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INTERPOLATION SUBMANIFOLDS
OF THE UNITARY GROUP

YEREN XU

An interpolation subset in the boundary of a domain is a closed set
in which every continuous (or smooth) function can be extended as a
holomorphic function inside the domain and continuous (or smooth,
respectively) up to the boundary. In this paper we give some geometric
description for submanifolds in the unitary group to be interpolation
sets for the domain obtained by taking polynomial hull of the uni-
tary group. In particular, we retrieved corresponding results on the
polydisc.

The goal of this paper is to characterize the interpolation manifolds
in the unitary group U(n), which is regarded as an n2-dimensional
real analytic submanifold in Cn = R2n . The theme of this topic
started from the work by Henkin and Tumanov in [5], and Burns-Stout
in [2] who proved the case for real analytic interpolation manifolds
on the boundaries of some pseudoconvex domains. Then a lengthy
cycle of works (Hakim-Sibony [4], Henkin-Tumanov [5], Stout [13],
etc.) followed which mainly study the case for interpolation manifolds
in the boundaries of strongly pseudoconvex domains. By using an
embedding technique, Saeren's paper [11] was the first to deal with the
case for the interpolation manifolds in the polydisc. In what follows,
we shall deal with similar problems for U(«), which contains the
polydisc as an n-dimensional real analytic submanifold.

The paper is organized in the following way.
In §1, we give some basic definitions and properties related to the

unitary group U(n). In particular, the polynomial hull of U(n) is
described. After introducing the open-cone condition and the closed-
cone condition, which bear some resemblance to the polydisc case,
§2 contains the statement of all the results in this paper. Section 3
provides mainly the technical details for the proof of the results stated
in §2. Finally, §4 contains some remarks that relate our work to that
of Jimbo-Sakai [7] and that of Saerens [11], [12].

1. Definitions and certain properties of \J(n). In this section, we
are going to introduce several notations and definitions that we will
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use throughout the paper. Since we are mainly concerned with some
analytic properties of U(n), we will ignore, for the most part, the
algebraic structure of this compact Lie group.

Let U(Λ) be the unitary group in Cn , that is the set of all n x n
unitary matrices. If we use the standard coordinates of Cn and write
Z = ( Z 1 , . . . , Znγ with Z< = (Z/, . . . , Zj) , then

U(Λ) = {Ze C" : ZJZ = Z Z 7 = /„}.

The group U(π) is a real analytic manifold, and dim^U(n) = ή1. If
we define

then U(/i) = {Z e Cn : φ)(Z) = ψ){Z) = 0, for all /, y}. Note
that automatically we have y/(Z) = 0 for all 1 < / < n. Under
the identification of an π2-vector ξ = (ξ\, . . . , ξ\ , . . . , ξf , . . . , ξ»)
with an (n x n)-matrix <̂  with row-vectors ξι = (ξ[, ... , ξι

n), the real
tangent space of U(/i) at a point P is given by

TP(V(n)) = {ξe C" : ξ + PξiP = 0}.

This can be seen as follows. First, by the definition of real tangent
space,

\<4sj<n ι ) Zr

for all 1 < /, j < n

If P G U(/i), so that P:Cnl -> C"2 defined by P(z) = P-Z with the

canonical correspondence between Cn and GL(/i, C) given above,
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then the mapping P is nonsingular and linear. It carries U(«) to

itself. The differential dP: C" -> C" is just P, and PIn = P. Thus

7 > ( U ( Λ ) ) = dP(TIn(U(n))) = {χ e C"2: χ = Pζ with ξ + ? = 0}.

Then, as ξ + | * = 0,

0 = £ + £' = P ' 1 * + OP""1*)' = />-*(* +

Our conclusion follows. (In particular, the tangent space of U(n) at
the identity matrix may be identified with the set of all n x n skew-
hermitian matrices. That is to say, the Lie algebra of U(«) is the
algebra of all skew-symmetric matrices.) Therefore U(w) is a totally
real submanifold in Cn with maximum dimension. The total reality
of U(n) also follows from the observation that U(n) is the fixed
submanifold of the antiholomorphic linear mapping T: GL(n, C) —>

C) given by T{A) =( ) {) {γ
Let D be a bounded domain in Cn. We denote by Ak(D) the

algebra of all functions that are analytic on D and have kth (0 <
k < oo) continuous partial derivatives on the closure of Z). The
algebra Aω consists of all analytic functions on D that extend to be
analytic on a neighborhood of Z>. For the algebra A0 (functions that
are analytic on D and continuous on D), we write simply A(D).

Given a bounded domain D with smooth boundary bD, a compact
subset Σ is called a peak set for Ak(D) if there is a function / in
Ak(D) such t h a t / | Σ = 1 and |/(z) | < 1 for all z e D\Σ. A compact
set Σ c bD is called an interpolation set for Ak(D) if for any given
function / e Ck(Σ), there is an F e Ak(D) that coincides with / on
Σ. If F can be chosen in such a way that l / 7 ^ ) ! < maxzG£ |-F(z)| for
all w in Z)\Σ,then Σ is called a peak-interpolation set for Ak(D). We
call Σ a local peak set (/oca/ interpolation set, local peak-interpolation
set) if for every point p in Σ, the corresponding assumptions hold
for Σ Π C/ with some neighborhood U of /?.

Recall that for a compact subset K in CΛ , the polynomial hull of
AT is defined to be

K = {zeC\ \p(z)\ < Mzxweκ \p(w)\

for all holomorphic polynomials p in Cn}.

In the following lemma, we use the notation A < 0 to mean that the
square matrix A has only nonpositive eigenvalues.
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LEMMA 1.1. The polynomial hull of the unitary group U(n) in Cn

is
U(/i) = {Ze Cnl: Ήz - /„ < 0}.

Proof. Let A = {Z eCn\ 'ZAZ - In < 0}. First we know that the
torus θ consisting of all matrices of the form Diag(e/<9i, . . . , eiθ*) is
contained in U(n). The polynomial hull of θ is given by

θ = {Diag^!, . . . , λn): \λf\ < 1 for / = 1, . . . , n}.

On the other hand, every n x n matrix can be written as UDV with
U, V two unitary matrices and D a diagonal matrix, a direct conse-
quence of Schur's lemma about diagonalizing square matrices (cf. [1,
p. 195]). The set U(n) is invariant under the action of U(n). That is,
if P e U(n), then UPV e U(n). Therefore Λ c U(n). Conversely,
if P £ Λ, then there is an eigenvalue of P , say λ\, with modulus
strictly greater than 1. By Schur's lemma, there exists a unitary ma-
trix U such that U~ιPU is an upper-triangle matrix with diagonal
elements the eigenvalues of P. Assume that λ\ appears in the first
position of the diagonal and let U~ι = (υj). Then the polynomial

p(Z)= £ u\z\v\
\<s,t<n

enjoys the following properties:

(l) |p(P)| = μ i l > i ,
(2) M a x Z e U ( n ) \p(Z)\ = Max Z e U ( r t ) \z\\ < 1.
This completes the proof.

From the above proof, we can obtain a stronger conclusion that the
linear convex hull of U(n) coincides with its polynomial hull, and
therefore that U(AI) is convex. Also, from the above lemma, U(«) is
closed under matrix multiplication and has Ό(n) as its Shilov bound-
ary. Since a Hermitian matrix is positive definite (i.e., all eigenvalues
are positive) if and only if the determinant of all its principal minors
are positive, U(n) is the semianalytic set defined by

1 </,./</

for all / = 1, . . . , n
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2. Statement of results. In this section we will state several theo-
rems; we leave the proofs to the next section.

Let S? be the set of all skew-Hermitian matrices A and define

&>+ = {Ae<9?:iA>0}9 ^- = {Ae^:iA< 0}.

A C 1 submanifold Σ inU(/ί) is said to satisfy the open cone (resp.
closed cone) condition if the following holds for every point p e Σ

Tp(Σ)p-1

(resp. if Tp(Σ)p-1 C ^ \ ( ^
Here we are using the identification of an n2-vector ξ with an n x n

matrix as we mentioned at the beginning of § 1. For a fc-dimensional
C 1 submanifold Σ in Cn , the real tangent space at the point p is
defined by

= {J(Φ)p.V:VeRk}

pι=ι

where Σ is parameterized near p by the C 1 mapping

and J(Φ)P is the n2 x k Jacobian of Φ at p. Therefore our open cone
(or closed cone) condition simply means that for all V = (v1, . . . , vk)
in Rk , the matrix

l<s,t<n

is neither positive semi-definite nor negative semi-definite (or neither
positive definite nor negative definite).

Our first theorem is a simple analogue of [2, Theorem IV. 1] and

follows from the semianalyticity of \5{n).

THEOREM 2.1. A real-analytic closed submanifold Σ in Ό(n) is an

interpolation set for Aω(U(n)) if and only if there exists a complex

submanifold J£ in a neighborhood of U(n) such that

There is a geometric description of the real-analytic submanifolds
that are interpolation sets for Aω(\J(n)):
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THEOREM 2.2. Let Σ be a real analytic closedsubmanifoldof'U(n).
If Σ satisfies the open cone condition at each of its points, then Σ is
an interpolation set for Aω(λJ{n)). Conversely, if σ is an interpolation
set or Aω(XJ(n)), then Σ necessarily satisfies the closed cone condition
at each point

For the C®-interpolation problem, we can get a stronger result as
follows

THEOREM 2.3. Let Σ be a closed C2 submanifold in U(n). If Σ
satisfies the open cone condition, then Σ is a peak-interpolation set for
A(JJ(n)). Conversely, Σ must satisfy the closed cone condition if it is
a peak-interpolation for A(U(n)).

In the case of C°° , we have obtained only a partial result as follows.
For the corresponding results in the poly disc case, see [8].

THEOREM 2.4. Suppose that Σ is a closed C°° submanifold of 'U(n).
If Σ satisfies the open cone condition at each of its points^then Σ is
a local peak set and also an interpolation set for A°°(U(n)). Con-
versely, if Σ is a peak set for Ak(Ό(n)) with k > 1, then there exists
an (n2 - l)-dimensional Ck submanifold Jt in some neighborhood
of U(/i) such that Σ c / n U(n) and Jt Π U(/i) satisfies the closed
cone condition at each of its points.

We end this section by giving some examples.

EXAMPLE 2.5. Consider the real analytic curve Γ in U(w) defined
by

where \/2/2 < ε < 1 and 1 + η2 - 3ε2 + 2e4 < 0. Then we have

_ (
W " ^ y/ΪZ~^Wt ee(η~i)t J

iΓ(O)Γ(O)' = 3 .
v ' v J e-ε +ιε

Hence the curve is a peak-interpolation set for A(U(n)) for / near
0, since at t = 0 we have that

Det(ιΓ(O)Γ(U)0 = τ^—j(l + η2- 3ε2 + 2ε4) < 0.



INTERPOLATION MANIFOLDS 187

EXAMPLE 2.6. Let SΌ(n) be the special unitary group in U(n).
Then SU(n) is a peak-interpolation set for Aω(\J{n)). This can be
seen either from Theorem 2.1, since

SU(Λ) = SU(n) n{Z e C" : det(Z) = 1}

= JJ(n)n{ZeCn2: det(Z) = 1}

2 2

and {Z G Crt : det(Z) = 1} is a complex submanifold in Cn . Al-
ternatively, the result follows from Theorem 2.2, since for any ξ G
7>(SU(/ι)), we have that

Tr{#P} = 0

and this implies that ξ can be neither positive definite nor negative
definite. For any fixed real number θ , we define a submanifold

Vθ(n) = {Ze U(n): det(Z) - e

ie}.

Then Uθ is a peak-interpolation set for Aω(U(n)) and for >4(U(w)),
since we can show that this submanifold satisfies the open cone con-
dition. Similar to the second proof, one can show that the special
orthogonal group

SO(Λ) = {Z G R" :ZtZ=In}

is also a peak-interpolation set for Aω(U(n)) and for A{\J(n)).

3. The proof of the theorems. In this section, we will give a complete
proof of the theorems stated in the last section. The ideas in these
proofs are originally from Nagel and Rudin [9], Burns and Stout [2],
and Saerens [11]. Two preliminary results from matrix analysis will
be used to deal with U(n).

LEMMA 3.1. If A = (aιj) is an n x n positive definite matrix and

B = (bj) is an n x n negative definite matrix, then we have following

inequality:

Σ *fi <

Proof. Recall that the Schur product of two n x n square matrices
A = (aιj) and B = (bιj) is the n x n matrix C = (cj) defined by
ck = aljbιj. It is well known that the Schur product of two positive
definite matrices is still positive definite (cf. [1, p. 94]). Therefore
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the matrix C = (#}6j) is negative definite. Taking X = ( l , . . . , l ) ,

XCX1 < 0 gives our first lemma.

LEMMA 3.2. If an n x n matrix A — (αj) is positive definite, then

the n2 x n2 matrix B = (αj/«) is also positive definite.

Proof. Let X = (Xx, . . . , Xn) be any vector in C"2 with JΓf =
(X/, . . . , Xf) in CΛ , and let f?j = (α}/rt)rtXΛ . Then B = (B>). Now

Since 4̂ > 0, for any fixed k, I, every term inside the parentheses is
strictly positive. Therefore B is strictly positive definite.

The proof of Theorem 2.1 follows, mutatis mutandis, from^the al-
gebraic proof of Theorem IV. 1 of [2], since we know that U(n) is a
semi-analytic set and that the polynomial hull of U(n), U(π) has a
Stein neighborhood system.

The proof of Theorem 2.2 consists of two parts. First we prove the
theorem for l-dimensional submanifolds, i.e., for curves, as follows.

PROPOSITION 3.3. Let Γ be a simple closed real analytic curve in
U(n), say Γ = Γ(i?) with Γ(ί) real analytic, regular and injective on
[-1, 1), and periodic with period 2. If for every t eR, we have that

then Γ is an interpolation submanifold of AωU(n). Conversely, if Γ

is a closed interpolation submanifold of AωΌ(n), then for all t eR

Proof Let / = [-1, 1]. Then Γ(l) = Γ(- l ) and Γ = Γ(/). We
can assume, without loss generality, that Γ(0) = In - Since Γ is real
analytic in a neighborhood of the interval / and is periodic, we can
extend Γ to be holomorphic in a neighborhood R x [-η, η] c C 1 of
R for some suitable η > 0. We denote this extension again by Γ.
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We have, by the Taylor expansion of Γ(ί + is) about a point t e R,
that for small s

Γ(ί + w) = Γ(ί) + isΓ(t) - y Γ ( ί ) + φ 2 ) .

As Γ(R) c U(/i), we have

Γ(t)Γ(tγ = In

for all t E /. Therefore, by differentiating the above equality with
respect to t, we obtain

Γ"(ί)Γ(ί)' + 2Γ(ί)P(ί)/ + Γ(ί)Γ"(ί)' = 0.

According to these equalities, we get

In - Γ(ί + is)T{t + is)*

- 2s2Γ(t)Γ(tγ + o(s2).

If Γ(ί)Γ(ί) ί ^ ^ + U ^ L , then the matrix Γ φ Π ί ) ' has two eigen-
values with opposite signs. Therefore, there exists a constant σ > 0
such that for every t G i?, the matrix /„ - Γ(ί + is)Γ(t + w)̂  also has
two eigenvalues with opposite signs for t e R and \s\ < σ, i.e., for
these t and 5, the matrix /„ - Γ(ί + is)T{t + is)* cannot be positive
semi-definite or negative semi-definite. Define Γ, a complexification
of Γ,by

f = {Γ(z): z = t + is with t e R and \s\ < σ}.

Note that Γ is a submanifold of a neighborhood of U(n), provided
that σ is small enough. The above observation implies that f meets
U(n) only along U(/ι), i.e.,

f ΓΊU(ϊϊ) = f nU(/i) = Γ.

Therefore our conclusion that Γ is an interpolation set for Aω(Ό(n))
follows from Theorem 2.1.

Conversely, suppose Γ(to)Γ{toy e 3?+ U «̂ L for some To e R.
We assume that to = 0 and Γ(ίo) = h - Then there exists a small
neighborhood / = [—η, η] of 0 so that for all t € / , the matrix
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V(t)T(ty is either positive definite or negative definite, say the former.
Now the positive definiteness of this matrix implies that we can find
a positive constant a such that the following two conditions hold for
D = {z = t + is : t e J and \s\ < σ}:

1. The matrix Γ'(z) is nonsingular for z G D.
2. Then the open set D is mapped by Γ to Cn as follows:

/)_ = {z = t + is, t e J and - σ < s < 0} -+ Cn\(\J(n)\U(n)),

and

β + = {z = ί + ^ , ί G / and 0 < 5 < σ} -> U(ϊϊ),

or the other way around, Z>_ is mapped to U(Λ) and Z>+ to

Cw
 \ ( U ( Λ ) \ U ( Λ ) ) . We assume the former one.

Therefore the embedded complex curve Γ(Z)_) meets U(n) only
along the curve Γ, while the embedded complex curve Γ(D+) is con-
tained entirely in U(n) and meets U(n) only along Γ. The variety
Γ is a one-dimensional complex manifold that is biholomorphically
equivalent to an annulus in the complex plane, provided σ > 0 is
small enough. There is a function φ defined and holomorphic on a
neighborhood of Γ in Γ that takes Γ bianalytically onto the unit
circle in C. We can suppose that ^ o Γ takes £>+ into the unit disc
in C and takes Z>_ into the complement of the unit disc. If ZQ € C
lies in the unit disc but has modulus very near one, then the function
/ defined on Γ by

Aw) = ι

φ(w) - z0

is in C ω (Γ), but does not extend analytically to Γ(Z>+). This gives
the proof of the second part of the proposition.

The above proposition leads to the proof of Theorem 2.2, by reduc-
ing the dimension of Σ to 1 as follows:

Suppose that Σ is an interpolation set for Aω(Ό(n)), i.e.,

but there is a point P in Σ such that Tp^P1 is not contained in
c5^\(^+ U ^ _ ) . Then we can find an n x n matrix υP in 7>(Σ),
so that vpP1 G <̂ + U <^_, say it is positive definite. There exists a
simple closed analytic curve Γ in Σ in a neighborhood of P such
that Γ(l) = P and P(ί) = vP. Here we identify the curve Γ with
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the image of real analytic map Γ from the unit circle Sι in C. The
mapping Γ can be extended to a holomorphic function in a tubular
neighborhood D of Sι. The positiveness of the matrix υpPt implies
that there exists a neighborhood B of (1, 0) so that one of the sets
D-j= {\z\ < l}Γ\DπB and D+ = {\z\ > l}Γ\DπB is mapped into
U(/2) and the closure of the image meets V(n) only along Γ. Thus,
by the method we used in the proof of the second part of the above
proposition, a real analytic function / on Γ can bejDbtained that
cannot be extended to a neighborhood of Γ inside \J(n). Since Σ
is a simple closed real analytic curve, Cω(Γ) = C ω ( Σ ) | Γ , which leads
to the contradiction that Cω(Σ) ψ Aω(U{n))\Σ. This contradiction
yields the necessary condition in Theorem 2.2.

To prove the sufficiency, we only need to construct a complexifi-
cation Σ of Σ that intersects U(/t) in Σ. Suppose dim^Σ = m.
Then there exists a bianalytic map Φ from an open set Ω in Rm to
a neighborhood B of the point P such that Σ Π B is the image of Φ.
The open cone condition of Σ means that the matrix

\/=l r=l ι / \<s,t<n

is neither positive definite nor negative definite for all points in Ω
and for all V = (vι

 9 ... ,v
n). Since Φ is real analytic on Ω, we

can choose a thin neighborhood Ω of Ω in Cm and extend Φ to
an analytic mapping, again denoted by Φ, from Ω to a complex
submanifold Σ in Cn . For each fixed Xo + iYo in Ω, consider the
curve

Γ(ί) = Φ(Xo + itYo) •> for |ί| < 1.

(We can assume that Ω is symmetric about Rm.) For all t in the
unit interval, we are in the same situation as we had in the proof of
the first part in Proposition 3.3. Hence by choosing small Ω, we can
obtain a complex submanifold Σ contained in Ω that meets U(n)
only along the Σ. This completes our proof of Theorem 2.2

In order to prove Theorem 2.3, first we make the following conven-
tion:

Given two vectors in Cn — R2n . We regard them as two n x n
matrices U = (u\t + iu2

t) and V = (v]t + iυjt) and define the usual
Euclidean inner product between these two vectors (matrices) as

n

^ r / _j \uStuSt ' uStuSΐ)m

s9t=\
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This is the real part of the standard Hermitian inner product in Cn

it is the standard real inner product on Cn = R2n .
Recall that a C 1 submanifold Jf in Cn is called totally real at a

point P in ^# if there is no complex subspace contained in the real
tangent space of Jί at P, except the origin. Harvey and Wells [3]
proved that if M is a C 1 totally real submanifold of a complex mani-
fold X, then there exist a neighborhood Jlf of M and a nonnegative
function φ e C2{JV) such that

1. M = | Z G / : (£(z) = 0} = {z e X : grad(ψ(z)) = 0},
2. </>(z) is strictly plurisubharmonic on JV .
The idea for proving Theorem 2.3 is, at every point P in Σ, to em-

bed Σ locally into the boundary of a strictly pseudoconvex domain 31
in Cn such that Σ is complex tangential in the boundary b3$. This
can be done first by requiring 3f to be strictly pseudoconvex near the
point P. Then use a method from Stout [13] and Saerens [11] to get
a globally strictly pseudoconvex domain 31 so that Σ is also complex
tangential near P. Thus Σ is a local peak set and a local interpolation
set for A(U(n)), following results from Henkin-Tumanov [5]. More-
over, by using partition of unity exactly as done in Hakim-Sibony [4],
Σ is an interpolation set for A(Ό(n)). Finally the property of global
peak-interpolation for Σ is obtained from Varopoulos' Theorem in
[14]. We give the proof of the first part and leave the proof of the
second part to the references [11] and [13]. Without loss of generality,
we can assume that P = In.

PROPOSITION 3.4. Let Σ be a C2 submanifold of U(n) that con-
tains In.IfΣ satisfies the open cone condition at In, then there exists
a C2 function p: Cn —• R such that for the domain 31 defined by
31 = {Z e C" : p(Z) < 0}, there is an open subset % in C" such
that

1. dp{Z)φQ for Z in W,

2. U(/ι) Π W c b3J and W n ( U ( / I ) \ U ( / I ) ) c 3!,

3. 7>(Σ) c Tf(b3f) ifPe%f,and
4. p is strictly plurisubharmonic in a neighborhood of b3J n %.

Proof. Assume dim# Σ = m. Then m < n2 - 1. We note that there
exists a neighborhood B of the point In in U(n) and an (n2 - 1)-
dimensional C 2 submanifold Σ of U(n) so that Σ n ΰ satisfies the
open cone condition and contains Σ n B. This can be done, using the
equivalent definition of cone conditions stated in Remark 4.1, by the



INTERPOLATION MANIFOLDS 193

same argument given in Saerens [11]. (See the proof of Lemma IV.2
in [11].)

So starting from now, we can assume that the manifold Σ is of top
dimension, i.e., of dimension n2 - 1. We need to show that if

τP(Σ)P(

for P eΣ near the identity, then a normal vector e(P) e
can be chosen such that e(P) e &*+ U 3d- . For this, it is enough to
assume that P = In and that Σ is given by Φ(Z) = 0 for Z e U(n)
near In andΦ a C2 real-valued function with dΦφQ on Σ.

Let Bφ be the skew-hermitian matrix defined by

Then there exists a unitary matrix U so that

UBφW = idiag(λ!, . . . , λn), λiER.

Consider a linear change of coordinates L: Z —> C/Z £/'. Then under
this mapping, U(n) -» U(/ι), /«->/«, and for Z G L(U(n)) = U(/i)
near the identity, Σ is given by Ψ(Z) = Φ(U*ZU) = 0. Moreover,

azj t~ kdzf ' ft kazl ι

Thus
J 5 Ψ = UBφΪJt = i d i a g ( / l ! 9 . . . 9 λ n ) .

On the other hand, by the definition of the real tangent space,

If A = -A*, then

}f-j JdZj
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Therefore, the condition 7/(Σ) c &\ίP+ u ^ L implies that the real
numbers λ\9 ... 9λn all have the same sign. (For if, say, λ\ > 0 and
A2 < 0, then the skew-hermitian matrix A = i diag(^2, —λ\, 0, . . . , 0)
would be in ~3\V\ Γ/(Σ).) Thus the matrix iBψ is either positive
definite or negative definite, and by our definition of normal vector,
we can choose e(In) = Bψ, since for all vectors A e 7/π(Σ),

A-e(In) = Re ^

For a general point P = (Pj) eΣ near /„ , we can choose

and the positive (or negative) definiteness of e(P) follows from that

of e(In).
To construct our desired function p, we assume, without loss of

generality, that e(P) e &>+ i.e., the matrix ie(P) = {Cf{P) + iDf(P))
is positive definite for P near the identity.

By the theorem of Harvey and Wells, there exist a neighborhood
JV of Σ and a non-negative strictly plurisubharmonic function φ(Z)
in Jί such that

Σ = {Z E ^ : 0(Z) = 0} = {Z G^r : grad0(Z) = 0}.

If H{φ)P denotes the complex Hessian of φ(Z) at P , i.e.,

where 1 < j , k < n2 and ζ7 runs through the n2 complex coordi-
nates Zιj, then the n2 x n2 matrix H(φ)z is positive definite near
In . Therefore there exists a large positive number αo such that the
n2 x n2 Hermitian matrix B + aoH(φ)j is positive definite, where

| f)7u I
OZJV J

We define a real-valued C 2 function

n

where {φs

t{Z), ψf{Z)} are the defining functions of U(/i) defined



INTERPOLATION MANIFOLDS 195

in §1, and choose an arbitrary C2 function f:R-+R such that

/(0) = 0 and /'(()) = αo. Then our desired function p is given by

Our assertion 1 in Proposition 3.4 follows from the fact that

dp(Z)_

Z=I
= Q(In) + iDu

υ{In)
Z=I

and that our matrix ie(In) is nonzero. For part 2, we note that if
Z e U(n) is near In , φ(Z) = φs

t{Z) = ψs

t{Z) = 0, and hence U(/φl
b9f. For the inclusion that ^nU(n) c 2, we note that for Z e U(n)
near / n ,

< 0, iDξ(Z)) > 0.

Therefore, Lemma 3.1 and the fact that at In , / ° 0 vanishes to the
second order while the function p\ vanishes only to the first order,
yield our result. For part 3, we note that the complex tangent space
of bSf at P e Σ is defined by

Qv)nxn

n

= 0
z=p

u,v=l

= oV.
z=p

A computation shows that at P, Ξ G Tfi(b&) if and only if the
following equality holds

(*) Σ WiCJliP) + iDu

k{P)) = 0.

Thus the inclusion 7>(Σ) c Tf(B&) follows from the fact that the
skew-hermitian matrix e(P) is in (7/>(Σ)P/)-L,i.e., ̂ (P) has to satisfy
the equality (*) for all Ξ e 7>(Σ).

To prove the last part, it is enough to show that the Hessian of
p(Z) is strictly positive definite when P = In. This is obtained from
Lemma 3.2 and the following identity

Thus, we finish the proof of our proposition.
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The global version of Proposition 3.4 is stated in the following
proposition that ensures that the domain 3f can be chosen globally as
a strictly pseudoconvex domain. The proof is the same as that given
by Saerens in [11] for polydiscs.

PROPOSITION 3.5. Given a point P G Σ , there exists a strictly pseu-
doconvex domain 3f c C"1 with C2 boundary and an open subset
% containing P such that conclusions (2) with (3) in Proposition 3.4
hold.

It is known [5, 10] that a C 1 submanifold M in the boundary of
a strictly pseudoconvex domain D is a peak-interpolation set if and
only if for each point P eM, TP(M) c Tf(bD). Thus together with
Proposition 3.5, we can assert, following the lines in Saerens [4], that
Σ is a local peak set and an interpolation set for A(U(n)), provided
that Σ satisfies the open cone condition at every point. Since, for
every point P in U(n), the function

peaks only at the point P, P is a peak point for A(U(n)). Our suffi-
cient condition in Theorem 2.3 is then an immediate consequence of
a result, due to Varopoulos in [14], which implies that, for a bounded
domain D, an interpolation set for A(D) of which every point is also
a peak point for A(D) is actually a peak-interpolation set for A(D).

Our proof of the necessity in Theorem 2.3 is based on the following
two theorems (cf. [9]).

THEOREM (Nagel and Rudiή). Let the segment (0, 1) c R be one
edge of an open rectangle Q in the upper half plane of C. Suppose

(a) f:Q—>C is a bounded Cι-function, and

(b) § | e LP(Q) for some p>\.
Then l im/(x + iy) exists for almost all x £ (0, 1), as y —> 0.

THEOREM {Nagel and Rudiri). If' OS m Cn is a domain and if K c
b9ί is a peak set for A{β), then there exists an F e H°°{β) which
has no limit along any curve in ζ& that ends at a point of K.

Nagel and Wainger obtained several more general results. For de-
tails, see [10].
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Suppose now that σ is a peak set for A(U(n)) and that there is a
point, say P, at which there is a non-zero vector ζ e 7>(Σ) such that
ξψ* e&'+UέP-. Choose a C2 simple closed curve γ in U(n) so that
P eγ and γ is the image of some C2 periodic mapping φ: R —> U(w)
with φ(0) = P and ^(0) = £. Let </ = Maxfllp'Hoo, HP'ΊIOO} < oo.
Assume that iφf(0)φt(0) < 0. (The same proof works for the case
when the matrix iφf(0)φt(0) is positive definite.) Then this matrix
remains negative definite for small x in R. Without loss of generality,
we assume that φ{x + 2) = φ(x). Choose a function ^ : ( - 1 , 1) —>
C"2 such that

/

I /-I

^ f ( x ) d x = l , /
The existence of such a function is seen as follows. Let c = ^ > 0,
and let A be a function on [0, 1] with λ(0) = ^(0) = λ"(0) = 0,
λ(l) = 1/2, Λ, positive and increasing on [0, 1] such that /0 λ(x)dx
> 1/2 - c. Then by extending A to [-1,0] as an odd function, the
function λ'(x) has the desired properties.

Define uf(x9y) = j\(φf)f(x + ty)ψf(t)dt and

Φ(x + iy) =

for x near 0 and y > 0. Since our matrix iφf(x)φt(x) is negative
definite when x — 0, we can find a positive number e so that for x
near 0,

for A: = 1, . . . , n . Therefore φ and Φ have the following properties
for z = x + iy:

1. Φ(*) - p(x) and ^ | y = 0 = iφ'(x).
2. There exist two small positive constants e, η such that under

the mapping Φ, the region (—ε, ε) x [0, η] is mapped into U(AI) and

[_g>£] \φ'(x) - φ'{x+y)\ < dy <e.

3. | M * , 3 / ) | < | | ^ | | o o , \uy(x,y)\<l,<md ^
Let Φ(z) = (Φι(z), ... , Φ"(z)), where the Φk's are the columns
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of Φ. Then for 1 < k < n and z near 0

1 _ |φ* ( x + z>)|2 = l - £ \φf(χ) + iyufix, y)\2

since second and last term in this equality are O(y2) by the above
property (2). Now U(n) is contained in the set S, S = S2n~ι x x
S 2 "" 1 , the product of n copies of {In - l)-sphere. The distance from
the point Φ(z) to U(n) is greater than or equal to that to S. Suppose
C to be a point in AS . Then

\Φk(z) - ζk\2 = 1 + |Φ^(z)| ~ 2Re(C^, Φk(z))

Therefore dist(Φ(z), U(n)) > ey. If F is a function in A(Ό(n)), by
letting /(z) = F(Φ(z)), we have following estimate for small y:

df(z) \\F\\c

dist(Φ(z),U(«))

dΦf(z)
= 0{y-χl2).

Therefore ^ ^ belongs to £fp(Q) for some rectangle Q in the upper
half plane, where 1 < p < 2. Our theorem then follows from the
theorem of Nagel and Rudin.

The proof of the sufficiency of Theorem 2.4 could have been carried
out exactly in the same fashion, if one notes that our constructions and
all the theorems we quoted there still work in the C°° case. But since
we no longer have a C°° version of Varopoulos's theorem, we can only
reach the conclusion that Σ is a local peak set and an interpolation
set for A°°(U(n)).

Proof of the necessity in Theorem 2.4: Let / e Ak(\J(n)) be such
that / | Σ = 1 and l/lffp^y < 1 Without loss of generality, we can

assume that / φ 0 in \J{n). Let log(/(Z)) = u(Z) + iv(Z) and

j^ = {ZeCn\ v(Z) = 0} n U(/ι).

Then Jt contains Σ. First we show that near every point PQ G Σ, Jf
is a manifold of dimension n2 -1. This amounts to showing that there
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exists η e 7> (U(n)) such that η(υ) φ 0. Consider the holomoφhic
mapping φ from the unit disc U in C to U(n)\Ό(n) defined by
φ(ζ) = ξPΌ. Then 0(1) - P o, f{φ{\)) = 1 and | / W ) ) | < 1 for
ξ eU. Therefore, Hopf s lemma and the Cauchy-Riemann equations
give dv{φ{eiθ))/dθ φ 0. By taking η = φ*gg\\ e 7>o(U(n)), we
have η(v) Φ 0. Thus rf(v|u(/i)) does not vanish at point PQ . Next
we claim that JP satisfies the closed cone condition at every point of
Σ. If not, say at P 9 we have that the set Tp(Jf)Pt is not contained
in the set S?\{βP+ U ^ _ ) . Then there exists an n x n matrix ξ in
Tp(JP) such that iζP* > 0 or iξF < 0, say the former. Let.4 =
iPtξ. Then ζ + Pξ*P = 0 implies that .4 = P'ι{iξF)P > 0. For
|C| ^ 1, we define a matrix function M(ζ) — In — c{\ — ζ)A, where
c = l/maxi</<πiz > 0 with λ, the positive eigenvalues of the matrix
τ4. (If v4 < 0, we take c = — l/maxi</<n |A/| < 0.) The eigenvalues
of M(ζ) are /// = 1 - c(l - C)A/ with

= 1 -
2(1-Reζ)

<

since 2(1 - Reζ) > (1 - Re£)2 + (Imζ)2 = |1 - C|2 M(l) - 7Λ.
Therefore the mapping ζ —> PM(ζ) is C°° from the unit disc to
U(w). The function f(PM(ζ)) takes its maximum modulus only at
C = 1. Hopfs lemma yields ^p|ζ=i > 0. Thus the Cauchy-Riemann
equations give f^|ζ=i > 0. Now we write M(ζ) = (flf(C)) and i; =
v(PAf(C)) = v ( Σ L i ^ f ( O ) . Then ^flf(C)|c=1 - / Σ?=i ^ and

ζ=i
- Σ

S,t=l ζ=ι

dv

s,t=\ Z=P

§ξ\z=pζs

t)which contradicts the equality ^^yz_^s t=\ -^
Tp{^). Thus we finish our proof of Theorem 2.4.

4. Remarks.

— 0? since ξ e

REMARK 4.1. Recall that U(n) is the image of ^ , the set of all n x
n skew-Hermitian matrices, under the exponential map. Therefore,
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if Ω is an open subset in Rm and if Ψ is a Ck mapping from Ω
to S?', expoψ is also a Ck mapping with image in U(/ι). Under
this correspondence, if the set exp(Ψ(Ω)) is a submanifold in U(n),
the open cone condition and closed cone condition on exp(Ψ(Ω)) are
converted to the following form:

open cone condition at point P = Ψ(X):

{(JΨ)\XV : V e Rm} c

closed cone condition at point P =

{(JΨ)\χV : V e Rm} c

where JΨ is the Jacobian of the mapping Ψ . Thus we can restate all
theorems in §2 by imposing these revised cone conditions on Ψ(X).

The proof of the equivalence of these two types of cone conditions
is based on the following lemma:

LEMMA 4.1. Let H = H(t\, . . . , tm) be an n x n matrix that de-
pends on the parameters t\, . . . , tm. Then for any constant s

Proof. Let X(s, t) = &-e-sH. Then

e~sH -—
ds ~ dtjds

dtj

Hence X(s, t) satisfies the inhomogeneous system

^ B(s), Y(0) = 0,

which has the solution Y(s) = /Q e^s~τ^AB(τ) dτ. As a consequence,
we have the desired equality in the lemma.

By using this lemma, our equivalence follows immediately. For
if we write Ψ(X) = (ψ?(X)) and <?ψW = (e°{X)), then for every
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V - {v\, . . . , vm) e Rm we have

/*-w

nxn

As two conjugate matrices, the left-hand side is positive (or negative)
definite if and only if the right-hand side is. This gives the equivalence
of the two type of cone conditions.

There is an interesting consequence of the above equivalence. If we
canonically embed the polydisc Tn into U(n) as

( z 1 , . . . , r n ) e Γ - ^ diag(z!, . . . , zn) e U(n),

then every submanifold Σ in Tn can be considered as a submanifold
Σ in U(n) of the same smoothness. It follows that Σ satisfies the
open (closed, resp.) cone condition in our definition if and only if Σ
satisfies the open (closed, resp.) cone condition in Burns and Stout
[2] and Saerens [11]. Namely, if Ω is an open subset in Rm and if
Φ: Rm —• Rn is a nonsingular map of class C2, then the open cone
condition in [2] and [11]

(Φ'(X) V : V e Rm} n R* = {0},

which implies that the set {(eiΦ^, . . . , eiφ*W): X e Ω} is a peak-
interpolation set for the polydisc algebra A(Un), holds if and only
if

{JΨ(X)V : V G Rm} c

where Ψ(X) = diag(/Φi(X), . . . , iΦn(X)) e 5?. Moreover, the point
(eiΦx{X) e

iΦnW) in Un corresponds to the point

diag(e/φtW , . . . , eiφ*W) = exp(Ψ(X)) € U(n).

Similarly, the closed cone condition in [2] and [11] can be obtained by
the same argument. Therefore all parallel results in [2] and [11] about
peak sets, interpolation sets and peak-interpolation sets for A(Tn),
A°°(Tn) and Aω(Tn) can be obtained as corollaries of our Theorem
2.1,2.2, 2.3 and 2.4.
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REMARK 4.2. If a submanifold Σ in U(n) happens to be a closed
subgroup (Lie subgroup), e.g., SU(n), then the cone condition holds
at every point if and only if it holds at one point, because we have
following proposition.

PROPOSITION 4.2. IfΣ is a subgroup of V{n) and satisfies the open
cone condition at point PQ , then Σ has the same property at every
point P.

Proof. From the definition of the real space of U(n), we can derive
that for any unitary matrix U,

UTPo(υ(n)) = 7VP O (U(H)) and 7>o(U(n))tf = TPoϋ(ϋ(n)).

Since Σ is a subgroup of U(n), PPQ1 also lies in Σ. Therefore

ΓP(U(n)) = PPulTpQ(V(n)). Let Σ = Ψ(Ω) with Ψ defined in Re-

mark 4.1. Assume P = Ψ{X) and Po = Ψ(*o) - Then there exist m2

functions A(X, Xo) = (aJ

k(X, Xo))mχm such that

dχk x=x0

since Σ c U(n) implies 7>(Σ) c Tp(U(n)). We only need to show
that the matrix A(X, XQ) is nonsingular. But this is obvious, since
we have

dΨ(X) A dΨ(X)

J J * = 1

and this implies that A(X, Xo)Λ(Xo 9X) = In.

REMARK 4.3. Let 31 = ζ$\ x--x3rr be a domain in CN, where
each 3ίv is a strictly pseudoconvex domain of Cn» with C°° bound-
ary. Let pv be a defining function for 2V and set Γ = b3S\ x x b3Sr

and 4 = iav{P)-χχv

P with χ$ = (grad^)/> and α^(P) = \χ$\9 v =
1, . . . , r. For each vector λ = (λ\, ... , λr) with Λ,̂  > 0, we set

and

T. Jimbo proved in [7] the following result: Let M c Γ be a real C°°
submanifold. If M is locally a peak set for A°°{β), then there exists
a vector-valued C°° function λ = (λ\, . . . , λr) with λv > 0 such that

TP(M)cTf(Γ)®AP(λ(P)).
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Conversely, if M satisfies the above inclusion, then it is locally a peak
set and locally an interpolation set for A^(β).

In our case, as the unitary group U(w) is contained in the product
of n-copies of unit sphere, we need consider the domain that is the
product of π-copies of unit ball.

PROPOSITION 4.3. Let Ω be an open set in Rm, and let Φ be a
nonsingular C°° mapping from Ω to bBn x • x bBn = S2r^ x x
S2n~ι. Set Σ = Φ(Ω). // Σ is a local peak set for A°°(\J(n)) may
not be a local peak set for A°°(9$), where 3) = Bn x x Bn, then at
every point P G Σ , P = Φ(X),

for some λ = (λ\, . . . , λn) with λυ > 0.

Two comments about Proposition 4.3 are in order:
1. The condition in the proposition is also sufficient, but we only

need the necessity so that we can compare the equality in Proposition
4.3 with our cone conditions.

2. The above equality implies that for any vector V = (vγ, . . . , vm)

the matrix Σ j l i (Φ*(^0 dVx^ )vj *s n^ither positive definite nor neg-
ative definite. Therefore if Σ is contained in U(w), then it has to
satisfy the closed cone condition. But a local peak set for A°°(Ό(n))
may not be a local peak set for A°°(β), as the following example
shows.

EXAMPLE 4.4. Let Σ be a smooth curve in U(2) c S3 xS3 defined
by

c e i « ( t ) + i β ( t ) J t e

here c, d are real constants satisfying c2 + d2 — 1. Then we have
1. J f a\t)β'{t) < 0 for all ί, then Σ is a local peak set for

2. Σ is a local peak set for A°°(B2 x B2) only if a'{t)β'{t) <
-{cβ'(ή)2<0 for all t.
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Proof of Proposition 4.3. It is easy to get that

AP(λ) = U{hz\ ,...,tλz
x

n,..., tnz
n

x ,..., tnz
n

n)p:

t = (tι,...,tn)eRn,

For each VeRm, Σ?=i ^^vj e 7>(Σ) implies that

- (itk&j(X)h<kj<n m u s t l i e i n T£(Γ), where Γ = S2n~ι x
5 2 " - 1 . That means that

for fc = 1, . . . , n. Since V is arbitrary, our result follows from the

equality Σι=ι |Φf W l 2 = 1.
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