
Js

Notice that, since Uj,r((ζ, η)) vanishes if | l - r ( £ , η)\ > 16 2 7 J, and
since rζ e Γa(ξ) with 1 - r < 32 Vδ, it follows from the triangle
inequality of [R], Proposition 5.1.2 that Uj9r((ζ, η)) — 0 unless η e
B(ξ9 l2Sa2J'δ). For each such η use the cancellation properties of a
to write

a*Qr(η)= fa(τ)Qr((η,τ))dσ(τ)
Js

= ( a{τ){Qr{(η,τ))-Tm{τ^eγ)]dσ{τ),
Js

where for each fixed η, Tm(τ, e\) is the non-isotropic Taylor polyno-
mial for Qr((η9 τ)) expanded about e\ of degree m. From the for-
mula Qr((η, τ)) and the facts that τ e B(e{ δ) 9 ηeB(ζ; ^
and 11 — £i I > M2Jδ it can be seen that

Therefore with f/ as above

From this it follows that
gm+n-n/p

)\<C

and therefore, if 11 - ζ\ \ > MVδ, then

)

We now specify that m > n/p - n . Then the estimates in (12) and
(13) show that

f{Fjy dσ= ί (F y do + / {Fjγ da,
JS JB{eχ\M2Jδ) JS-B{eχ\M2Jδ)

where the first integral on the right-hand side is dominated by

and the second integral is less than

f ( 2 J δ ) p p

Γ(2J)~np~mp+n / ^ u> Aπ
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Since 0 < p < 1 we may use the triangle inequality to conclude that

N

7=0
oo

This completes the proof of the claim for the special case where k = 1.

The proof of the claim for the arbitrary case where 0 < β < k <
n - \ proceeds in an analogous fashion; we point out some of the
minor differences. Since equation (6) will be replaced by

(R + R)kP[Iβa](z)= Ur^Jka*PΛ (7,(C),

instead of U\ as given by equation (7), we will have to consider a sum
of terms of the form

We split each such item into two pieces J\ and J2 as given by equa-
tions (8) and (9) with 1 - β replaced by k - β and RV replaced by
RJRk~JV. To handle J\ we use the pointwise estimates of Lemma 3
in place of inequality (10). To handle J2, in place of equation (11)
we use Theorem 1 from [ACa] and Lemma 2 to get the fact that

RjRk~JP[a]= £ Ql9m(L9T)Plfm[a]9

where Qιm is a polynomial in two variables of degree no greater than
k. This lets us write J2 as a sum of terms of the form

where
(1 _ r2\n-t-s

where j +1 < n - 1 and t and s are non-positive integers such that
|ί| + | ί | < / ί — 1. The remainder of the argument proceeds without
difficulty. This completes the proof of Theorem 2. D
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