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PERIODS AND LEFSCHETZ ZETA FUNCTIONS

JOSEFINA CASASAYAS, JAUME LLIBRE AND ANA NUNES

The goal of this paper is to obtain information on the set of periods
for a transversal self-map of a compact manifold from the associated
Lefschetz zeta function in the case when all its zeros and poles are
roots of unity.

1. Introduction and statement of the results. One of the most useful
theorems for proving the existence of fixed points or, more generally,
periodic points of a transversal self-map / of a compact manifold is
the Lefschetz fixed point theorem. When studying the periodic points
of / , i.e., the set

Per(/) = {m e N: / has a periodic orbit of minimal period m },

it is convenient to use the Lefschetz zeta function of / , Zy(ί), which
is a generating function for the Lefschetz numbers of all iterates of
/ . The function Zf(t) is rational in t and can be computed from
the homological invariants of / (see §3).

We shall study C1 self-maps / of a compact manifold which have
only transversal periodic points, so called because the graph of fm

is transverse to the diagonal for all m > 0. The main contribution
of this paper is the study of the periodic orbits of / when its Lef-
schetz zeta function has a finite factorization into terms of the form
(1 ± tn)±ι. A key point is the introduction of the notion of irreducible
factor (see §3 for a precise definition). Our main result is the follow-
ing.

THEOREM A. Let f:M—>M be a transversal map of a compact
manifold. Suppose that all the zeros and poles of its Lefschetz zeta
function Zf(t) are roots of unity, and that Zf{t) has an irreducible
factor of the form (1 ± tn)±ι.

(a) If n is odd then n € Per(/).
(b) / / n is even then {§, n} n Per(/) Φ 0 .

The proof of this theorem will be given in §3. From Theorem A
it follows that each irreducible factor of the form (I ±tn)±ι of the
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Lefschetz zeta function forces at least one period (n if n is odd, n/2
or n if n is even).

The set of periods obtained in this way will be called the forced set
of periods of / and will be denoted by FSP(/).

As an application of Theorem A and the algebraic results derived in
§2, we obtain an upper bound for the cardinal and for the maximum
period of the forced set of periods (see Corollaries 3.3 and 3.4).

Our main basic assumption throughout this work is that all the zeros
and poles of the Lefschetz zeta function associated to f\M-~*M
are roots of unity (for different results under similar assumptions see
Franks [Fl], [F3], Fried [Fr], Matsuoka [Mt] and [CLN]). There are
three interesting classes of transversal maps which satisfy our basic
assumption. First, the set of maps whose set of periods Per(/) is
finite (see Theorem 6 of [Fr]). Second, the self-maps of compact
connected surfaces with Per(/) finite or h(f) = 0, see Corollaries
4.3 and 4.4. Finally, the self-maps of the w-dimensional torus with
Per(/) finite or h(f) = 0, see Corollaries 5.1 and 5.2.

2. Cyclotomic polynomials. As usual, we shall use the notation cn(t)
for the nth cyclotomic polynomial given by

1 - tn

for n e N \ { l } and
Notice that all the zeros of cn(t) are roots of unity.
A proof of the next proposition may be found in [L],

PROPOSITION 2.1. Let ξ be a primitive nth root of unity and P(t)
a polynomial with rational coefficients. If P(ξ) = 0 then cn(t)\P(t).

Clearly, the degree φ(n) of cn(t) verifies

d\n

and so φ(ή) is the Euler function, which may be computed through

φ{n) = n

p\n
p prime

Hence, if n = p^ p£* is the prime decomposition of n, then

(2.1) φ(n) = JJjPf'"" (P/ ~ 1)
ι = l
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In Table 1 we present a list of the first 30 cyclotomic polynomials and
their degrees. The following rules follow easily from the definition of
cyclotomic polynomials and their properties (see [L]).

1 — tp

(2.2) p prime =• cp{t) = y - y ,

(2.3) p = 2n =*• cp(ί) = 1 + t2""1,

(2.4) p = 2r, rodd => cp(ί) = cΓ(-ί),

(2.5) /? = 2"r, rodd, n > 1 =• cp(t) = c2r(ί2""'),

(2.6) p = pχp2,Pι,p2 prime =• cp(t) = '̂ . * = "2 . '

(2.7) P = P\ , Pi prime => c p(ί) = cPχ (tp* ) =

V2 ^) CD*ι>'.D*k\t)=Cpr-'PΛtX k )
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(2.9) p prime, p \ r =» cpr{t) = QrJ .
Cr\l)

LEMMA 2.2. Let n = p"1 - -p%k be the prime decomposition of n e
N.

k-\

Π Π

Proof. Using property (2.8), it is enough to show that

(2.11) cPί^(t) = cPt(t)l-ιf~ι

•ff Π ^(Λ-Ό)^- ' ,
7=1 l</,< <i ;<A:-l

and we shall prove (2.11) by induction with respect to k e N. For
k = 1 it holds trivially. Suppose fc = 2. By property (2.6) we have

and so (2.11) holds for k — 2. Suppose now that (2.11) holds for
some k e N, k >2, and consider cPvmmPk+ι(t) with pi < <
Then, applying successively (2.9) and the induction hypothesis,

Π Π
7=1 2<iχ< "<i<k

Π Π
7=1 2<iι<-<
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Now it is easy to check that (2.12) is equal to

k-\
cPk+Λι) 1 1 1 1 cPk+Λι '

Hence, (2.11) holds for k + 1 and the lemma is proved. D

PROPOSITION 2.3. Let cn(t) be of degree φ(n) > 2. Then cn(t) can
be written as

m

ι = l

where m < φ(n)/2, qi G N and σ\{i), σ2{i) € { - 1 , 1} for i =
1, . . . , m. Moreover, q = maxz q\ is smaller than or equal to n/2 if
n is even or n if n is odd.

Proof. Let n = p"1 p£* be the prime decomposition of n. The
case k = 1 is obvious from (2.7) and (2.3). Suppose first that k > 2
and that none of the Pi is 2. From Lemma 2.2 and (2.2), cn(t)
factorizes in the form (2.13) with

k-\

From (2.1)

fin) = \[p"r\pi - 1) > 2 4
i=\

and the result follows with σ\(i) = +1 for / = 1, ... , m.
Suppose now that k > 2 and that one of the Pi is 2. Applying

Lemma 2.2 with Pk = 2 and (2.3), cn{t) factorizes in the form (2.13)
with σ\(j) = - 1 for / = 1, ... , m and

k-\

m = y^
7=0

But for k > 3

k

Ψ(n) = ΠV" 1 ^/ - 1) > 2 8 2k-3 =
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and the result follows as before. If k = 2, m = 2. But φ(n) is even
and hence by hypothesis φ{n) > 4. So, again, m < <p(n)/2.

From the definition of cn{t) it is clear that q < n, and from (2.4)
and (2.5) it follows that q < n/2 if n is even. D

Given d e N, let n${d) be defined by

k

(2.14)

where [•] denotes the integer part function and k € N is the great-
est number of consecutive primes pi such that p\ = 2 and
(Pi - 1) * * (Pk - 1) ^ d See Table 2 for the first one hundred values
of no(d).

PROPOSITION 2.4. Given d e N, there exists n$ e N such that for
n > ΠQ, φ(n) > d. Moreover, rio(d) is the best possible lower bound
for n0.
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Proof. For d = 8 we obtain no(d) = 30 and p(30) = 8. So, (2.14)
gives the best possible lower bound.

Let d eN and ΠQ e N be given by (2.14). Let n be greater than
ΠQ SO that

n > -

and let n = p"1 -p 3 be the prime decomposition of n . In order to
prove that φ(n) > d we shall consider two cases. Suppose first that
j>k. Then, from (2.1)

j j k+l

ι = l ' l ι = l

Suppose now that j <k. Then

j

because the Pi are consecutive primes and so, for / = 1, . . . , j

Pi Pnt

Pi ~ 1 Pn
> 1. D

3. Periods forced by the Lefschetz zeta function. Let M be a com-
pact manifold. A map / : Af —• Af is called transversal if

(1) / is of class C 1 ,
(2) / ( M ) c I n t ( M ) ,
(3) for every periodic orbit γ of period p(γ), x e y and m e N

Let / : Af —• Af be a transversal map. Denote by PO the seί o/
periodic orbits of / and, given y e PO, by p(y) the minimal period
of y. Following the notation introduced in [CLN] we define u+(γ)
(resp. U-(γ)) as the number of real eigenvalues of Dfp(y\x), x e y,
which are strictly greater than one (resp. strictly smaller than one).
We also define the following subsets of PO:
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EE = {γ G PO: w+(y) and U-(γ) are even},

EO = {γ G PO: M+(J>) is even and u-(γ) is odd},

OE = {γ e PO: u+(γ) is odd and u-(γ) is even},

OO = {γ e PO: u+{γ) and w_(y) are odd}.

Also, for each odd r>\ and n> 0 let PO(2rtr) be the set

PO(2"r) = {γ e PO: p(y) = 2nr},

and denote by EE2«r (resp. EO2»r, OE2»Γ, OO2»Γ) the cardinal of
EEnPO(2"r) (resp. EOnPO(2 π r), OEnPO(2 r t r) 5 OOnPO(2 Λ r)).

Denote by μ : N —• {-1,0,1} the Mδbius function defined by

μ(l) = 1 and by the following rule: if n = px

ι p.J is the prime
decomposition of n, μ(n) = 0 if kx > 1 for some / e {1, . . . , j},
and μ(n) = (-1)7 otherwise. Denote by {an}neN the sequence of
nonnegative integers defined by

<3 » —

and, for each positive odd r and each nonnegative m, let

(3.2) Arr
A;=0

Given a continuous self-map of a compact manifold Λf of dimen-
sion n, its Lefschetz number is defined as

where / ^ : H^M Q) —• Hk(M Q) is the endomorphism induced by
/ on the kth rational homology group of M. The Lefschetz fixed
point theorem says that if L(f) ψ 0 then / has a fixed point. For
the purpose of studying the set Per(/), it is useful to consider the
Lebschetz zeta function

which is a generating function for the Lefschetz numbers of all iterates
of / and can be computed from the homological endomorphisms f^
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of / as follows:

(3.3) Zf(t) = fl det(/Λ -
k=0

where j \ = άm\QHk{M Q), see [F2].
If / : M —• M is transversal, then the Lefschetz numbers of the

iterates of / are related in a simple way to the periodic points of / ,
see [Fl] for more details.

With this notation, we have the following theorem, which will be
used in subsequent proofs.

THEOREM 3.1 ([CLN]). Let f:M-+M be a transversal map such
that its Lefschetz zeta function is of the form

N

P

(3.4) fU

where P is a finite subset of N, the Np are natural numbers and
σ\(i, p), o-ι{i,p) Ξ {-1, 1}. Then, for each odd integer r > 1 and
m = 0 , l , 2 , . . . we have

m m

(3.5) £ EE2*r + E O r r +y{r, m) = O(V r + Σ OE2*r,

where
(3.6)

y{r,m)= Σ Σσ2{i,2mq)σy{i,2mq)βrlq

q\r i=\
2mqeP

Σ Σ Σ K' 2J

j=0 q\r i=\

we take the second summand equal zero when m = 0.

Consider a product of the form

(3.7) Π Y[(l-°i(i>P)P)σ*ii9P)>
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where P is a finite subset of N, Np is a natural number for each
p e P, and σ\(i9p)9 σ2(i,p) e {-1, 1}. A factor in (3.7) of the
form (\—σ\(i9p)tp)σAι*p) will be called irreducible if it remains after
performing the following reductions:

(Rl) (1 + tp)(l + tp)'1 = I,

(R2) (l-ί^)(l-^)-1 = 1,

(R3) (l+tp)(l-tp)=l-t2p,

(R4) (1 + tp)-\\ - tp)~x = (1 - t2p)~ι,

(R5) {\ + tp)-\\-t2p) = \-tp

9

(R6) (1 + tp){\ - ί 2^)" 1 = (1 - tp)~ι,

(R7) (1 + ί*)(l + ί2*) = (1 - tp)-\\ - ί4^),

(R8) (1 + / ' r t l + t2p)-1 = (1 -

We remark that the reductions (Rl) to (R8) should be performed in
correlative order and consequently the whole process of reduction is
finite.

THEOREM 3.2. Let f:M-+M be a transversal map of a compact
manifold. Suppose that all the zeros and poles of its Lefschetz zeta
function Zf(t) are roots of unity, and that Zf(t) has an irreducible
factor of the form (1 ± tn)±ι.

(a) If n is odd then n e Per(/).
(b) If n is even then {§, n) n Per(/) Φ 0.

Proof. From (3.3) and Proposition 2.1, the Lefschetz zeta function
of / is of the form

ZΛO-ψϊfy
Moreover, applying Proposition 2.3 to each cn(t), Cqt(t)9 f is in
the hypothesis of Theorem 3.1 and so, given r odd, equation (3.5)
holds for m = 0. Now, if we have an irreducible factor of the form
(1 - σ\tr)στ, then all the other possible irreducible factors associated
to the same power of t are {\-σ\tr)σi or (l+σ\tr)~~σ2 (see reduction
rules (Rl) to (R4)). Hence,

N

ι=l
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because all the terms in the above sum are equal. So, r e Per(/) and
statement (a) is proved.

Now we shall prove statement (b). From the definition (3.6) of
γ(r, m) for m = 1, 2, . . . we have

γ(r, m) - y(r, m - 1) = ] Γ σ2(z, 2mr)ax{i, 2mr)

and subtracting (3.5) for m and m - 1 we obtain

(3.8) EE2»v +EO 2 - r -EO 2 «- i Γ +y(r , m)-γ{r,m-

Suppose n — 2mr, m > 1 , r odd. Consider an irreducible factor of
the form 1 - ί2™'. The proof for the other possible irreducible factors

(1 - ί 2 " 7 )" 1 > 1 + ^2" r and (1 + ί 2 " 7 )" 1 i s analogous. For this factor
we have σi( , 2mr)σ2( , 2mr) = 1 and so all the factors of the form

that persist after reductions of the type (R1)-(R4) verify σ\(i, 2mr)
• (j2(/, 2mr) = 1. Moreover, the factors of the form

that can coexist with 1 - t1™* satisfy

due to the reduction (R5). Then \γ(r, m) - γ(r, m - 1)| > 0 and
equation (3.8) implies that if 2m~xr $ Per(/) then 2mr e Per(/).

We remark that the proof for the irreducible factors (1 - t2"'r)~1,
1 + t r r and (1 + ί2"')-1 uses the reductions (R6), (R7) and (R8),
respectively, and of course also (Rl) to (R4).

Let P(t)/Q(t) be a rational function. We define the order of

P(t)/Q(t), denoted by order(P(0/β(0)» a s t h e number

["degree P(t) + degree Q{t)λ

I 2 J
+ 1.
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COROLLARY 3.3. Let f: M —• M be a transversal map of a compact
manifold. Suppose that all the zeros and poles of Zf{t) are roots of
unity. Then

Card(FSP(/)) < order(Z/(0).

Proof. Since the Lefschetz zeta function of / , Zf(t), is rational,
we may write Zf(t) = P(t)/Q(t) with P(t) and Q(t) polynomials.

By Proposition 2.1, P(t) and Q(t) factorize as the product of cy-
clotomic polynomials. We shall split P(t) (resp. Q(t)) as a prod-
uct P(t) = Pι(t)P2(t) (resp. Q(t) = Qι(t)Q2(t)), where Px(t) (resp.
Qι(t)) factorizes as a product of cyclotomic polynomials of degree
strictly greater than 2 and c4(t), and P2(t) (resp. Q2(t)) contains
the remaining factors, i.e. all the cf (ί) for / € {1, 2, 3 , 6}. Since
the reduction process given by rules (R1)-(R8) does not increase the
number of factors of the form (1 ± tn)±ι, from Proposition 2.3 and
Theorem 3.2 it follows that the cardinal of the forced set of periods
associated to the factors P\(t) and Q\(t) is smaller than or equal to
(degree P\(t) + degree Q\(t))/2. Notice that this upper bound is an
integer number.

To conclude the proof, it is enough to show that the contribution of
the remaining factors (P2(t) and Q2(t)) to the cardinal of the forced
set of periods is smaller than or equal to

_ [degree P2(t) + degree Q2(t)]

L 2 J + 1'
Notice that P2(t)/Q2(t) is a rational function of the form C\(t)aι

• c2(t)a2C3(t)aic6(t)a*, where the ^ G Z , The forced set of periods F
associated to a product of this form is contained in {1, 3}. To prove
that Card(F) < C it is enough to consider the case Card(F) = 2
because C > 1. But if 3 e F then |α 3 | + |<z6| Φ 0, and hence C > 2
(see Table 1). D

Let « G N . W e denote by S(n) the set {1, 2, . . . , n}.

COROLLARY 3.4. Assume that we are in the hypotheses of Corollary
3.3. Let d be the maximum of the degrees of P(t) and Q(t), where
P(t)/Q(t) = Zf(t). Then

(a) FSF(f)n{neN:nisodd}

S(no(d)) ifno(d) is odd,
1 S(no(d) - 1) if no(d) is even.
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(b) FSP(/) n{neN:n is even}

Γ S(2nQ(d)) ifno(d) is odd,

\ S(2no(d) - 2) ifno(d) is even.

Proof. By Proposition 2.1, P(t) and Q(t) factorize as products of
cyclotomic polynomials. From Proposition 2.4 it follows that if the
cyclotomic polynomial cn(t) appears in the factorization of P{t) or
Q(t), then n < n$(d). Now, the maximum power of t in the de-
composition (2.13) of cn(t) is smaller than or equal to n/2 (resp. n)
if n is even (resp. odd). Consequently, before applying the reduc-
tion procedure given by rules (Rl) to (R8), the maximum power of t
which appears in the factors (1 ± tJ')±ι of P(t)/Q(t) is rio(d) (resp.
no(d) - 1) if n is odd (resp. even). Hence, taking into account the
reduction rules, the corollary follows. D

4. Transversal surface maps. Throughout this section, M will be a
compact connected surface of genus g and f:M-^M a transversal
map.

Recall that H0(M; Q) « Q and that H{(M; Q) « Q 2^, H2(M; Q)
« Q if M is orientable, and HX(M'; Q) « Q^" 1 , HX[M\ Q) w {0} if
Λf is non-orientable.

PROPOSITION 4Λ. If h(f) = 0 then all the eigenvalues of /*0, /*i
^2 are either 0 or roote of unity.

Proof. Since /^0 = id, 1 is the only eigenvalue of fo .
Let us consider now f*2. If Af is non-orientable, then 0 is the

only eigenvalue of /*2 . If M is orientable, ^2(1) is the degree D of
/ . From [MP] we know that if \D\ > 1 then h(f) > log |Z>|. Hence,
if h(f) — 0, \D\ < 1 and so the only possible eigenvalues for f,2 are
- 1 , 0 and 1.

Finally, consider / % 1 . By Theorem 2 of [Mn], if h(f) = 0 then all
the eigenvalues A of /+1 satisfy |A| < 1. We claim that every nonzero
eigenvalue λ of f\ has modulus 1. Let λ\, . . . , λk be the nonzero
eigenvalues of /*i. Then

k

(4.1) det(J - tf,{) = det(-/(/*! - ΓιI)) = (-1)^ H(A/ί - 1).

Moreover (4.1) must be a polynomial with integer coefficients, be-

cause f*ι is an integral matrix. Hence, in particular, Π/=i^/ must
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belong to Z. Therefore, Πf=i \b\ > 1 > and the claim follows because
\λi\ < 1.

So (4.1) is a polynomial with integer coefficients, constant term 1
and all its roots have modulus 1. By a standard result in algebra (see
Lemma 1.6 of [W]) the proposition follows. D

COROLLARY 4.2. // h(f) = 0 or Per(/) is finite, then Zf{t) is of
the form

where θ(t) is either 1, 1 -t or \ + t and cn(t) is the nrcyclotomic
polynomial

Proof. The case h(f) = 0 follows directly from the definition of
the Lefschetz zeta function, Proposition 4.1 and Proposition 2.1. If
Per(/) is finite, the corollary follows from Theorem 6 of [Fr]. α

The following results improve slightly the statements of Corollaries
3.3 and 3.4 for transversal surface maps.

COROLLARY 4.3. If h(f) = 0 or Per(/) is finite, then

g -f 1 ifMis orientable,
Card(FSP(/)) <

- + 1 ifM is non-orientable.

Proof. From Corollary 4.2, repeating the arguments of the proof of
Corollary 3.3 and taking into account that the contribution of Q(t) =
Qι{t) to FSP(/) is at most period 1, the result follows. D

The following result is just a restatement of Corollary 3.4.

)

Γ

\

COROLLARY 4.4. If h(f) = 0 or Per(/) is finite, then

(a) FSP(/) ΓΊ {n e N: n is odd}

S(no(d)) ifno(d) is odd,

S(no(d) - 1) ifno(d) is even.
(b) FSP(/) Π {n e N: n is even}

ί S(2no(d)) ifno(d) is odd,
C 1 S(2nQ(d) - 2) ifno(d) is even,

where d = 2g if M isorientableand d = g-\ if M is non-orientable.

5. Transversal iV-tonis-maps. In this section we shall derive conse-
quences of the results obtained in Section 3 for transversal self-maps
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/ on ^-dimensional manifolds such that for k — 2, ... ,n all the
eigenvalues of fk can be obtained as products of the eigenvalues
of /*i. We remark that these conditions hold for continuous maps
of the n-torus Tn and also for continuous maps of many Eilenberg-
Mac Lane spaces.

The following corollary is easily obtained from Theorem 3.2 and
Corollaries 3.3 and 3.4 repeating the arguments of the proof of Propo-
sition 4.1.

COROLLARY 5.1. Let f:M-+Mbea transversal map on a compact
manifold M of dimension m with h(f) = 0. Suppose that for k =
2, ... , m all the eigenvalues of fk can be obtained as products of the
eigenvalues of f\.

(a) If Zf{t) has an irreducible factor of the form (1 ± tn)±ι with n
odd, then n e Per(/).

(b) If Zf(t) has an irreducible factor of the form (1 ± tn)±ι with n
even, then {n/2, n} n Per(/) / 0 .

(c) Card(FSP(/)) < order(Z/(i))
(d)

FSP(/)n{πeN: n is odd]

f S(no(d)) ifno(d) is odd,

\ S(no(d) - 1) ifno{d) is even.
(e)

FSP(/) Π{neN: n is even}

f S(2no{d)) ifno(d) is odd,
C I S(2no(d) - 2) ifno(d) is even.

Similarly, using Theorem 3.2, Corollaries 3.3 and 3.4 and Theorem
4.1 of [ABLSS] we have the following result.

COROLLARY 5.2. Let f:τ
m->Tm be a transversal map and sup-

pose that Per(/) is finite. Then, (a) to (e) of Corollary 5.1 hold.
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