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IMMERSIONS UP TO JOINT-BORDISM

GUI-SONG Li

A necessary and sufficient condition for a map to be
joint-bordant to an immersion is given in terms of Stiefel-
Whitney numbers.

1. Introduction, This note is devoted to a study of immer-
sions of manifolds into manifolds up to joint-bordism. We will work
throughout in the category of smooth manifolds and smooth maps.

A map of dimension (n, k) is a map of a closed n-manifold into a
closed (n + k)-manifold. Two maps /o : MQ -» iVo and /i : Mi —> JVΊ
of dimension (n, k) are said to be joint-bordant if there is a map
F : V -» W extending f0 U /i where V and W are compact man-
ifolds with dV = Mo U Mi and dW = N0U Nλ. Joint-bordism
classes of maps of dimension (n, k) form an abelian group under
the disjoint union which we denote by M(n,k). It is well known
that Stiefel-Whitney numbers form a complete system of invariants
for the joint-bordism theory [9]. So one may hope to characterize
maps joint-bordant to immersions or embeddings in terms of these
numbers whenever k > 0. For the case of embeddings this has al-
ready been settled by Brown [3] his proof is based on a construction
suggested by Stong. In this note, using the model construction of
Koschorke [6], we shall give such a criterion for maps joint-bordant
to immersions in the "metastable" range n < 2k.

Our method of proof can also be applied to study immersions
up to various oriented joint-bordism relations. These are naturally
defined for the following restricted classes of maps (see Stong [9]):

C\: maps with oriented source manifolds;
C2'. maps with oriented target manifolds;
C3: maps with oriented stable normal bundles;
C4: maps with oriented source and target manifolds.
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In fact, let Mr(n, k) be the resulting oriented joint-bordism group
of maps of dimension (n, k) belonging to Cr and let ρr : Mj:n^ -»
M(n, k) be the natural forgetful homomorphism. Then x e Mr(n, k)
contains an immersion if ρr(x) does provided n <2k.

We now summarize our main results by the following

MAIN THEOREM. Let n <2k. Then under all five orientedness
assumptions above a map f : M —» N of dimension (n, k) is joint-
bordant to an immersion if and only if

wm(f)f*wμι(N)wμ2(M) Π [M] = 0

for allm> k and allpartions μ\,μ<ι with \μι\ + \μ2\ = n — m. Here
w(f) = f*w(N)w(M) is the total Stiefel-Whitney class of the stable
normal bundle of f and [M] is the ^-fundamental class of M.

REMARK. Stong [9] showed that the unoriented joint-bordism

class of / is completely determined by Stiefel-Whitney numbers of

the form

wμι(N)βwμ2(M)---f[wμι(M)Π[N)

which, in the case of / > 1, are equal to

(*) rwμi(N)wμ2(M)f*f]Wμ3(M)... f*f<wμι(M) Π [M].

Here μι are partitions with Σ\μi\ = n—(l—2)k and f\ : H*(Mη Z2) —>
H*+k(N, Z2) is the Umkehr homomorphism defined by taking a co-
homology class x into the Poincare dual of /*(# Π [M]). In the case
of n < 2k the f*f\wμi(M) factors above disappear if \μι\ + \μ2\ > k.
So our main theorem is equivalent to saying that: "if n < 2k then
under all five orientedness assumptions above / is joint-bordant to
an immersion if and only if all Stiefel-Whitney numbers of the form
(*) involving wm(f) where m > k are zero." I do not know whether
this statement remains true if n > 2k.

REMARK. It was conjectured by Oik [8] that in a certain "meta-
stable" range (probably n < 2k — 1) a closed n-manifold M can be
immersed into W1*1* up to bordism, or equivalently, a map / : M —>
§ n + * is bordant in the sense of Atiyah [1] to an immersion if and
only if

wm(M)wμ(M) Π [M] = 0
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for all m > k and all partions μ of n — m. By our results, these
numbers are zero if and only if / is joint-bordant in M2(n, k) (even
in M±{n, k) if M is oriented) to an immersion provided n < 2k. Oik
[8] showed that the above statement is always true if k > n — 7. So
in these cases "joint-bordant to an immersion" and "bordant to an
immersion" are the same for a map into a sphere.

I would like to thank the Alexander von Humboldt-Stiftung for
financial support and Ulrich Koschorke for his hospitality. I also
want to thank M.A. Aguilar for drawing my attention to the work
of R.L.W. Brown.

2. The unoriented case. We start by describing the behavior
of a generic map around its singularity subset. Recall that a map
is generic if its self-intersections are transversal and its jet sections
are transversal to the Boardman manifolds [2]. Given a generic
map / : M —>• N of dimension (n, A;), we denote by Σf the set of
singular points of / and by Σf = /(Σ/) its image. Hereafter we
always assume k > 0. In the case of n < 2k + 2, Σf is a closed
submanifold of dimension n—k — 1 containing only points over which
df is of rank n — 1, / is an embedding restricted to Σf and the
bordism class of Σf depends only on the joint-bordism class of /.

Let us denote by Ker and Coker the 1- and (A; + 1)-dimensional
vector bundles over Σf and Σf which are determined by kernels and
cokernels of df\Σf respectively. By Koschorke [6] the normal bundle
v of Σ/ in M is canonically isomorphic to Ker®Coker. Here and
henceforth we shall always omit the pull-backs of vector bundles
by / | Σ / . Now let V be the normal bundle of Σ/ in N and let
/ : Ev —» EV be the map between total spaces of normal bundles
determined by the A -morphism v —> V induced by df. Then by
applying the model construction given in Section 1 of Koschorke
[6] to the bundle homomorphism df\Σf of constant rank n — 1, we
obtain a nondegenerate (n —l)-morphism T(Ev) —> T(Ev) covering
/ with Σf its singularity subset, and hence a generic map

oif .Ev -> Ev

with Σf its singularity subset by Feit [5]. Moreover, suitably iden-
tifying Ev and Ev with certain tubular neighborhoods of Σf in M
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and of Σf in N respectively, we can identify α/ with / restricted to
a small tubular neighborhood of Σ/ in M (see [6]).

Now let x e Af (n, k) be represented by a generic map / : M —» N
and let n < 2k + 2. We denote by

βf'.Σf-+ BOk+x x P°°

the map defined by the classifying maps of Coker and Ker. The
bordism obstruction Φ(x) is defined to be the unoriented bordism
class of βf. It is readily seen that

Φ : M(n,k) -> »„_*_!(jBCWx x

is a well defined homomorphism.

THEOREM . If n < 2k then x G M(n, k) contains an immersion
if and only if Φ(x) = 0.

Proof If x contains an immersion then clearly Φ(x) = 0. To prove
the contrary let / : M —> TV be a generic map of dimension (n, k)
so that βf is null-bordant. We have to show that / is joint-bordant
to an immersion.

In the dimensional range n < 2k + 1 there is a ^-dimensional
vector bundle v§ over Σy so that ί/ = ί/oφ Ker. In this case it is
easy to see that V = VQ 0 Coker and that the A -morphism v —» V
induced by df then corresponds to the A -morphism

ιs0 Θ Ker 4 i / o θ Coker

defined by a θ b -> α. Let us denote by λ and 7 the canonical
vector bundles over P°° and BOk+ι respectively, and by G : Σ —>
BOk+ι x P°° a null-bordism of βf. For dimensional reasons VQ,
which is stably isomorphic to G*λ ® G*j — G*λ restricted over Σ/,
can be extended to a /c-dimensional vector bundle ηo over Σ so that
G*λ®G*7 ^ r/oθG*λ. Now let η = G*λ®G*j and let η = r/oθG*7
Then η and 7J restrict to v and 17 over Σf respectively, and the k-
morphism

η^ηoφG*λ-^ηo® G*7 ̂  rj

defined by α φ 6 -> α restricts to the A -morphism v -+ V induced by
df. Applying the model construction of Koschorke to the obvious
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bundle homomorphism η © TΣf —> η φ TΣf of constant rank n — 1,
we obtain a generic map

F Eη^Eη

with Σf its singularity subset, which, after identifying Σf C Eη
with Σf via /, is readily seen to be an extension of the map otf.

Now let M\ be defined by glueing M — intT and a sphere bundle
Sη of η along the boundaries via a diffeomorphism between dT
and Sv where T is a small tubular neighborhood of Σf in M, and
let N\ be defined similarly. Then M\ and iVi are closed smooth
manifolds after straightening possible angles. Moreover, if the above
constructions are suitably done, then / and F can be fitted to yield
an immersion f\ : M\ —ϊ iVx which is readily seen to be joint-bordant
to /. This completes the proof of the theorem. D

We now calculate the Stiefel-Whitney numbers of the map βf :
Σf —> BOk+ι x F°° associated to a given generic map / : M -> N
of dimension (n, k). By definition the Stiefel-Whitney numbers of
βf take the form

tt;μi(Ker)iί;//2(Coker)tί;/,3(Σ/) Π [Σf]

where μι are partitions with Σ|Mi| = n — k — \. We have the
following simple relations among total Stiefel-Whitney classes:

^(Ker)iί (Coker) = w(f)\nf

w(Keτ ® Cokeτ)w(Σf) = w(M)\Σf.

It follows that every Stiefel-Whitney number of βf is the sum of
numbers of the form

Wl(Keτr(rwμli(N)wμf2(M))\Έf n [Σ,]

which by 9.11 of Koschorke [6] are equal to

wm^k+1(f)rwμ[(N)wμf2(M) n [M].

This proves our main theorem for the unoriented case.
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3. Oriented cases. We now extend the argument above to study
various oriented cases. For our purpose we shall need the notion of
oriented bordism group with coefficients. Let φ be a vector bundle
over X, we denote by Ωn(X, φ) the bordism group of triples (M, /,
or ) where M is a closed n-manifold, / : M —> X is a map and
or is an isomorphism between orientation line bundles of TM and
f*φ. This kind of bordism groups was first studied by Atiyah [1]
and then by Koschorke [6]. Our notational convention follows from
that of Koschorke. It should be noticed that Ω*(X, φ) = Ω*(X) if
φ is orientable and that

The bordism group Ω*(X, φ) has several properties analogous to the
usual oriented bordism group, including a generalization of Rochlin's
theorem given in [4].

Similar to the unoriented case, if n < 2k + 2 then for each 1 <
r < 4 we can define a homomorphism φr : Mr(n, k) —> Br where

Bλ = Ωn_ f c_!(βO f c + 1 x P°°, λ ® 7 f c + 1 ) ,

B2 = Πn-fc_i(BOfc+1 x P°°, λ ® Ίk+1 + 7 f c + 1 - λ),

B4 = Ώn^iBSOt x P°°, λ ® 5 - tf"^1)), I > 0,

and 7̂  are canonical vector bundles over BOk+ι &nd BSOi
respectively. To see this notice that if / is a generic map belonging
to the class Cr then the map βf defined in Section 1 also represents
a bordism class of Br. For example, if r = 3 then in the definition
of βf the bundle Coker — Ker can be canonically oriented. Let r :
BOk+ι x P°° -> BOi x P°° be defined by the classifying map of
7fc+i — λ and λ. Then r o βf can be lifted to a map into BSOi χ P°°
which represents a bordism class of B%.

Now, a similar argument as in the unoriented case leads to the
following

THEOREM . If n < 2k then for each 1 < r < 4 a joint-bordism
class x G Mr(n, k) contains an immersion if and only if Φr(x) ="0.

REMARK. In [7] we defined a normal bordism obstruction for
a map to be bordant in the sense of Atiyah to an immersion as
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well as its various oriented versions. Since the invariants Φ r here
are images under certain forgetful homomorphisms and projections
of our invariants in [7], the images of Φ r contain only 2-primary
torsion elements. Later we will see that all these elements are in
fact of order 2.

We now proceed to prove our main theorem for the remaining four
oriented cases. In what follows, when / is large enough, B(S)Oι and
7J will be simply denoted by B(S)O and 7 respectively.

If r = 1 and k is even, or if r = 2 and k is odd, or if r = 3,
or if r = 4 and k is even, then Br is canonically isomorphic to
3fen_jb-i(J3(Sr)O) or to $tn-k_ι(BSO xP°°). In these cases, our result
follows by calculating characteristic numbers as in the unoriented
case.

If r = 2 and k is even, or if r = 4 and k is odd, then Br is canoni-
cally isomorphic to Ωn-k-ι(B(S)O x P°°) which contains only Z and
Z2 factors. It follows that Φr(α;) is an element of order 2 and hence
is determined by its Stiefel-Whitney numbers (see [4]). In these
cases, our result can again be proved by calculating characteristic
numbers.

It remains to consider the case when r = 1 and k is odd. Since
Bγ = Ωn_fc_i(J30 x P°°, 7) if k is odd and since Φi(a ) is a 2-primary
torsion by our last remark, it suffices to show that the natural for-
getful homomorphism

p : U*{BO x P°°,7) -» to*(BO x

is injective restricted to the 2-primary torsion subgroup of Ω*(J30 x
P°°,7). For this purpose we fit p into the following commutative
diagram

O x

u*
/ poo v poo\

/

where p is the natural forgetful homomorphism, z* is the injection
induced by the natural inclusion and π* is induced by the projec-
tion. The top line is the exact Gysin sequence corresponding to the
orientation line bundle of 7 and the lower line is defined similarly
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by identifying ^{BO x P°°) with Ω*(£O x P°° x P°°, λ + 7) (see
9.21(ii) of [6])._

Now let x e Ω*(JBOxP°°, 7) be a 2-primary torsion so that ρ(x) =
0. To prove x = 0 we first conclude from the exactness of the top
line that there exists y € Ω*(BSO x P°°) with π*(y) = x. Since p is
injective restricted to the 2-primary torsion part of Ω*(BSO x P°°),
it suffices to show that y is a 2-primary torsion. For this, let us
consider the homomorphism

d : Ω*(BO x P°°,7) —> Ω*(BSO x

defined by taking double covers. By definition doτr* = id + T where
T is the involution on Ω*(BSO x P°°) induced by t and t is the
involution on BSO defined by interchanging the two sheets. Since
the involution on H*(BSO, Z) induced by t is the identity, so is the
involution X. It follows that 2y = d o 7Γ*(y) = d(x), and hence y
itself, is a 2-primary torsion as desired.

This completes the proof of our main theorem for the oriented
cases.
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