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GENERALIZATION OF THE HILBERT METRIC TO
THE SPACE OF POSITIVE DEFINITE MATRICES

CARLANGELO LIVERANI AND MACIEJ P. WOJTKOWSKI

We introduce a generalization of the Hubert projective
metric to the space of positive definite matrices which we
view as part of the Lagrangian Grassmannian.

1. Introduction. In his treatment of Kalman Bucy filters Bou-
gerol [1], [2] uses the Riemannian metric on the set of positive def-
inite matrices considered as a Riemannian symmetric space.

Graphs of symmetric linear maps from Rn to W1 are Lagrangian
subspaces in the standard linear symplectic space Rn xR" . We call
a Lagrangian subspace positive, if it is a graph of a positive definite
linear map. Further, we call a linear symplectic map monotone, if it
maps positive Lagrangian subspaces onto positive Lagrangian sub-
spaces. Bougerol discovered that the symplectic matrices in Kalman
filtering theory are monotone. He shows that the action of any
monotone map on the manifold of positive Lagrangian subspaces
contracts the metric of the Riemannian symmetric space. It is the
only (up to scale) Riemannian metric which has this property.

The goal of this paper is to introduce a natural Finsler metric
in the manifold of positive definite matrices which, in addition to
being contracted by the action of any monotone map, has striking
geometric properties. In particular, we obtain that the coefficient of
least contraction is equal to the hyperbolic tangent of one half of the
diameter of the image. This is the same relation which was obtained
by Birkhoff [3](see also [4]) for the Hubert projective metric.

In the case of the positive orthant the Hubert metric is also only
Finsler (cf. [6]), which reflects the nonsmoothness of the cone. It
is natural that the generalization of the Hubert metric to the space
of positive definite matrices is not smooth, because its boundary in
the Lagrangian Grassmannian is not smooth.
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After our paper was written we learned that this metric was dis-
cussed earlier by Vesentini [9] from a completely different point of
view, which is applicable also in the infinite dimensional setting.
In Vesentini's approach our metric becomes a Caratheodory-type
metric on the convex cone of positive definite matrices.

2. Preliminaries. We consider a linear symplectic space W of
dimension 2n with the symplectic form ω. We call W = Rn x Rn

the standard linear symplectic space, if

where wτ = (<f, ηι), i = 1, 2, and (ξ, η) = ξληx + + ξnηn.

The symplectic group Sp(n,R) is the group of linear maps of W
(2n x 2n matrices if W = Rn x Rn) preserving the symplectic form,
i.e., L G Sp(n,R) if

ω(Lwι, LW2) — ω(wι, 11)2)1

for every Wι,W2 € W.
By definition, a Lagrangian subspace of a linear symplectic space

W is an n-dimensional subspace on which the restriction of ω is zero
(equivalently, it is a maximal subspace on which ω vanishes).

DEFINITION 1. Given two transversal Lagrangian subspaces V\
and V2, we define the sector between V\ and V2 by

C = C(VU V2) ={we W\ω(υuv2) > 0

for w = Vχ + υ2, V{ G Vi: i + 1, 2}.

We call Vγ and V2 the sides of the sector.
Equivalently, we define first the quadratic form associated with

an ordered pair of transversal Lagrangian subspaces

Q(w) = 2ω(υuυ2),

where w — vγ + v2, ^ G 1 ,̂ i — 1, 2, is the unique decomposition.
The factor 2 is introduced here to simplify some of the formulas.
We have now

c = {we
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In the standard symplectic space, if we take V\ = Rn x {0} and
V2 = {0} x f , we get

and

Since any two pairs of transversal Lagrangian subspaces are sym-
plectically equivalent, we can consider only this case without any
loss of generality. We will keep using the coordinatefree language
to expose the geometric character of some formulas.

The Lagrangian subspaces which are contained in the boundary
of the sector C can be described in the following way. Let Y\ C V\ be
any linear subspace, and let Y2 C V2 be the intersection of V2 with
the skeworthogonal complement of Y\. Then Y\ + Y2 is a Lagrangian
subspace in the boundary of the sector. It can be shown [8] that
in this way we obtain all Lagrangian subspaces in the boundary of
the sector. We see that the subspaces V\ and V2 are singled out
among all the Lagrangian subspaces contained in the boundary of C
by being the only isolated points. It follows that a sector determines
uniquely its sides.

Based on the notion of the sector between two transversal La-
grangian subspaces (or the quadratic form Q), we define two mono-
tonicity properties of a linear symplectic map.

DEFINITION 2. Given the sector C between two transversal La-
grangian subspaces, we call a linear symplectic map L monotone
if

LCcC

and strictly monotone if

LC\{0} C int C.

Equivalent property is given by

T H E O R E M 1. L is (strictly) monotone if and only if Q(Lw) >
Q(w) for every w G W (Q(Lw) > Q(w) for every w eW, w Φ 0).

The increasing of the quadratic form implies trivially monotonic-
ity, but the converse holds only because of a very special geometric
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structure of the sector, and it is not true in general for cones defined
by arbitrary quadratic forms. This theorem was first proved in [5].

Let
(AB\

[CDJ
be a symplectic map of the standard symplectic space Rn x Rn,
monotone with respect to the standard sector. A, B, C, D are
nxn matrices, and it can be shown that A and D are nondegenerate
(cf. [7], [8]).

Let us describe those symplectic matrices which are monotone in
the weakest form, namely they preserve the quadratic form Q. We
will call such matrices Q - isometries.

PROPOSITION 1. If L is a linear symplectic map and

LC=C,

then

In particular, L preserves the quadratic form Q

QoL = Q.

Proof If LC = C then L maps also the boundary of the sector
C onto itself. Since the sides of the sector are the only isolated
Lagrangian subspaces in the boundary of the sector, it follows that
they stay put under L. Hence B = C = 0. By symplecticity
D = A*-\ D

Given a monotone L, we can always factor out the following Q -
isometry on the left.

Symplecticity of L forces further unique factorization

L =
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with symmetric P and R. Moreover, monotonicity forces P > 0 and
R > 0. Strict monotonicity means that P > 0 and R > 0. These
claims follow from the following

Proof of Theorem 1. Using the above factorization, we get for
w = (f, η)

Q(Lw) = <ξ, 7?) + (ity, r;) + (P(ξ + i f y U + Λi7>.

Putting η = 0, we obtain that P > 0. To show that also R > 0,
let us consider an eigenvector η of R with eigenvalue λ and let
w = (α77,77). We get that if α > 0 then w eC and Lw € C, so that

This implies immediately that λ > 0, which ends the proof of the
monotone version of the Theorem. The strictly monotone version is
obtained in a similar way. D

As a byproduct of the proof, we get the following useful observa-
tion

PROPOSITION 2. A monotone map L is strictly monotone if and
only if

LVi\{0}cintC, i = l,2.

3. The metric in the manifold of positive Lagrangian sub-
spaces. We start by defining the symplectic angle Θ(u, w) between
two vectors in the interior of the sector C.

DEFINITION 3. The symplectic angle between two vectors u, w e
int C is the real number θ(u,w) such that

ω(u,w) = yQ(u)yQ(w) sinh θ(u,u>).

For any monotone symplectic map L and two vectors u, w G
int C we have

(1) sinh θ(Ln,Lw) = sinh θ(u,w)*
Q(u)

Q(Lu)\

Q(w)

Q(Lw)'



344 C. LIVERANI AND M. P. WOJTKOWSKI

Hence, by Theorem 1, a monotone map does not increase the abso-
lute value of the symplectic angle, and the contraction of the sym-
plectic angle can be estimated by the least coefficient of expansion
of Q under the monotone map. We will find an explicit formula
for this coefficient. For a linear symplectic map L, monotone with
respect to the sector C, we define the coefficient of expansion at
we int C by

We define further the least coefficient of expansion σ{L) by

σ(L)= inf β(w,L).

To find the value of this expansion coefficient, we will use the fact
that it does not change, if L is multiplied on the left or on the right
by Q - isometries.

PROPOSITION 3. //

is a strictly monotone map then, by multiplying it by Q - isometries
on the left and on the right, we can bring it to the form

where T is diagonal and has the same eigenvalues as C*B.

Proof of Theorem 1. The factorization of a monotone map yields

/A"1 O\L_(I R \
\ 0 A*) \PI + PR) '

where P > 0, R > 0 and PR = C*B.
We have further

(R-h 0\(l R \ ( R k 0 \ _ ( I I \

[ 0 Rh) \PI + PR { 0 R-h) ~ \KI + K '
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where K = RϊPRϊ has the same eigenvalues as C*B = PR.
Finally, if F is the orthogonal matrix which diagonalizes K, i.e.,

F~ιKF is diagonal, then

\0 F-1) \KI + K) \0 F) \TI + T)

has the desired form with Γ = F~ιKF having the same eigenvalues
as C*B. D

For a monotone L the matrix C*B is equal to the product of two
positive semidefinite matrices (C*B = PR), and so it has only real
nonnegative eigenvalues. Let us denote them by 0 < ίi < < tn.

PROPOSITION 4. For a monotone map L

σ(L) = y/1 +tχ + \ft\ — exp sinh""1

and if L is strictly monotone, then

σ(L)=β(w,L),

for some w 6 int C.

Proof of Theorem 1. Let us put

m(L) = Λ/1 + *I + y/tl = min Ul + U +
l<i<n

First we prove the inequality β(w, L) > m(L), for w G int C. Since
both /?(w, L) and m(L) are continuous functions of L, it is sufficient
to prove the inequality for strictly monotone maps only. In view of
Proposition 3, we can take

TI + T) '
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with diagonal T and ί i , . . . , tn on the diagonal. We compute directly,
for w = (£, 77) such that Q(w) = 1,

-

- δ(m(L))~2 > (m(L))2,

where

= ( Σ 6%) -1 >

and all the inequalities become equalities with the appropriate choice
of w.

Thus the Proposition is proven for strictly monotone matrices.
To extend it to all monotone matrices, we proceed as follows. For
any e > 0, we choose a strictly monotone matrix L€, so close to the
identity that m(LeL) < m(L) + e. Let w€ 6 int C be such that

β(weiL6L) = m(LeL) = σ(L€L).

But β(w, LeL) > β(w, L), for any w € int C. Hence,

m(L) < σ(L) < β{w6, L) < β(wej LeL) = m(LeL) < m(L) + e,

which ends the proof. D

We say that a Lagrangian subspace is contained strictly in the
sector C, or that it is positive (if it is clear which sector we have in
mind), if all of its nonzero vectors are contained in the interior of
C. We consider the manifold of all Lagrangian subspaces which are
strictly contained in the sector C and denote it by C Although C is
a smooth (nonconvex) cone, the boundary of C in the Lagrangian
Grassmannian is not smooth.
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We define further the distance of two Lagrangian subspaces [7, W
contained strictly in the sector C.

DEFINITION 4. The distance s(U, W) of two positive Lagrangian
subspaces U and W is equal to the supremum of absolute values of
symplectic angles between nonzero vectors from the two Lagrangian
subspaces, i.e.,

s(U,W)= sup \θ(u,w)\.

We will check that s(U, W) is indeed a metric by computing it in
coordinates. We assume that we have the standard linear symplectic
space Rn x Rn and Vx = Rn x {0} and V2 = {0} x Rn. Let U : Rn -+
W1 be a linear map, and let

gU = {(ξ,η)eRnxRn\η = Uξ}

be its graph. The subspace gU is Lagrangian if and only if U is
symmetric. Moreover, for a symmetric U the subspace gU C C
if and only if U > 0. For a monotone L and gU C C the image
subspace LgU is again Lagrangian, and it is the graph of a linear
map, which we denote by LU i.e., gLU = LgU. All Lagrangian
subspaces strictly inside the sector are graphs of symmetric positive
definite linear maps in Rn. To simplify notation, we will write U
instead of gU.

The linear map

(AB\

acts on Lagrangian subspaces by the following Mobius transforma-
tion

For a monotone L, if U > 0 then also LU > 0.

PROPOSITION 5. For two positive Lagrangian subspaces defined
by U : Rn -+ Rn and W : Rn -> Rn

s(U, W) — max < |Λ is an eigenvalue of UW~ι >

I 2 J
= sup l\\n(Uξ,ξ)-\n(Wξ,ξ)\.

0^ξRn *
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Proof of Theorem 1. We have

sup

Putting C = U*ξ and

sinh s(U, W)

— SUp

' we get

-W-M)ζ,ζ')\

y/((u-•hWU-2

2V

-21 +

)C,

rw-αϊ7§ )C,C>

= max is a n eigenvalue of

*WU-*- 21

= max

= max

- 2 + λ-1

1A is an eigenvalue of UW

-|λ is an eigenvalue of UW > .

This proves the first equality. To prove the last equality, we trans-
form further

< 1
I

max < 1A is an eigenvalue of
I 2

1
= S UP o

*UW-

= sup h]n{Uξ,ξ)-]n(Wξ,ξ)\.
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D

COROLLARY . The function s(U, W) is a complete metric on the
space of positive definite matrices. The topology defined by this met-
ric coincides with the standard topology.

If the least coefficient of expansion of Q is large, then the image
of C under L is narrow. Moreover, we have the following formula
connecting σ(L) and the diameter of LC

THEOREM 2. For a stricly monotone map L, the diameter of LC
is equal to the s-distance of LV\ and LV2,and

, 2 σ{Lr

Proof of Theorem 1. Q-isometries are also isometries when acting
on C. Hence, by Proposition 3, we can restrict our calculations to

with diagonal T. We have

s(LVι, LV2) = max I —-—|λ is an eigenvalue of / + T " 1

I 2

= max

where ί i , . . . , tn are the eigenvalues of T. Now we obtain the for-
mula connecting s(LVχ,LV2) and σ(L) from Proposition 4, by a
strightforward calculation.

It remains to estimate from above the distance of any two La-
grangian subspaces in LC. So let U and W be two positive definite
matrices. Then

(τ + u + τu)(i + uyι - r + (/ + u~ιy\
and the same formula applies to W\ — LW. U\W{1 has the same

eigenvalues as Wx

 2UιWx

 2 , and since

/ + Γ > Ux > T,
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we get

WΪ*(I

_I _i

The eigenvalues of Wλ

 2 TWι

 2 are the same as the eigenvalues of

TΪW^T* = T2 (T + (i + w-1)-1)'1^.

But

Γ^ (T + (i + w-1)-1)'1^ > Γ2 (/ + τ)-χττ

_1 _1

Similarly, the eigenvalues of Wx

 2 (I + T)Wλ

 2 are the same as the
eigenvalues of

Again we can estimate

I + Γ" 1 = (7 + T)*T'\I + Γ) 2

> (7 + Γ)5(T + (I + W-lYl)~\l + T)i

We have established that the eigenvalues of U\Wι

 ι are smaller than
the eigenvalues of 7 + T~ι and bigger than the eigenvalues of (7 +
Γ" 1 )" 1 , which gives us the desired estimate. D

4. The Finsler character of the metric s. We will be in-
troducing a Finsler metric in the manifold of positive Lagrangian
subspaces £, such that all monotone maps act on C as contractions.
In particular, since Q - isometries are monotone together with their
inverses, they act on C as isometries. Since Q - isometries act tran-
sitively on £, such a Finsler metric is uniquely defined by its value
on the tangent space at any chosen point in £. We will use the
parametrization of C by positive definite matrices. Since C is an
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open subset of the linear space of symmetric matrices, all tangent
spaces of C can be identified with the linear space.

We define the Finsler metric in the tangent space at the identity
matrix. For X e TrC, its Finsler norm \X\ is one half of the usual
operator norm, i.e.,

= max < — I λ is an eigenvalue of X >.

I 2 J
(Let us note here that the Riemannian metric of the symmetric

space is obtained by choosing tr X1X2 as the scalar product on
T/£.)

Such a definition is correct if and only if the Q - isometries which
have / fixed act as isometries on TjC with respect to the chosen
norm. The Q - isometries preserving the graph of I have the form

OF)

where F is an orthogonal matrix. The action of such a Q - isometry
on TiL (the derivative at / of the action on C) is given by the
formula

TCX FXF1 e TiL,

and indeed

\FXF~λ\ = \X\.

Let us summarize the above discussion in the following

DEFINITION 5. The Finsler metric | | on C is defined by

max < —-|λ is an eigenvalue of XVI
for X e TuC.

In contrast to the Riemannian metric, which is uniquely deter-
mined (up to scale), there are infinitely many Finsler metrics of this
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kind and our choice seems to be rather arbitrary. It is easily justified
though by the following

THEOREM 3. The distance function defined by the Finsler metric
I I on C coincides with the metric s of Definition 4-

Proof of Theorem 1. Since the Q - isometries act transitively on
C and are isometries with respect to both metrics that we are com-
paring, it is sufficient to consider the distances between / and an
arbitrary positive definite U. Let U(t), 0 < t < 1, be a smooth
path connecting / and [/, i.e., J7(0) = / and £7(1) = U. We have

1
o S U P

1
o S U P

In

i:

'^MUitfo&dt

{U'(t)ξ,ξ)

Ό (U(t)ξ,ξ)
dt

which is equal to the length of the path in the Finsler metric. Thus
the 5-distance does not exceed the Finsler distance. We conclude
the proof by choosing the path

where X is defined by ex = U. Its Finsler length is equal to

s(I,U). Π

The formula (1) implies immediately that with respect to our
metric in C the action of any monotone map is a contraction, and
moreover, the contraction can be estimated by the inequality

(2) sinh s(LU, LW) <

which holds for any two positive Lagrangian subspaces U and W.
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Let us introduce the coefficient of least contraction of the metric
s under the action of a monotone map L

, M s{LU,LW)
T{L) = J&L ~MW

UφW

THEOREM 4. The action of a monotone map L on C, equipped

with the metric s, is a contraction, and the coefficient of least con-

traction τ(L) is equal to .
σ{Ly

Proof of Theorem 1. The inequality (2) tells us that, in the limit
of coinciding Lagrangian subspaces, the coefficient of contraction is

at least . But our metric is the distance function defined by a
σ(L)2

Finsler metric, so that τ{L) is equal to the infinitesimal coefficient
of least contraction, and thus (2) implies immediately that

r(L) < l

To establish the equality, let us assume first that L is strictly mono-
tone. Then, by Proposition 4, we can restrict ourselves to

with diagonal T. The action of such L on positive Lagrangian sub-
spaces is given by the formula

T+(I + U'1)-1 e C.

The derivative of this action at U is

TUJC3X^(I + U)~ιX(I + U)-1 € TLUC.

Hence the infinitesimal coefficient of contraction at U € C and X €
TJJC is equal to

\x\

u)τ(i + u) + u* + u)ξ, ξ)
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We know that it does not exceed σ(L)~2, and we want to show that,
at least for some t/, there is an X such that

= σ { L ? ^l, <((J + IOΓ(J + to + w + ε/)ί, ξ) •

We will achieve this by choosing U = ul and X — 1. By straight-
forward computation we obtain that in this case

u
\X\ (l + u)(t!(l+ *)+«)'

where t\ is the smallest eigenvalue of T. We find further that the
function

Λ Λ = (l + u)(t(l + u)+u)

has a minimum at

u =

which is equal to (y/tϊ+ \ftχ + I ) 2 = σ(L)2. This proves the Theo-
rem for strictly monotone maps. To extend it to all monotone maps,
we proceed in the same way as at the end of the proof of Propo-
sition 3. For any e > 0, we choose a strictly monotone map Le so
close to the identity that

σ(LeL)2 ~ σ(L)2

We have

- e < = τ(LeL) < τ(L) <

which ends the proof. D

Theorem 4 combined with Theorem 2 yields

,r. , diam (LC)
τ{L) = tanh ^ '-,
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for any monotone linear map L. This formula is identical with the
formula obtained by Birkhoff [3] for the contraction of the Hubert's
projective metric. (Birkhoff has one fourth of the diameter, but it
comes just from different scaling.)
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