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ORDER OF THE IDENTITY OF THE STABLE
SUMMANDS OF ίl2kS2n+1

PAUL SILBERBUSH

We obtain upper bounds for the stable suspension or-
ders of the summands in Snaith's stable decomposition
of Ω2*S2 n + 1, for 2k < 2n + 1, and localized at a prime
p. These finite, torsion complexes also occur as sub-
quotients of May's filtration of Ω 2*S 2 n + 1, and as Thorn
spaces of canonical vector bundles. The results are ob-
tained by induction, using results of Toda on the stable
orders of stunted real projective spaces (for p = 2) and
certain cofibrations of Mahowald to start the induction
and proceding by stabilizing factorizations of power maps
on Ω2*S2 n + 1 due to James and Selick for p = 2 and Cohen-
Moore-Neisendorfer for p > 2.

Introduction. For suitable topological spaces X and Y let pi, Y]
be the set of homotopy classes of pointed maps from X to Y. It
is well known that [X, Y] is a group if the domain is a suspension
space and an abelian group if it is a double suspension. In partic-
ular, [ΣX, ΣX] is a group and we say that X has suspension order
k if the identity map of ΣX has order k in this group and that X
has stable order k if the identity map of ΣmX has order k for m
sufficiently large. It is not hard to show that a finite CW-complex
whose reduced integral homology is all torsion has finite suspension
order.

In this paper we compute upper bounds for the stable orders of a
particular class of finite complexes. A theorem of Snaith [Sn] gives
that ΩnΣnX is stably equivalent to a wedge V Dj(ΩnΣnX), where

Dj(ftnΣnX) is the j-adic construction on X, defined by
Dj(nnΣnX) = Cn(j) xΣj XM/Cn(j) xΣj *, where Cn(j) is the space
of uj little n-cubes" in Rn. The spaces Dj(VtnΣnX) also occur
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as the quotients in the canonical filtration of May's combinatorial
model of Ω n Σ n X, described in [Ma]. Specializing further, after lo-
calizing at any prime p ^ 2, we give upper bounds for the sta-
ble order of ^ ( Ω ^ S 2 " * 1 ) for j ^ 2,k ^ 1 and 2k < 2n + 1.
In this case, the spaces Dj(Ω2kS2n+1) also admit a description as
Thom spaces of Whitney sums of certain bundles over the spaces
^2k(j) XΣj *• It is shown in [CCKN] that these bundles have finite
order, and this leads to a periodicity among the stable homotopy
types of Dj(Ω2kS2n+1) as n varies, which we will make extensive use
of.

We will show that for j not a power of p, an upper bound for the
stable order of Dj{Ω2kS2nJtl) is determined by upper bounds for the
stable orders of Z)pm(Ω2A:52n+1), and thus it suffices to compute up-
per bounds for the stable orders of the latter spaces. To accomplish
this, we will use double induction on m and k.

For the case m = 1, the p-adic pieces Dp(Ω2kS2n+1) may be iden-
tified (for p = 2) with suspensions of stunted real projective spaces,
for which Toda has computed the stable orders in [T]. When p > 2,
we obtain upper bounds for the stable orders directly.

The case k = 1 is more complicated. It suffices to work with
Dpm(Ω2S3), since Dpm(Π2S3) and Dpm(fl2S2n+1) are stably equiva-
lent after a suitable dimension shift.

THEOREM 2.3. For p > 2, The stable order of Dpm(ίl2S3)
divides pm.

R. Cohen has shown in [Coh] that Dp2m+p(Ω2S3) represents the
odd-primary Brown-Gitler spectrum B(m). Thus the order of the
identity of B(m) is p for all m, since _Dp2m+p(Ω253) splits off of

To prove this, we use induction on m and an odd-primary ana-
logue of a cofibration sequence involving the spaces jD2

m(Ω2S3)
which is originally due to Mahowald [M] and reproven by F. Cohen,
Mahowald, and Milgram in [CMM]. By the same line of proof, this
2-local cofibration gives the following:

THEOREM 2.7. The stable order ofD2m(n2S3) divides 2 m + 1 .

Brown and Peterson have shown that Z)2™(Ω253) represents the
Brown-Gitler spectrum 5(2 m ~ 1 ), so we obtain as a corollary,
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COROLLARY 2.8. The order of 1 e [β(2m-1),5(27 n~1)] divides

2 m + 1 .

This result has already been obtained and shown to be best pos-

sible by W.H. Lin in [L], using lambda algebra and Adams spectral

sequence techniques. Also included in Lin's paper is an alternative

proof (for the dual Brown-Git ler spectrum) using results of Goerss.

To proceed with the inductive step, we introduce some new meth-

ods. At the prime 2, it is also necessary to distinguish several cases.

THEOREM 4 . 1 . The stable order of D2m(Ω4S4n+1) divides 2 m + 2 .

THEOREM 4.2. Let m ^ 1 and k ^ 1.

(1) The stable order of D2m(n4k+2S4n+3) divides 22m+3k~1.

(2) The stable order of D2m(Q4k+4S4n+1) divides 22m+3k.

(3) The stable order of D2m(tt4kS4n+3) divides 2 2 m + 3 * " 2 .

(4) The stable order of D2m(n4k+2S4n+1) divides 22m+3k~1.

It is a consequence of our methods that the sharper result of

Theorem 4.1 is possible for Ω 4 5 4 n + 1 . It is hoped that the results of

Theorem 4.2 may be improved somewhat.

For odd primes, we have a single result which covers all cases.

THEOREM 4.7. For p > 2 and m > I, the stable order of

Dpm(Q2kS2n+1) divides pm+k-1.

We believe that the results of Theorem 4.1 and 4.7 are best possi-

ble. But to verify this, it is necessary to compute a stable invariant

such as integral K-theory, which is difficult for loops on spheres.

We prove these theorems by stabilizing factorizations through

Q2k-2g2n-i o£ p O w e r m a p S o n the loop spaces Ω 2*S 2 n + 1, and using

induction on k. These factorizations are due to James and Selick at

the prime 2 and F. Cohen, Moore and Neisendorfer for odd primes.

Upon stabilization, these loop spaces decompose into the summands

Dj(Ql

2kS2n^1) by Snaith's splitting theorem. Furthermore, stabiliz-

ing an r-th power map on an ίί-space gives the degree r map plus

a "deviation term".

PROPOSITION 3.2. Let X be an H-space with r-th power map r.

Then Σ2r — [r] + Σdr, where dr factors through Σ(X Λ X).

Thus we are able to bound the order of the map dr and therefore
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the order of the degree r map [r]. Combining this with a careful
analysis of how the summands map to each other in the stabilized
factorization using cellular approximation enables us to obtain the
upper bounds on each summand.

The paper is organized as follows: In Section 1 we review some
properties of the spaces Dj(Ω2kS2n+1), including their description as
Thorn spaces. We also describe the relationship between
Dpm(n2kS2n+1) and Dj(Ω2kS2n+1) for j not a power of p. In Section
2 we prove Theorem 2.3, including a proof of the odd-primary ana-
logue of Mahowald's cofibration. We then briefly describe the case
p — 2, in which Mahowald's cofibration may be used to obtain an
alternate proof of Lin's result. Section 3 lays the technical ground-
work for the proof of Theorems 4.1, 4.2, and 4.7. We recall the
factorizations of power maps on loop spaces of spheres mentioned
above, and analyze the stabilization of these factorizations. This
includes the description of the deviation and the proof of Proposi-
tion 3.2. In Section 4 we use all this to prove Theorems 4.1, 4.2,
and 4.7. Finally, in Section 5 we formulate and prove in some gen-
erality the relationship between Dpm(ΩnΣnX) and Dj(ΩnΣnX), for
j not a power of p. This is well-known, but does not seem to have
appeared in the literature, except for the case Ω 2 5 3 which is done
by R. Cohen and Goerss (with a different proof) in [CG].

We use the following notation and conventions: The word "space"
will always mean compactly generated space with non-degenerate
basepoint, all maps and homotopies are required to preserve the
basepoint, and we will denote constant maps by *. For a space X,
ΣX is the reduced suspension SιΛX and ΩX is the space of pointed
maps from S1 to X with the compact-open topology. For a space X,
we denote the suspension spectrum of X by Σ°°X, and for a finite
complex X, we will make no distinction between the stable order of
X and the order of the identity of the spectrum Σ°°X. Moreover,
where convenient we will also identify X and Σ°°X. For any space
X, [k] will denote the degree k map on ΣX, which is k times the
identity map in the group [ΣX, ΣX]. We denote the ring of integers
by Z, and the field with p elements by Zp. As usual, H*( R) and
if*( ]R) denote ordinary singular homology and cohomology with
coefficients in the ring R. Finally, a reference such as a.b means the
6-th item in section α.
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The material in this paper comes from my thesis, written at the
University of Rochester. I would like to thank my adviser Joe
Neisendorfer for his guidance during this time. I would also like
to thank Fred Cohen for his invaluable assistance with some of the
material in this work, and the referee for his useful suggestions.

1. The stable decomposition of iterated loops on a sphere.
Recall that a theorem of Snaith states that Ω n Σ n X has a stable
splitting

ΩnΣnX ~ V Σ°°Dj(nnΣnX) ,Σ°°

where the pieces Dj(ΩnΣnX) are the subquotients of the canoni-
cal filtration in May's combinatorial model of Ω,nΣnX. Recall fur-
ther that with coefficients in the field Zp, the reduced homology of
Dj(Ω,nΣnX) is spanned by the monomials of weight j in the homol-
ogy of ΩnΣnX.

LEMMA 1.1. There exist maps Dr(ttnΣnX) A Ds(flnΣnX) ^
Dr+s(Ωί

nΣnX) such that (μr,s)*(^r ® τna) = mτms where mr and
ms are monomials of weight r and s in H*(ΩnΣnX).

Proof. The May filtration FjCnX gives maps Fr x Fs -^4 Fr+S

which correspond to loop space multiplication in Ω n Σ n X. These
maps have the above property on homology.

The following diagram can clearly be completed so as to be com-
mutative, yielding the desired maps on the bottom row.

FτCnX x FsCnX - ^ + Fr+sCnX

Dr(QnΣnX) A Ds(fίnΣnX) Dr+s(nnΣnX)

Π

PROPOSITION 1.2.

(1) H*Dj{Ω2kS2n+Ύ) = 0 (with Zv coefficients) unless j = 0 (p)
or j = 1 (p).
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(2) For r ^ l , Dpr^(n2kS2n+1) and Σ 2 n - 2 * + 1 2 V ( Ω 2 * S 2 n + 1 ) a r e

homotopy equivalent when localized at p.

Proof. The proof given in [Coh] for the case m — 1 goes through
without change. (1) follows from considering all possible monomi-
als of weight j in #,.(Ω 2*S 2 n + 1). For (2), note that D1(Ω2kS2n+1) ~

S2n-2k+l a n d t h e m a p /? 1( ί ϊ2*52n+lj Λ D^ίl2* S2"*1) ^

Dpr+ι(Ω2kS2n+1) is an isomorphism in mod-p homology. D

We see from this proposition that to compute upper bounds for
the stable orders of the spaces Dj(Ω2kS2n+ι) that we need only
consider the cases j = pr where p is the prime at which we are
localized. The next proposition combined with basic properties of
suspension orders of wedges and smash products (see [T]) reduces
the computation to yet another special case. We assume that all
spaces are localized at the prime under consideration.

PROPOSITION 1.3. Letpr - aλp
iλ +... + aipiι such that 0 ^ ix <

... < %ι and 1 ^ aj ^ p — 1. Then Dpr is a stable wedge summand

ofDl*l] Λ D^l] A ... Λ Z>£;]. (Here * H is the m-fold smash product,

and Dj(Ω2kS2n+ι) is abbreviated to D3.)

Note that this statement makes sense when p = 2. In this case,
the αz's must all be equal to 1. For example, DM splits off of iλjΛDg
The proof of this proposition is postponed until Section 5, where in
fact we will prove a slightly more general statement.

Let ξnj be the j-dimensional real vector bundle

R J -> Cn(j) xΣj ΈLJ -> Cn(j) xΣj * .

It is shown in [Mi] that i}j(ΩnSn + m) is homeomorphic to the Thom
space of mξnj, the m-fold Whitney sum of £ n j .

We will need the following results on the periodicity of the bundles

Sn, j

PROPOSITION 1.4. The bundle 2ξ2j is trivial

This is proved in [CMM] by observing that the Whitney sum
2ξ2j is the bundle
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and constructing an explicit bundle isomorphism between this bun-
dle and a trivial bundle ε2j over C2(j) XΣ^ *• This has the following
important corollary.

COROLLARY 1.5. Dj(Ω2Sq+2) ~ Σ^-^D^S3) for q odd.

This is actually a homeomorphism, but a stable homotopy equiv-
alence is all we need. More generally, let φnj be the stable order
of the bundle £ n j . A sharp bound on φnj is obtained in [CCKN].
This leads to the following:

C O R O L L A R Y 1 . 6 . There i s a s t a b l e e q u i v a l e n c e Z ) i ( Ω ^

2. Suspension orders in the stable decomposition of Ω2S3.
Throughout this section, all spaces are assumed to be localized at a
fixed odd prime p, and all homology groups have coefficients in Zp.
For ease of notation Dj(ίl2S3) will be written as Dj.

THEOREM 2.1. Let pk = aλp
h + ... + aιpiι such that 0 ^ it <

... < %ι and 1 ^ aj ^ p — \, and define φ(k) = i\. Then the stable
order of Dpk divides p^.

Recall from [Coh] that if k = mp + r with 1 ^ r ^ p — 1, then
Σ°°Dpk is homotopy equivalent to the odd-primary Brown-Gitier
spectrum Σ 2 ^ ~ 1 ) β ( m ) .

COROLLARY 2.2. The order of 1 e [B(m),B(m)] is equal to p
for m ^ 0.

Note that as k varies, there are many Dpk that do not correspond
to odd-primary Brown-Gitler spectra, for example Dpn for n > 1.

By 1.3, it suffices to prove the following:

THEOREM 2.3. The stable order of Dpn divides pn.

The first step in the proof of 2.3 is to obtain an analogue of the

cofibration sequence constructed by Mahowald in [M].

THEOREM 2.4. If r is even and sufficiently larger than k} there
is a (p-locaΐ) cofibration sequence

Dpk-p -> Σpk{r-2)Dpk -
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Proof. This proof is obtained by modifying the proof at the prime

2 in [CMM]. Let Ω 5 r + 1 Λ ίlSpr+1 be the p-th James-Hopf invari-

ant, and denote May's model for ΩnΣnX by CnX. Then we have

: C2*Sr~1 —-> C2S
pr~1, which for dimensional reasons, restricts to

FiC2S
r-λ -> F[ilp]C2S

vr-1 if i ζ pk.

Since H*FpC2S
r~ι = s^n{x1,βQp.1xuQp.1x1}, Fp = FPC2S

T-1

has a cell decomposition Fp = S7"1 U epr~2 U e^""1. Let Fp be the

(pr — 2)-skeleton of Fp. Note that the composite Fp

 c—> C2S
r~1 —>

C2S
pr~1 is null-homotopic, since Ω 2 5 p r + 1 is (pr—2)-connected. Then

the commutative diagram

Fp'x

Ω/ixΩ/i

* X

Fpk~p

I
μ° "-\ F c

Fpk

shows that the composite

F^C^-1 x Fpk.pC2S
r-1 μp^~p FpkC2S

r-λ 55 FkCtS**-1

has its image in Fk-\C2S
pr~1. By passing to quotients, we obtain

the sequence

5 p r - 2 Λ jDp,_p(C 25 r- 1) Λ Dpk{C2S
T~l) Λ Dk&S*'-1)

with I o / ί ~ * .
It now suffices to show that the above sequence gives a short exact

sequence in mod p homology. D

LEMMA 2.5. K(x?p) = λj/^ and K(x?) = 0 ifm^O (p), where
H*(ΩSr+1) ^ Zp[xr] and i ί*(Ω5 p r + 1 ) ^ Zp[ypr] and λ is a tintί mod

A proof may be found in [H]. In fact, it is not hard to show
that λ = 1 (p). It then follows that (ΩΛ)5te(Q^_1xr_i) = Q^l\xpr-i
and (ΩΛ)*(^Q^_1α:r_i) = βQ%~\xpr-\ since the Bockstein is natu-
ral. This implies that h* is surjective, and it is clear that μ* is
injective. Now if m 6 her /&*, then m = (/3(5p-i#r-i)ra; where m!
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is a monomial of weight pk — p. Then m = μ*(βQp-ιxr_ι <g) m') so
ker h* C zm μ*. Since Λ, o μ ~ *, it follows that &er h* — im μ*.
Now apply Corollary 1.5 to obtain the cofibration in the statement
of the theorem.

PROPOSITION 2.6. The Moore space S1 Up e2 has stable order p.

This is a well-known fact. A proof may be found in [Nl].
Proof of 2.3. The proof is by induction on ra, the case n — 1

is the Moore space Sι Up e2, since it easy to see by inspecting its
homology that Dp is this Moore space. Let μ be the first map in the
cofibration of 2.4, and view μ as Σpk^r-^Σ2p-2Dpk-p -> Σpk(r-2Wpk.
Consider the following diagram, in which cumbersome suspensions
have been omitted. The square commutes by construction of μ.

Dp A Dpn_p

Since the attaching map of Dv is of degree p, the vertical com-
posite is null-homotopic, and therefore μ has order p.
Now consider the following commutative diagram, where / is the
appropriate dimension shift:

[pn-l] [pn

UnΠ Zj UγyΠ—1 ,/pn

Since the middle row is a cofibration and pμ is null-homotopic,
the map [p] extends to the cofibre, thus the bottom row can be
completed with a map ΣιDpn-i —> Dpn. By the inductive hypothesis,
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[p71-1] ~ * on Dpn-i. Therefore \pn] = [p]o [p71"1] - * on Dpn. This
completes the proof. D

As we noted in the introduction, this proof may be carried out in
the case p = 2, using the 2-local (stable) cofibration

S2 Λ Z)2n-2 —+ ̂ 2 n ~^ Σ D2n-i

constructed in [M] and [CMM]. The induction begins with the fact
that the mod-2 Moore space S1 U2 e2 has stable order 4. This leads
to the following result, which agrees with that obtained by W.H.
Lin in [L].

THEOREM 2.7. The stable order ofD2n(Ω2S3) divides 2 n + 1 .

COROLLARY 2.8. The order of I e [B(2n'1),B(2n"1)] divides
2 n + 1 .

3. Factorizations of power maps, deviations, and stabi-
lizations. In this section we introduce the machinery which we
will use to obtain upper bounds for the stable orders of the pieces
in the stable decomposition of ί ϊ 2 A r 5 2 n + 1 , for k > 1. The main idea
is to relate the map [r] on the suspension of an ϋΓ-space X to the
suspension of the r-th power map on X coming from the i/-space
structure. These two maps are not the same in general, but differ
by a deviation which we will describe. In particular, we will apply
this to r-th power maps on Ω 2 A r5 2 n + 1 . By stabilizing known fac-
torizations of these maps, we will have factorizations of [r] on the
stable summands, which allows a double induction to obtain the
upper bounds.

DEFINITION 3.1. Let X be an iϊ-space, and r be a positive
integer. The r-th power map on X, r : X —» X is the composite

X ^ Xr _ϋL, X .

Here m is the iterated multiplication (performed in some fixed
order), and Δ r is the r-fold diagonal map. In particular, we have
r-th power maps on loop spaces, and Ctnr ~ r for any n.
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Now if X is any space, ΣX has a degree r map denoted [r] coming
from the co-H structure in ΣX. We now describe the relationship
between Σr and [r] on ΣX, where X is an ίί-space.

PROPOSITION 3.2. Let X be an H-space and let r be its r-
th power map. Then Σ2r = [r] + Σdr where dr factors through
Σ(X AX).

Proof. By induction on r, beginning with r = 2. Consider the
following diagram:

ΣX _?*-> Σ(X x X) -^-± ΣX

-I _ 4 jv
Σ X V Σ X V ΣX 1 V 1 V Σ Λ ) Σ X V Σ X V Σ ( X Λ X) 1V1V<?> Σ X V Σ X V ΣX.

Here θ is the canonical homotopy equivalence and Δ is the reduced

diagonal X —> X x X —> X AX where π is the quotient map. We
claim that this diagram (strictly) commutes. It then follows that
Σ2 = [2] + goΣΔ, and we set d2 = qoΣA. To show that the diagram
commutes, recall that for any product A x B the equivalence θ is
the composite

Σ{A χ β ) Λ Σ{A χ β ) V Σ(Λ x B) V Σ{A x B)

With this description, a check on the point-set level shows that the
left square commutes. Since θ is an equivalence, it has an inverse.
Thus there is a map q : Σ(X A X) —> ΣX such that the right square
commutes.

Now suppose that Σ 2 (r — 1) = [r — 1] + Σ<ir_i, and consider the
following diagram:

Ί 1 1'
ΣX V ΣX V ΣX — ^ ΣX V ΣX V Σ(X Λ X) W 1 V < ? ) ΣX V ΣX V ΣX

where a = Σ(r - 1) V 1 V Σ Δ r _ 1 ? 1 and Δ r _ 1 ? 1 = π o (r - 1,1). As
before, the left square commutes by a direct check. The top row is
clearly Σr. It then follows that



110 PAUL SILBERBUSH

Suspend this equation. Then we are working in the abelian group
[Σ2X,Σ2X], and we have

Σ 2 r = Σ 2 (r - 1) + 1 + Σ(q o Δ r _ u ) = [r] + Σdr^ + Σ(q o Δ r _ M ) .

Now setting dr = dr-\ + q o Δ r _ 1 1 completes the proof. D

COROLLARY 3.3. Σ°°r = [r] + Σ°°dr.

We will apply this result to the following situation:

THEOREM 3.4. Localized at 2, there exists a homotopy commu-
tative diagram

| Ω Σ 2

ns2n~ι ns2n~\
If we restrict to n even, a factorization of 2 exists.

THEOREM 3.5. Localized at 2, there exists a homotopy commu-
tative diagram

Ω 4 5 4 n + 1 — — • Ω 4 5 4 n + 1

Ί ϊ
The factorization of 4 in 3.4 is essentially due to James [J]. In this

form it may also be attributed to Barratt (unpublished) and Moore
(unpublished). The factorization of 2 in 3.5 is implicit in work of
Selick [Se]. Detailed proofs of 3.4 and 3.5 may be found in [Co].
At odd primes, a single sharper statement is possible. For p = 3
this is due to Neisendorfer and for p > 3 to F. Cohen, Moore, and
Neisendorfer. Proofs may be found in [CMN] and [N2].

THEOREM 3.6. Localized atp>2, there exists a homotopy com-
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mutatίve diagram

These diagrams clearly remain commutative when looped down.
Now apply the functor Σ°° to any of the three previous diagrams

(after looping further), and apply Snaith's stable decomposition.
This yields the following commutative diagram, where we omit the
symbol Σ°°.

Here r = 2,4 or p and n must be even if r = 2. By 3.2, the map
dr factors through V Dj(il2kS2n+1) Λ V D ^ Ω 2 ^ 2 ^ 1 ) . We now

consider the behavior of particular summands in this diagram. All
spaces are assumed to be localized at the prime under consideration.

PROPOSITION 3.7. Suppose pk ^ n, where p is the prime under
consideration.

(1) There exists an induced commutative diagram

1
V" JD j(Ω 2*- 2S 2 n- 1)

obtained by pinching D\ off of each bouquet.

(2) Forp ^ 2 ίΛe map / restricted to Dpm(ίl2kS2n+1) is homotopic
to a map with image in \J Dj(Ω ~ S n~ ) .
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(3) Let q: \J Dj(Ω2kS2n+ι) -> \J Dj{Ω2kS2n+ι) be the evident

pinch map. Forp = 2 the map qodr restricted to Z?2m(Ω2 λ :52 n + 1)

factors through V A(i l 2 *S* n + 1 ) Λ Z? j(Ω2*S>2n+1).

(4) For p > 2 the map άr restricted to Dpm(ίl2kS2n+1) factors
through V Di(n2kS2n+1) Λ D3{Ω2kS2n^).

2<i+j<2pm

Proof. First note that Di(Ω2kS2n+1) ~ S2n~2k+1, and that the
functor Σ°° does not change the dimension, connectivity, or homol-
ogy of a finite complex. The proposition then follows by cellular
approximation and the next lemma. D

LEMMA 3.8.

(1) The dimension of D2m(Ω2kS2n+1) is 2m+1n -2k + l.

(2) The connectivity of D2™(Ω2kS2n+1) is 2 m + 1 (n - k) + 2m - 1.

(3) The dimension of Dpm(Q2kS2n+1) is 2pmn -2k + l.

(4) The connectivity of Dpm(Ω2kS2n+1) is 2pm(n - k)

Proof Recall that H*(D2™(Ω2kS271*1) is spanned by the monomi-

als of weight 2m in i/*(Ω2 A :S2 n + 1). Then it is clear that the bottom

homology class is #2π-2A:+i which has dimension 2 m + 1 (n—&)+2 m and

the top class is Q™k_1x2n-2k+i which by induction on m has dimen-

sion 2m + 1n—2&+1. Forp odd, the bottom class is (βQιX2n-2k+i)prn

and the top class is also Q™k_1X2n-2k+i Π

To see why the hypotheses on k and n are needed, the inequalities
which need to hold for (2) and (3) in 3.7 are

2 m + 1 n - 2k + 1 ^ 2 m + 2 (n - k) + 2 m + 1 - 1

2pmn - 2k + 1 ^ 2p m + 1 (n - k) + 2pm(p - 1) - 1

2pmn - 2k + 1 ^ 4pm(n - k) + 4pm~ι{p - 1) - 1

and these are easily seen to be true if pk ^ n. We will need a further
.7. Let ipm denote the inclusion

Dpm(Ω2kS2n+1) -> V D 3 ( n 2 k S 2 n + 1 ) .

refinement of 3.7. Let ipm denote the inclusion
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PROPOSITION 3.9. Let p ^ 2. For fixed m and k, we may choose
n sufficiently large such that dr o ipm factors through

V A ( f t 2 * s 2 n + 1 ) Λ D 3 ( n 2 k s 2 n + 1 ) with i + j ϊ p m + i . (if
2<i+j<2prn

p = 2 the conclusion holds for q o dr o i2m.)

Proof We are trying to exclude the summand (D\A Dpm) V (Dpm Λ
Z>i), which has connectivity 2n - 2k + 2pm(n - k) + 2pm~1(p - 1)
(for p > 2). Now the dimension of D pm(Ω 2 Λ5 2 n + 1) is 2pm - 2k + 1,
so the inequality which must hold reduces to

2pmJfe ^ 2n + 2pm-1(p - 1) - 1 ,

and similarly for p = 2. D

By 1.6, we see that to compute stable orders for Dj(Ω2kS2n+1), we
may increase n as needed. We now state the corollary to 3.7 and 3.9
two which we will need in the next section. We make the standing
assumption that i + j > 2 and i: + j φ pm + 1 when considering
the space \f Dι(Ct2kS2n+1) Λ Dj{ίl2kS2n+1). This is justified

by the previous proposition. Furthermore, we will abuse notation
somewhat and identify / with / and dr with dr and q o dr where it
is convenient to do so.

COROLLARY 3.10. Let p ^ 2.

(1) The map f o ipm has order dividing the stable order of
V DiίΩ2*"2^-1).

(2) The map dr o ipm has order dividing the stable order of

V Di(Ω2kS2n+1)ΛDj(n2kS2n+1).
i+j<2pm

Proof. The only thing to check is that the stable order of
Dj(Ω?kS2n+1) for pm <j < pm+1 is no larger than the stable order
of Dpm(n2kS2n+1). This follows from 1.3. Furthermore, the sta-
ble order of \f D ί (Ω2*~252n~1) is equal to the stable order of

Dpm(Ω2k-2S2n-1) and the stable order of V A(Ω 2 / ί S 2 τ ι + 1 ) Λ
i+j<2pm
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Dj(Ω2kS2n+1) is equal to the stable order of Z>pm-i(Ω 2*S 2 n + 1) Λ
2 * 2 D

4. Suspension orders in the stable decomposition of

n 2 k s 2 n + 1 .
In this section we obtain upper bounds for the stable orders of

each piece in the stable decomposition of Ω2kS2n+1 localized at each
prime and for 2k < 2n + 1. This generalizes the results of sections
3 and 4 on the stable decomposition of Ω 2 S 2 n + 1 . There are enough
differences between the cases p = 2 and p > 2 to warrant treating
them separately, though the method used for p — 2 applies directly
to (and is actually simpler for) odd primes. We make the standing
assumption that all spaces are localized at the prime under consid-
eration, and that pk ^ n for any space Ω 2 *5 2 n + 1 , where again p is
the prime under consideration. This restriction will later be reduced
to 2k < 2n + 1. By 1.3, it is enough to consider Dpm(ft2kS2n+1)

THEOREM 4.1 . The stable order of D2m{μ4S4n+ι) divides 2m+2.

THEOREM 4.2. Letm^l and k ^ 1.

(1) The stable order of D2m(tt4k+2S4n+3) divides 22m+3k~1.

(2) The stable order of D2rn(n4k+4S4n+1) divides 22m+3k.

(3) The stable order of D2m(n4kS4n+3) divides 22m+3k~2.

(4) The stable order of D2m(n4k+2S4n+1) divides 22m+3k~1.

We will prove Theorem 4.2 by double induction on m and £, with
the case k = 1 having been done already. For rn = 1, the spaces D2

are well known to be suspensions of stunted real project ive spaces,
for which the stable orders have been computed by Toda. Adopt the
standard notation P£ for stunted real projective space RPn jRPk~x.

PROPOSITION 4.3. D2(Ω2kS2n+1) is stably equivalent to P2

2n-2A;+i

Here we mean stably equivalent by analogy with vector bundles.
We write X =s Y if ΣPX is homeomorphic to ΣqY for some integers
p and q.

Proof Recall from section 2 that D2(Ω,2kS2n+1) is homeomorphic

to the Thorn space T(mξ2k,2) where m = 2n—2k+l. Let 72*;-! be the
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canonical line bundle over RP2k~Ύ. Then ξ2k,2 is stably equivalent
to 72fc-i (as vector bundles), so we have

T{mζ2kt2) ^s Γ(ro72*-i)

It is shown in [H] that T(mη2k-\) is homeomorphic to p™*2**1.
This completes the proof. D

Next, we recall Toda's results on the stable order of stunted real
projective spaces.

THEOREM 4.4 [T].

(1) The stable order of P£™-Ak+i *s 22k+e where e — 0 if k is even
and 6=1 if k is odd.

(2) The stable order of P£_Ak_x is 2 2*+ 1 + e where e = 0ifkis even
and e= 1 if k is odd.

(3) The stable order of P£±%k+3 is 22k+e where e = 0 if k is even
and e=l if k is odd.

(4) The stable order of Ptn-lk+ι i s 22k+ι+e where 6 = 0 if k is odd
and e = 1 if k is even.

A slightly weaker statement results by always taking 6 = 1. This
will suffice for our results, which are independent of parity of k.

LEMMA 4.5. Let X = \J Xa be an arbitrary wedge of co-H-

spaces. Then X is a co-H-space and the degree k map on X is
homotopic to the wedge of the degree k maps on each summand.

The proof is trivial. In particular, this holds for suspensions and
suspension spectra. Now let ia be the inclusion Xa

 c ^ X and let
πa be the pinch map X —> Xa.

LEMMA 4.6. With the above notation, if [k]oia is null homotopic
in X, then it is null-homotopic in Xa. That is} Xa has suspension
order dividing k.

Proof. Consider the following commutative diagram:

\r i a. \r "̂ α \r

Λa >• A > A α

[k]\ [k]\ [k]\
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By hypothesis, each composite in the left square is null-homotopic.
Thus k times the bottom row is null-homotopic. But the bottom
row is the identity on Xa. D

We are now ready to prove the main results of this section.

Proof of4-1- By induction on ra. Consider the following diagram,
which is obtained by stabilizing the factorization of 2 in 3.5.

V#;

By 3.7, the map / o i2m has its image contained in

V Dji&S4"-1).

Thus it has order dividing the stable order of U2mίί 2S 4 n" 1, which is
at most 2 m + 1 by 2.7. Then we have

2m+1([2] + d2 o i2m) = [2m+2] + (2m+1rf2) o i2m ~ * .

But d2 factors through V A(Ω 4 S' 4 n + 1 )Λ£) i (Ω 4 5 4 n + 1 ), so it has

order dividing the stable order of D2m-i (Ω4S4n+1)ΛZ)2m-i ( ί2 4 5 4 n + 1 ),
which is at most 2 m + 1 by induction. Thus [2m + 2] ~ * on

Π

Proof of 4.2. We will first show that (1) implies (2), and then
prove (1) by a double induction on m and k. Suppose that (1)
holds for all m and k. Consider the following diagram:

Ί 1
\/Dj(Ω4k+2S4n-1) \/l> i(Ω 4*+ 2S 4 n- 1).

For m = 1, we have that the stable order of D2(fl4k+4S4n+1) divides

23λ:+2 b y χ O ( j a ' s result. By (1) and 3.10, / o i2m has order dividing
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2 2 m + 3 *" 1 . This gives 22m+3k~1([2] + d2 o i2m) ~ *. But d2 has order
dividing 22 m + 3 A r~2, by 3.10 and induction on m. Therefore the term
with d2 vanishes and 2 2 m+ 3* - * on jD 2 m(Ω 4 ^ 4 5 4 n + 1 ) .

We now turn to the proof of (1). For k — 1, triple-loop the
factorization of 4 in 3.4 and stabilize:

\/D3(n6s4n+3)

By 4.1 and 3.10, the map foi2m has order dividing 2 m + 2 . This gives
2m+1([4] + ύ?4 o i2m) ~ *. But d4 has order dividing 2 2 m by 3.10 and
induction on m. Therefore, if we multiply the last equation by 2m~1,

then the term with d4 vanishes and [22 m + 2] ~ * on D2rn(Ω6S4n+3).
To prove (1) for all m ^ 1 and k ^ 1, first note that (1) is true

for m = 1 and k ^ 1 by 4.4. We will proceed by using the following
form of double induction: Let P(£;, m) represent the statement that
(1) is true for k and m. We will show that P ( ^ &, ̂  m — 1) and
P ^ A; — 1, m) implies P(k, m).

ί
= \ / D ; (Ω 4 A : 5 4 n + 1 ) .

Since (1) is assumed true for k — 1 and m and (1) implies (2),
the stable orders are known for j ^ 2m in the lower left corner.
Thus / o i2m has order dividing 22m+3k~3. Now d4 o i2m has or-
der dividing 2 2 m + 3 / : - 3 , by induction. Therefore [22m+3k~1] - * on
£ 2 -(Ω 4 / : + 2 S 4 n + 3 ) . To prove (3) and (4), proceed exactly as for (1)
and (2), only start with the diagram of 3.4 and the result of 2.7 to
verify (3) for k — 1. This completes the proof. D

We now state and prove the analogous results for odd primes.
Because of the factorization of p from 3.6 for all odd spheres, it is
not necessary to distinguish cases as before and we have one simpler
result.
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THEOREM 4.7. For p > 2 and m ^ 1, the stable order of
Dpm(n2kS2n+ι) divides pm+k~ι.

As before, this suffices to compute the stable order of all
Dj(ίϊ2kS2n+1).

For the case m = 1, we compute upper bounds for the stable
orders of the p-adic pieces directly rather than proceed by analogy
with Proposition 4.3.

PROPOSITION 4.8. The stable order of Dp(Ω2kS2n+1) divides pk.

Proof For k = 1, Dp(ίl2S2n+1) is a Moore space which has sta-
ble order p by 2.6. Now stabilize the factorization of p from 3.6.
It then suffices to show that dv is null-homotopic when restricted
to £ p ( Ω 2 * S 2 n + 1 ) . But dp factors through \/ A(Ω 2 *S 2 n + 1 ) Λ

Dj(ςi2kS2n+ι) and this is a contractible space, by 1.2. D

The proof of 4.7 now proceeds by induction on m and k, as in the
proof of 4.2, beginning with the factorization of p on Ω 2 5 2 n + 1 from
3.6.

Finally, we show that the restriction pk ^ n for the spaces
may be weakened.

PROPOSITION 4.9. If 2k < 2n + l, then the results of 4.1, 4.2,
and 4.7 hold for

Proof By 1.6, Dj(ft2kS2n+1) has the same stable homotopy type
as Dj(Ω,2kS2n+1+φ2k>j), where φ2kj is a multiple of the stable order
of the bundle 2̂fc,j Now choose a multiple r of <f>2kj such that

pk ^ (tt + ^ - ^ V so that ςi^s2n+1+rφ2k^ satisfies our previous

condition. D

5. Proof of proposition 1.3. We now give the proof of 1.3.
In fact, we will prove something slightly stronger. To simplify the
statement and proof slightly we will assume that p = 2. The case
p > 2 is analogous.
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Recall that for a space X, QX = tt^Σ^X = % Ω n Σ n X . For X
path-connected, May's model (with n — oo) is equivalent to QX,
and the quotients Dj(QX) may be defined as in the case n < oo.

θ
Moreover, there is a canonical map Dj(ΩnΣnX) —* Dj(QX) induced
by the inclusion Cn(j) <-> C^j)

PROPOSITION 5.1. Leί 2Γ = 21'1 + ... + 2*1 im'ί/i 0 < zΊ ^ ... ^
i/. TΛen D2r(QX) is a stable wedge summand of D2x1(QX) Λ ... Λ
D2i,(QX).

It clearly suffices to show that D2j(QX) is a stable wedge sum-

mand of D2n (QX) Λ D2r-ri (Qx)-

COROLLARY 5.2. If θ* is injective in mod-2 homology, then the

same statement holds with ΩnΣnX replacing QX.

In particular, if X — S2m+1 then this condition holds since
H*(QX] Z2) = Z2[QiX2m+i] where / is an admissable and the op-
erations Qi are defined for i ^ 0. See [CLM] or [Co] for further
details.

Proof To begin the proof, we recall the stable homotopy version
of the transfer. Let G b e a finite group and H a subgroup of index
TV, and suppose that G (and hence H) acts freely on a space Y.
Then there is an JV-sheeted covering Y/H A Y/G. In [KP], Kahn
and Priddy show that there exists a stable map Y/G A Y/H such
that (π o r)* is multiplication by N. Thus the classical transfer for
covering spaces may be realized by a (stable) map of spaces. See
[A] for a thorough treatment of the transfer. D

Let F ( R n , j) be the space of j distinct ordered points in R n . It
is shown in [M] that F ( R n , j ) and Cn(j) have the same homotopy
type, and that the connectivity of F ( R n , j) increases with n. Thus
F(R°°, j) = lhξii^R71, j) is a contractible space. Furthermore, the
spaces F ( R n , j) may be used in May's model for Ω n Σ n X, and then
the defintions of section 2 show that Dj(ΩnΣnX) is a quotient space
of F ( R n , j ) x^j Xj and similarly for Dj(QX). Now there is a cov-
ering space of degree

F(ΪC,j + k) xΣ j X Σ f c X*k - F(Rn,j + k)
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induced by the inclusion Σj x Σ& <—> Σj+fc, and similarly for n = oo.
Consider the following commutative diagram (of stable maps):

F(Rn,j)xΣ]X>

xF(Rn,k)xΣkX
k

•1

Ί

•1
F{R°°,j)xΣ,χi

xF(Rco,k)xΣkX
k

•1

Here the second vertical maps are given by projections and the
third vertical maps are given by the multiplication in the May fil-
tration. The diagram commutes by naturality of the constructions
under the inclusion R n <-» R°°. Notice that the second vertical ar-
row in the right column is a homotopy equivalence since the spaces
F(R,°°,j) are contractible. It follows that in homology, the right
column is multiplication by r + J.

Now consider the following commutative diagram which is ob-
tained from the above diagram by passing to quotients.

Dj+k(ΩnΣnX) ——* Dj{ΩnΣnX)ΛDk(ΩnΣnX)

θ\ θΛθ\

Dj+k(QX) -^—* Dj(QX)ΛDk{QX)

It is not hard to show that the quotient map F(R°°, j + A;) Xs;+fc

X*+k —>• Dj+k{QX) is onto in homology. Thus in homology the

bottom row of this diagram is multiplication by y ) Now Ίίj+k =

2r and j = 2%1 then this index is odd and μ o π o τ is a 2-local

equivalence. This proves Proposition 5.1. To prove Corollary 5.2,

note that if θ* is injective, then the top row is injective in homology,

hence an isomorphism since the domain and range are equal vector

spaces of finite type.

REMARK. For p = 2 and X an even sphere, the Corollary holds
since in this case θ* is injective. But for p > 2 and X an even sphere,
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θ* fails to be injective due to the presence of nontrivial Browder
operations which become 0 in H*(QS2m;Zp). For X = S2m+1 and
p > 2, the proof goes through without change since the index is
a unit mod p and 0* is injective. We are indebted to Fred Cohen
for discussions on this point and for his specific suggestions for the
previous proof.

Finally, we would also like to point out that a slightly easier
proof of 1.3 is possible for Dpr(Ω2S3). By stabilizing the diagonal
Ω2S3 —> Q2S3 x Ω2S3 and pinching off onto a factor, it is easy to-
obtain maps Dpr —> D^ Λ Dpr_pχι —* Dpr where pn is from the
p-adic representation of pr in 1.3. Then since H*(Dpr) is a cyclic
A-module (for Ω 25 3), it follows by checking on the bottom class
that the above map is an isomorphism in mod-p homology. This
is carried out in [CG] for odd primes and the proof given there
easily modifies for the prime 2. We would like to acknowledge this
paper as being most helpful in understanding these ideas and for
motivating Propositions 1.3 and 5.1.
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