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COMPLETE OPEN MANIFOLDS
OF NON-NEGATIVE RADIAL CURVATURE

YOSHIROH MACHIGASHIRA

We generalize the Toponogov hinge theorem and the Alexandrov
convexity to the context of radial curvature, and study complete open
Riemannian manifolds of non-negative radial curvature.

0. Introduction. It is well-known that a non-negative curved mani-
fold has some interesting characters as exemplified in the Soul theorem
([CG]) or the Toponogov splitting theorem ([T]). In such theorems,
Toponogov's comparison theorem plays an essential role.

Throughout this paper let M be a connected complete Riemannian
manifold of dimension n>2. For a point o eM, the sectional cur-
vature KM of M restricted to those planes that are tangent to some
minimal geodesic starting from o is called minimal radial curvature
from o and is denoted by K™in. The notion of radial curvature was
initiated by Klingenberg in [K] to prove a homotopy sphere theorem
for compact simply-connected manifolds with ^-pinched radial cur-
vature. Also in the case where M is noncompact and o is a pole
of M, Greene and Wu have shown some results related to the radial
curvature from o (see [GW]).

In [M], it is shown that Toponogov's comparison theorem holds for
the edge angles at X\ and Xι of a minimal geodesic triangle with ver-
tices at o, x\9 and Xι under suitable condition on K™m. Moreover
by using this fact, some results related to the radial curvature from o
were obtained in [M] or [MS]. For example,

THEOREM 0.1 (Theorem A in [MS]). A complete noncompact Rie-
mannian manifold M which contains a point o such that K™m > 0
has exactly one end.

THEOREM 0.2 (Theorem C in [MS]). Let M be noncompact with a
point o such that K™in > 0. If
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then M is diffeomorphic to Rn, where vo\B(o, r) is the volume of the
r-ball B(o, r) in M around o and bo(r) is the volume of the r-ball
ofRn.

In this paper we prove that Toponogov's comparison theorem also
holds for edge angles at o (see Theorem 1.3) and investigate the topol-
ogy of complete open manifolds of non-negative radial curvature. By
using Theorem 1.3 we will obtain the

MAIN THEOREM. Let M be noncompact Assume that K™m > 0
for some point o e M. Then:

(A) The set of critical points of the distance function from o is
bounded and consequently M is finitely-connected.

(B) M has at most two ends.
(C) If M has a line, then M is diffeomorphic to N x R, where

N is a hypersurface in M. Moreover the projection M —> R is a
Riemannian submersion.

1. The Toponogov hinge theorem for radial curvature. For any δ e
R, let Mδ denote the simply-connected surface of constant Gauss
curvature δ . First of all we recall the

THEOREM 1.1 {Proposition 1.1 in [M] or Theorem 1.1 in [MS]). As-
sume that K™m > δ for o e M and δ e R. Let γ\ and yι be length-
minimizing segments in M with γ\(0) = 72(1) = o and let γo be a
length-minimizing segment such that γQ(0) = yi(l) and γo(l) = 72(0).
Then, there exist length-minimizing segments h > Ϊ2> and % in Mδ

with }>i(0) = )>2(1), 7o(O) = 7 i ( l ) » and 7 o ( l ) = ?2(0) which are such
that

L(γi)=L(γi) for i = 0 , 1 , 2

and

θλ := /(-Ml) , ΪΌ(0)) > ^(-*i(l)

θ2 := Z(-yo(l), h(0)) > Z(-fo(l)> h(0)) =' h-

Moreover if θ\ = θ\ Φ π, then there exists a piece of totally geodesic
surface of constant curvature δ bounded by γ\, γo, and a minimizing
geodesic joining o to γo(l) (which is not necessarily 72) in M.

The above theorem is shown by dividing γo into sufficiently small
sub-arcs {γo I t ^ ^ g } ^ ! , . . . , ^ where to = 0 and ί# = 1, and ap-
plying Berger's comparison theorem to obtain the angle estimates at
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yo(ί/-i) and yo(*ί) of a geodesic triangle Δ(o, yo(ί, - i ) , yo(ί/)) ( c f

Theorem 2.2 in [CE]). If θ\ — θ\ φ π , then the angles at yo(^-i) and
γo(ti) of any geodesic triangle Δ(o, 7o(^-i)> 7o(^)) must be equal
to the angles of the corresponding triangle in Mδ respectively for
i = 1, ,N-l. Also the angle at γo(tN-ι) of Δ(o, 7o(^-i) , 72(0))
equals the angle of the corresponding triangle. Moreover for every
/ = 1, , N, there is a minimal geodesic γ joining o to γo(ti) such
that γ c expo(X), where X c T^if is the plane spanned by γ\ (0) and
the vector parallel to yo(O) along γ\. Hence we obtain the minimal
geodesic γ'2 joining o to yo(l) = γ2(0) such that γ'2(0) c exρo(X)
and a totally geodesic surface of constant curvature δ bounded by
y\,yr

2 and 70 (For detail see [M].)
We can check the following corollary by dividing a geodesic triangle

into two triangles.

COROLLARY 1.2. Under the assumption of Theorem 1.1,

dAf(o, γo(s)) >dδ(ό, γo(s)) forse[0, 1],

where UM and d$ denote the distance functions on M and Mδ re-
spectively.

The following theorem implies that edge angles at o can be com-
pared.

THEOREM 1.3. Assume that K™in > δ for o e M and δ e R.
For any minimizing geodesies G\ : [0, 1] —> M and σ2 : [0, 1] —• M
starting from o, we have the following results

(1) Let Gi : [0, 1] —> Mδ for i — 1, 2 be minimizing geodesies
starting from same point such that

L(σi)=L(&i) for i = 0,1,2

and

Then
dM(σι(l),σ2(l))<dδ(σι(l),σ2(l)).

(2) (The Alexandrov convexity). Let θsj be the angle at δ of the
triangle A(δ, xs, ft) in Mδ corresponding to A(o, σ\(s), ^ ( 0 ) z n

M. Then θsj is monotone non-increasing in s,t.
(3) In (I), if equality holds, then there is a piece of totally geodesic

surface of constant curvature δ bounded by o\, σ2 and a minimal
geodesic joining o\(\) to σ2(\).
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Proof of Theorem 1.3. (1) We work with Mδ~e instead of Mδ

 9

where e is any small positive number.
Put

ί0 := sup {/|for5 < t9 dM(σ\(s), σ2(s)) < dδ-€(&ι(s)9 σ2(s))}.
0

Then Rauch's comparison theorem implies that to > 0. Suppose that
to < ί. Then we see that

, σ2{t0)) = dδ-€(σι(t0), σ2(t0)).

Thus we can apply Theorem 1.1 to the geodesic triangles

Δ(0, σi(ί 0), σ2(t0)) i n M

and
A(&ι(0), Wo), σ2(t0)) in Mδ~e,

that is, if we let 0, and 0, for / = 1, 2 be the angles at σ/(ίo) and
σ/(^), then

θx > θι and 0 2 > θ2.

In the case where θx > θ\, the first variation formula implies that

h), σ2(ί0 + Λ)) < ^_ e (σi(^ 0 + h), σ2(ί0 + h))

for sufficiently small /z > 0. This contradicts the definition of ίo.
Next we consider the case where θ\ = θ\. Since the assumption that
to < 1 says θ\ Φ π, the later half of Theorem 1.1 implies that there
exists a piece of totally geodesic surface of constant curvature δ - e
bounded by σi|[o,g?

 σ2l[0,g and a minimal geodesic joining σi(ίo)
to O2(ίo). ^ ^ s c o n t radicts K™m > δ. This completes the proof of

(1).
(2) It suffice to show that for arbitrary fixed s € (0, 1] and t E

(0 ,1 ) ,

(1.1) θsj > θSJ+h for small h > 0.

By continuty of θSyt, we may assume s < 1. Put

Restating (1), we see that ΘSJ < θ for all s, t e [0, 1]. Thus in the
case where θsj = θ, clearly (1.1) holds. Hence we consider only the
case θS9t <θ.

Let a be minimal geodesic in Mδ starting from δ and passing yt

parameterized as σ(t) = yt. From Theorem 1.1, the angle at yt of
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A(δ, xs, yt) does not exceed the angle at σ2{t) of Δ(o, σχ(s) , σ2(ή).
If the angles are equal to each other, by the latter half of Theorem
IΛ, it must be that θs,t >θ, because the minimal geodesic joining o
to ϋ\ (s) is unique. This contradicts θs 91 < θ. If the angle at yt is
smaller than the angle at β2{t), then the first variation formula implies
that

ds(δ, σ(t + h)) > dM(o, σ2(t + h))

for small h > 0, that is,

Os,t+h ^ θs,t

This completes the proof of (2).
(3) We apply (2) to obtain that if

then θ = θsj for all s, te[0, 1]. Hence the angles at xs and yt of
Δ(δ, xs, j?ί) equal the angles at σ\(s) and σ2(ί) of Δ(o, σ\(s), ^ ( 0 )
respectively for all s, t G (0, 1). Thus there is a piece of totally
geodesic surface of constant curvature δ bounded by σ\ |[o,5], 02 |[o,ί]
and a minimal geodesic σ^^ joining σ\(s) to σ2(ί) Hence ^,^(0)
is contained the plane spanned by ά\(s) and the vector parallel to
0*2(0) along Oχ |[o,j] Taking 5, ί -> 1, we obtain a minimal geodesic
joining tτi(l) to σ 2 ( l ) .

The proof of Theorem 1.3 is completed.

REMARK 1.4. By using Theorem 1.3 (2), we can construct the ideal
boundary Af (00) of a complete open manifold M of nonnegative
radial curvature and the Titz metric on it. However it is not needed
in this article.

2. Proof of the main theorem. Now part (A) of the main theorem
is shown directly from Theorem 1.3 in the same way as the proof of
the corollary to Theorem 1.5.A in [G] or Corollary 2.9 in [C].

In the remainder of this paper, we agree that geodesies will be pa-
rameterized by the arc-length.

Proof of part (B) of the main theorem. Suppose that M has three
or more ends. Then there are three rays JΊ , γ2, and 73 starting from
o going to different ends. Let k be a minimal geodesic joining γ\ (t)
to γ2(t) and θt the angle at δ e R2 of K{p9xt,yt) in R2 such
that do(δ,xt) = do(δ,yt) = t and do(xt,yt) = L(lt). Since the
distance between o and lt is bounded from above by some constant
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C independent of t, Corollary 1.2 implies that the distance between
ό and the segment joining xt to yt is also bounded by C. Thus we
see that

θt —• π a s t —• o o

and consequently

Similarly, we have that

4fc(0), 73(0)) =

This contradicts and hence completes the proof of (B).

In Lemma 1.3 in [MS] it is shown that if a non-negative minimal
radial curved M with base point o has a line, then there is a line
passing through o. We will show that a similar thing is realized for
any x e M. We define a Busemann function Fγ on noncompact M
for a ray γ by

K(x) := lim [t - dM(x,

LEMMA 2.1. Lfaflter ίAe assumption of the main theorem, if there is
a line σ through o, then for any x e M there is a unique line lx

through x which is biasymptotic to σ. Moreover there exists a flat
totally geodesic strip bounded by σ(R) and IX(R).

Proof. Choose the parameter of σ such that σ(0) = o and set
σ±(t) := σ(±ί) for t > 0. Let β be a minimal geodesic joining o to
x and put θ± := Z(/?(0), σ±(0)). Let θ±t be the angles at δ e R2

of Δ(δ, jc, j?±ί) in R2 corresponing to A(o,x,σ±(t)) in M , and
put $±00 := lim^oo θ-tί. (Theorem 1.3 (2) guarantees the existence
of $±oo.) Then

Fσ± (x) = rf(o, x) cos θ ± o o .

Thus we obtain that

(2.1) cos £+oo + cosθ-oo < 0

because it follows from the triangle inequality that

Fσ+(x)+Fσ_(x)<0.

On the other hand, by Theorem 1.3 we see that

(2.2) θ+oo + 0-OO < θ+ + θ- = π.
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The formulas (2.1) and (2.2) imply that # + o o + 6LQO = π, and con-
sequently θ+t + θ-t = π for all t > 0 from Theorem 1.3. Thus we
obtain that θ±t = θ± for all t > 0 and there are two pieces of totally
geodesic surface of constant curvature 0 bounded by σ±\^q, β and
l±t, where l±t are geodesies joining x to σ±(t). Hence there exist
two rays lx± starting from x and asymptotic to σ± such that /x±(0)
are parallel to σ±(0) along β. Moreover there exists a flat totally
geodesic strip bounded by σ and lx := /*+ U /*_ . To prove that lx is
a line, we consider lx+(—s) =: x5 for arbitrary s > 0 instead of x .
Then /Λ:-|[1s,c»] is the unique ray starting from xs and asymptotic to
σ_ because xs is an interior point of a ray lx- (see Theorem 1.1 in
[S]). Hence we see that lx+\[-s,oo\ is a ray and lx must be a line. This
completes the proof of Lemma 2.1.

Proof of part (C) of the main theorem. Let σ be a line passing
through o parameterized as σ(0) = o, constructed in Lemma 1.3 in
[MS]. Let σ+ be σ|[0,oo) and put Ns := ( i v ) " 1 ^ ) for 5 G R . Then
JVy is a smooth hypersuface of M because the gradient vector at x
of Fσ is unique and its length equals 1 for any x e M by Lemma
2.1. For x G M let XQ G /χ(R) be the point such that CIM{O , Xo) —
^Af(^ ? /JC(R)) , where /x is as in Lemma 3.1. Then Lemma 3.1 implies
that xo is unique and contained in NQ . Thus we can define a map
gs : Ns -> No for all ^ G R by &(x) := Xo This map is clearly
bijective and a local diίfeomorphism, that is, a global diffeomorphism.
Hence at last we obtain the desired map G : M —> Λ̂ o x R by G{x) :=

REMARK 2.2. Each hypersurface JVy is a star-shaped subset of M ,
that is, a minimal geodesic joining σ(s) to a point in Ns is contained
in Ns. Moreover if the Busemann functions ivi and JF̂ i for
a eR are convex, then iV5 is totally convex for any s G R and the
map <? is an isometry. But we do not know whether it is true or not
that the Busemann function for a ray passing through o is convex
under the condition Kfin > 0.
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