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ON FLATNESS OF THE COXETER GRAPH Es

MASAKI IZUMI

We will show flatness of Ocneanu's connections on Cox-
eter graph E$. This completes classification of subfactors
of the type Hi AFD factor with indices less than 4, which
has been stated by A. Ocneanu.

1. Introduction and main results. Since his celebrated work
[J], V. Jones theory of index is one of the central topics of the theory
of operator algebras, and further deep results have been obtained,
for example [PP, K]. Especially, on classification of subfactors of
the approximately finite dimensional (AFD) Hi factor, A. Ocneanu
announced a striking result with the notion of paragroups [Ol, O2].
But the details of his proof have not appeared yet.

Ocneanu's theory has two aspects. One is analytic aspect, which
is covered by Popa's deep results [PI, P2], and the other is com-
binatorial aspect i.e. the theory of paragroups. Until now, exis-
tence and non-existence results of paragroups corresponding to the
Coxeter graphs except Es have been obtained [B, K, SV, I]. The
purpose of this paper is to prove the existence of the E$ paragroup,
which shows that Ocneanu's classification list in [Ol] is correct.

The contents of this paper are as follows. In Section 2 we will
show that the study of flat connections on Es is reduced to that
of other connections on some four graphs, two of which are E$
In Section 3 we will prove the main result by computing the above-
mentioned connections. While we will treat only Es case our method
is applicable to the other cases of the Coxeter graphs. Throughout
this paper we will freely use the contents and the notations in [K].

The author would like to thank Y. Kawahigashi. Without his
kind explanation the author could not understand the theory of
paragroups.
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2. Reduction to another embedding of string algebras.
We fix the following numbering on vertices of E$.

0 — 1 — 2 — 3 — 4 — 5 — 6

In [Ol, page 159],[K, Theorem 3.1] it is shown that there are ex-
actly two connections on the Coxeter graph E$ up to gauge trans-
formation, which we will explain later, and these two are mutually
complex conjugate. We fix one of the connections on E$ and con-
sider a double complex of string algebras An ? m(0 < n,m < oo) as
in [K, Ol]. Note that to obtain a flat connection the distinguished
point * must be 0 [I, Theorem 6.1],[O1, page 161]. We do this as-
sumption. Let i: AQ)OO *-> ̂ 5,00 be the embedding map constructed
by the connection and ξ a horizontal path

Then it is shown in [K, Theorem 2.1] that the existence of the sub-
factors corresponding to E% is equivalent to

(2.1) ι((e,0)€iV.

Let 771,% be vertical paths

p = (771,771) + (772,772) and B the *subalgebra of ̂ 5,0 generated by
the vertical Jones projections in ^ o . Then the following hold
[K, Section 1].

Abfi = B@ C(ηu ηi) θ

B 0 Cp C t(A0yOO)f.

So, to show (2.1) it suffices to show

(2.2)

Let An = A),n, Bn = p{A5iTl)p and ρ(x) = pt(x)p for x e A^.
Then Bn is the string algebra of E$ with distinguished points *i =
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5, *2 = 7 and p is a filtered unital embedding of the string algebra
AOQ into the string algebra Boo, which preserves the standard Jones
projections. By the word "filtered" we mean p(An) C Bn for any
non-negative integer n. Summing up the above argument, we have
the following lemma.

LEMMA 2.1. Let An, Bn be string algebras of Eg with distin-
guished points * = 0 and *i = 5, *2 = 7, and

If for any unital filtered embedding p : A^ *-+ B^ which preserves
the standard Jones projections, p(x) commutes with (*i,*i) G JE?O

(equiυalently (*25 *2)); then for E$ there exist two and only two sub-
factors of the AFD factor of type IIχ up to conjugacy.

Let us recall Ocneanu's result on embeddings of string algebras
[O3]. Let Qι, Q2 be finite bipartite graphs with distinguished points.
As in [K, EK] we admit that Q\ and Q2 have several distinguished
points. Let (An),(Bn) be the string algebras of Q\,Qi, and p :
Aoo <-+ Boo a filtered unital embedding preserving the standard
Jones projections. Then for large n G N the inclusion matrices of
ρ(An) C Bn and ρ(An+2) C Bn+2 coincide and we denote by T\)T<ι
the corresponding graphs of ρ(A2n) C B2n,p(A2n+ι) C B2n+Ϊ. A
slight modification of the argument in [O3] shows that p comes from
a connection on the following cells satisfying the renormalization
rule and the unitarity.

(2.3) < ^

c >• d

or
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The unitarity means that the following matrix is unitary.

a

I i
The renormalization rule is

\ μ(a)μ(d)
d

c ^ d u

where ξ is the reverse path of ξ. (See Section 3 for the notations.)
We come back to our case, namely we assume Q\ = Q2 = E%. To

distinguish the vertices of Q2 from those of Q\, we use the preceding
numbering for Q\ and the following numbering for Q2-

The Bratteli diagram of (An) and (Bn) are as in Fig.l.

Ao — L Bo —
B

X B2

A - Λ B1— 2χ/l

A7 — 14 15X6 7 S 7 — 13 50 9'9' 36

FIGURE 1. The Bratteli diagrams of (An) and (Bn).

We have to determine T\,Ti, or equivalently the inclusion matrices
of p(An) C Bni which we denote by Γn. Let G\,G<ι be the matrices
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corresponding to Gι,θ2 i e.

1

3
5

/
0
1

0
0

2
1
1

0

4
0
1
1

6

o>
0
1

7 Vo o l oj

0 2 4 6

T / l 1 0 0\
0 1 1 0
0 0 1 1

Vo o l o)

Then Gi, G2, Γn satisfy the following relations.

Note that the graph corresponding to Γn is a part of that corre-
sponding to Γ n + 2 , and the edges in T\ or T<ι, connected to the
vertices in Q\ which appear in the former, have already been deter-
mined by Γn. Taking this fact into account, we can easily see that
the possible matrices are as follows.

2 — _

7

T ί .

2 4 6

0 0 θ'

0 0 0

0 0 0

0 0 0

2 4 6

0 0 0

2 0 0

2 0 0

1 1

2 4 6

0 2 0

2 3 0

2 2 0

2 0

1 3 5 7

o o o oN

0 0 0 0

2 0 0 0

1 0 0 0/

1 3 5 7

o o o o λ

0 2 0 0

2 3 0 0

1 1 0 0

0

Γ - 5

1 2 π - l — _

4

6

/ \

1 3 5 7

0 0 1

0 2 2 1

2 3 2 2

1 1 1 0

(n>3)
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0 2 4 6

/0 0 2 1\
0 2 3 1
1 2 2 1

(n > 3).

So Ĵ Ί and JF2 are as in Fig. 2.

3 1 6

FIGURE 2. T\ and

3. Main theorem. In this section we will compute the connec-
tions on the cells (2.3). Our aim is not to determine all entries of
the connections, but to show that all possible connections satisfy
the assumption of Lemma 2.1. For this, it suffices to show that
"sufficiently many" entries of the connections take value 0.

Before starting computation we recall the gauge transformations
of connections, (in [Ol, page 154] Ocneanu calls perturbations),
which become a key technique later. For a vertices x, y we denote
by Path^y the set of edges between x and y. We consider unitaries

for all possible vertices x,y in Qu Q<χ,T\,T2l between which there
exists at least one edge. For given connection

W

d
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the transformed connection W' is defined as follows.

a — — > b a —^—>• b

W fi Us = V αW fiI l
^Ijί2,ξ3,ξ4

e4 ί4

for ξ[ eTχ^2 eT2,

a —?—ϊ b a — — >

ft = ^ aW fij

fi f*

for ^ G ^ ^ e Fi,

where α = u(^ί, ̂ 1)^(^25 £2) ̂ (£35 ̂ 3)^(^4? ^4). Note that the condition
in Lemma 2.1 does not depend on the choice of gauges.

We will use the following conventions. As in [K] we will omit
the sign "Wn of connections if no confusion arises. Since T\ and
T2 have multiedges we need a numbering of edges, and we use that
starting from 1. We mean by

unitary matrix (vij)ij where i = (£1,^4), j = (£2?£3) and

a

c > d

For example we will write as follows.

0
= 72

1 ^ ^2

1 4 2

0 / * * *
* * *
* * *
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where

Let

ll(

the

flϊ

(i2, 42)

/ίΊϊL\L)

entry

sin

sin

means

5

•1
2

30

-y 4

l
-y 3

^ sin

sir ι 3δ

sin
k ' sin

30

π s i n | ^ 7Γ s i n ^ , x π

= 2cos- — f , μ(5) = 2cos- - ^ , μ(6) = 2cos-,
D S l n 3 0 b S l n 3 0 ύ

1 sin —

2cos | s in§

Then using (2cosπ/5)2 = H-2cosτr/5, we can easily see that (μ{i))i
is the Perron-Frobenius eigenvector of Eg, and the following equa-
tions hold.

(3.1) Ai(3)=μ(6)μ(7),

/x(4)=μ(2)μ(6) =

Now we start computing the connections. Using the gauge free-
dom of the following edges in order,

1 2 4 3 2 5 4 7

4 , 3 , 1 , 2 , 5 , 2 , 5 , 4 ,

4 5 0 5 6 3 4

I I I I I I I
7 , 4 , 5 , 6 , 5 , 4 , 3

we may assume as follows.

(3.2)

\ y 0 2 2 > 4 2χ 22

o\ I I τ$(i o
1/ 1 i 2̂
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4χ 4 2 3 • . 4 X 4 2

^ ) { [

1 3 6 > . 5i 5 2

25^o \y
6

1 31 0 1 i'

3 5 7 y . Ax 4 2

25 vo \y i
6 . > 5

_ 4 ! 4 2 5 • . 4χ 4 2

T 4 / 1 O\ I I _ 7 4 / 1 0 \

2 4 ^ o ι y I I ~ 2 4 V o ι)>

0 )• 1 6 > 5 6 y 5

-i, I i - i . I i - i .
5 y 6 5 y 6 1 >• 0

^ _ 2 4χ 4 2 ^ 4χ 4 2 4 3

7 4 / 1 0 O \ " 2 _ / l 0 0

24 0 1 0 , = χ4 0 1 0

_ 34\o o l / -1- i 24 V o o l

Applying the renormalization rule to

1 y 0 7 y 4

7 0
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and using (3.1), we have

0 y . l i 1 2 4 y . 5 7

So, due to the unitarity we can put as follows.

(3.3)

0 y . l i I2 4 y . 5 7

I ψ eλ I | = 7ϊ/θ
£ 7\1 0/ 1 i 2 l \ ε 2 0

y 4 . y 0

3χ 32 6 y . 5i 52

'3( x y \ I I = l ( « υ

23 V~ε3y ε3a;y' 1 | 5 \-ε4υ

Si(i = 1,2,3,4),x,y,u,ve C,

Applying the renormalization rule to

0 y 1 0 y 1 2 y 1 4 >• 5

I I I I 1 I l I
5 y 4 5 y 6 5 y 6 1 y 0

4 y 5 6 y 5 6 y 5 6 y 5

•I i i ι i i ι I-
5 y 6 1 y 0 1 y 2 5 y 6
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and in the same way as above, we obtain the following.

(3-4)

0

0

2i 22

\ Mi)

Λ /

Ω —

6

1

/
Mi)

o

5 6

4i 42

/*(!)
τiu £4"\/μ(2)

Ml)
1

Mi)

Using the same type of argument as above, from (3.1), (3.2), (3.3),
(3.4) we have the following.

(3.5)

i3

4 T
2t>

1 2

0

0

0

μ(2)

0

μ(2)

0

1

/M2)

3i

0

M7)

32 3 3

\
* *

* *

0 * *

Mill o o
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(3.6)

i l

3i

0

*

V *

3 2

0

*

*

5i

0

52

*

0

Λ/M2)

μ(2)

0

o

(3.7)
3i 3 2

13 '

i 1 =Γ5

T7

*

*

*

a

c

3 3

*

*

*

6

d

5i

*

a

5 2

*

b

ω3υμ(l)
μ(2)

0
1

7 2

0

0

0

μ(2)

0

where a — —
μ(2)+ωϊuμ{ϊ)2

c := —
ε4ϋμ(l) -μ{2) + εAuμ(ϊ)

y/μ(2)μ(6)μ(2) '
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(3.8) I I

2i

μ(3)

*

*

*

22

μ(3)

*

*

4 2 4 3

* *

* *

\

(3.9)
24

2i

*

*

*

0

2 2

*

*

*

4i

*

*

*

*

*

*

4 2 4 3

(3.10)

1 2 '

2 ^

3 _

* * *

* * *

\

Applying the renormalization rule to

2 y 3 2 y 3 2 >

•I l 1 l 1
3 y 4 3 y 2 5 y 4 5

4 y 3 4 >• 3 4 • 5 4

•••1 l
3 y 2 3 • 2 3 >• 2 3

and using (3.1) and the unitarity, we obtain

4

5
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(3.8')

*

*

22

£32/μ(2
μ(3)

*

*

4i

0

*

*

*

43

* *

* *

* *
* *

(3.9')

2i

μ(6)μ(7)

*

5 a

2 2

0

*

*

4i

0

*

*

4 2

*

(3.100

Thanks to

we have

4

4

4i

* *

i = 0 ,

5

3

•I I- = 0 .
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Hence the unitarity of

implies that the following two vectors are mutually orthogonal.

0 a b ω3Uμ^L) τ^v^1) i o

MS) > - " § § > ° > T T

So we have the following.

_ - ε^juύzΰvμil) εt0 = ac + bd -\ j-rz
μ\2γ μ{:

i ω3vμ(l)2(μ(2)-ε4ΰμ{l))

μ(2)3μ(6) + μ(2)V(6)

uw(l)2) +

From 54 + ωsμ(l) ψ 0, we obtain v = 0 and consequently

6 > . 5 i 5 2

(3.1D I \ = ~3(u ° Y H = i-
1 I 4 0 εΰ

4X 4 2 6
0 0 \̂

0 -

0 μ(2)

The unitarity of

! 1
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implies

(3-10")

and hence we have

So the unitarity of

4i 4 2 4 3

μ(6)μ(7) * *

0 * *

0 * *

* * *

4 y 5

•I H
3 y 4

0

shows

(3.7')

i 3

I l - ϊ
i7

3i

*

0

*

0

*

0

0

3 2

0

*

0

a

0

3 3

*

0

*

0

d

5i

0

a

0

μ(2)

0

5 2

*

0

d

0

0

7i

0

7 2

o \

0

0

1

x ) /
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Applying the renormalization rule to

4 > 3 4 > 5

j i ( i , i , = 1,2,3), *| j< (A; = 1,2,3, ί = l , 2 ) ,

• 4 3 • 4

ι\ n (m = 1,2, n = 1,2,3),

and using (3.1), we have

(3.8")

2i 4i

0

42 43

(
μ(3)

*

0

*

*

*

0

*

*

*

0

\

0 *

(3.9")

2i

24

0

4i

0

42

•(2)

μ(l)μ(3)
_J
/M6)
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(3.10'")

i2

2*

I K

4 2

*

0

0

So the unitarity of

implies the following.

(3.9'")

(3.10"")

2i

μ(6)/ι(7)

0

0

4l

1 2 ^ ^

2 2

0

4 3

*

1 l 1 I

4 2

0
μ(6)/i(7)

0 *

0
μ(6)

0

4i

0

0

4 3

*

6

o

0

6

0
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In the same way we obtain the following from (3.9 ) and (3.10").

l i

(3.5')

i 3

= 75

0

0

μ(
μ(2)

0

h

0

3i

0

32 33

* 0

(3.6')

i l

Ί3

3i

0

0

0

3 2

0

5i

0

52

ωjμ(l)
μ{2)

0

0

*

0

0

1

0

* /

Due to (3.5) and (3.6 ) we have

i2

= i4

3 Hi

2i

_μ(3)

μ(3)

0

*

0

_22

0
*

4i

0

~M7)2

*

0
*

42

*

0

0

*

0

43

o
*
*
0
*
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The unitarity of this matrix shows y = 0, \x\ = 1, and

(3.8'")

2i 2 2

0

0 -
μ(3)

0

*

4i

0

*

0

*

* 0

0 *

0 *

* 0

0 *

(3.12) 1 l = 3

3i 32

0

I ε3x

Finally we have come to the position to prove our main theorem.

THEOREM 3.1. For the Coxeter graph E%, there exist two and
only two subfactors of the AFD type IIχ factor up to conjugacy.

Proof Let <̂  be the horizontal path defined in Section 2, and p the
embedding map defined by one of the connections computed above.
By definition p((£, ξ)) is as follows.

0

= Σ
μ."-5

0

κ,o

+ ΣI
τ + ' σ - 5
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+ Σ

0

+ Σ
σ + ' σ ί 7

So to show the assumption of Lemma 2.1 it suffices to prove

(3.13)

for any pair of paths σ+, σ_ in Q2 satisfying

Fix an edge ζ e T2 connected to the vertex 7

7

Ic
w

and assume that the following large connection is non-zero.

0 —ί-» 7

I K , z = 5 or 7.

w

Thanks to (3.2)— (3.12) we can see by direct computation that z
is uniquely determined. (Of course σ is not unique.) That is, if w
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is 4i, 42, 2, 0, then z must be 7, 5, 5, 7, respectively. This means
that (3.13) holds and we finish the proof. D

REMARK. In the same way we can prove the existence of other
paragroups. For example, it is much easier to show the existence of
E6 paragroup. In the case of Aϊven, we can also show the existence
using induction.
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