ON FLATNESS OF THE COXETER GRAPH E_{8}

Masaki Izumi

Abstract

We will show flatness of Ocneanu's connections on Coxeter graph E_{8}. This completes classification of subfactors of the type II_{1} AFD factor with indices less than 4, which has been stated by A. Ocneanu.

1. Introduction and main results. Since his celebrated work [J], V. Jones theory of index is one of the central topics of the theory of operator algebras, and further deep results have been obtained, for example $[\mathbf{P P}, \mathbf{K}]$. Especially, on classification of subfactors of the approximately finite dimensional (AFD) II_{1} factor, A. Ocneanu announced a striking result with the notion of paragroups [O1, O2]. But the details of his proof have not appeared yet.

Ocneanu's theory has two aspects. One is analytic aspect, which is covered by Popa's deep results $[\mathbf{P 1}, \mathbf{P 2}]$, and the other is combinatorial aspect i.e. the theory of paragroups. Until now, existence and non-existence results of paragroups corresponding to the Coxeter graphs except E_{8} have been obtained $[\mathbf{B}, \mathbf{K}, \mathbf{S V}, \mathbf{I}]$. The purpose of this paper is to prove the existence of the E_{8} paragroup, which shows that Ocneanu's classification list in [O1] is correct.

The contents of this paper are as follows. In Section 2 we will show that the study of flat connections on E_{8} is reduced to that of other connections on some four graphs, two of which are E_{8}. In Section 3 we will prove the main result by computing the abovementioned connections. While we will treat only E_{8} case our method is applicable to the other cases of the Coxeter graphs. Throughout this paper we will freely use the contents and the notations in [K].

The author would like to thank Y. Kawahigashi. Without his kind explanation the author could not understand the theory of paragroups.
2. Reduction to another embedding of string algebras. We fix the following numbering on vertices of E_{8}.

$$
0-1-2-3-4-5-6
$$

In [O1, page 159],[\mathbf{K}, Theorem 3.1] it is shown that there are exactly two connections on the Coxeter graph E_{8} up to gauge transformation, which we will explain later, and these two are mutually complex conjugate. We fix one of the connections on E_{8} and consider a double complex of string algebras $A_{n, m}(0 \leq n, m \leq \infty)$ as in $[\mathbf{K}, \mathbf{O 1}]$. Note that to obtain a flat connection the distinguished point $*$ must be 0 [I, Theorem 6.1],[O1, page 161]. We do this assumption. Let $\iota: A_{0, \infty} \hookrightarrow A_{5, \infty}$ be the embedding map constructed by the connection and ξ a horizontal path

$$
\xi=0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 7 .
$$

Then it is shown in [\mathbf{K}, Theorem 2.1] that the existence of the subfactors corresponding to E_{8} is equivalent to

$$
\begin{equation*}
\iota((\xi, \xi)) \in A_{5,0^{\prime}} . \tag{2.1}
\end{equation*}
$$

Let η_{1}, η_{2} be vertical paths

$$
\eta_{1}=0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5, \quad \eta_{2}=0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 7,
$$

$p=\left(\eta_{1}, \eta_{1}\right)+\left(\eta_{2}, \eta_{2}\right)$ and B the $*$ subalgebra of $A_{5,0}$ generated by the vertical Jones projections in $A_{5,0}$. Then the following hold [K, Section 1].

$$
\begin{gathered}
A_{5,0}=B \oplus C\left(\eta_{1}, \eta_{1}\right) \oplus C\left(\eta_{2}, \eta_{2}\right) . \\
B \oplus C p \subset \iota\left(A_{0, \infty}\right)^{\prime} .
\end{gathered}
$$

So, to show (2.1) it suffices to show

$$
\begin{equation*}
p \iota((\xi, \xi)) p \in\left(p A_{5,0} p\right)^{\prime} \tag{2.2}
\end{equation*}
$$

Let $A_{n}=A_{0, n}, \quad B_{n}=p\left(A_{5, n}\right) p$ and $\rho(x) \equiv p \iota(x) p$ for $x \in A_{\infty}$. Then B_{n} is the string algebra of E_{8} with distinguished points $*_{1} \equiv$
$5, *_{2} \equiv 7$ and ρ is a filtered unital embedding of the string algebra A_{∞} into the string algebra B_{∞}, which preserves the standard Jones projections. By the word "filtered" we mean $\rho\left(A_{n}\right) \subset B_{n}$ for any non-negative integer n. Summing up the above argument, we have the following lemma.

Lemma 2.1. Let A_{n}, B_{n} be string algebras of E_{8} with distinguished points $*=0$ and $*_{1}=5, *_{2}=7$, and

$$
\begin{aligned}
& \xi=0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 7, \\
& x=(\xi, \xi) \in A_{5} .
\end{aligned}
$$

If for any unital filtered embedding $\rho: A_{\infty} \hookrightarrow B_{\infty}$ which preserves the standard Jones projections, $\rho(x)$ commutes with $\left(*_{1}, *_{1}\right) \in B_{0}$ (equivalently $\left(*_{2}, *_{2}\right)$), then for E_{8} there exist two and only two subfactors of the AFD factor of type II_{1} up to conjugacy.

Let us recall Ocneanu's result on embeddings of string algebras [O3]. Let $\mathcal{G}_{1}, \mathcal{G}_{2}$ be finite bipartite graphs with distinguished points. As in $[\mathbf{K}, \mathbf{E K}]$ we admit that \mathcal{G}_{1} and \mathcal{G}_{2} have several distinguished points. Let $\left(A_{n}\right),\left(B_{n}\right)$ be the string algebras of $\mathcal{G}_{1}, \mathcal{G}_{2}$, and ρ : $A_{\infty} \hookrightarrow B_{\infty}$ a filtered unital embedding preserving the standard Jones projections. Then for large $n \in N$ the inclusion matrices of $\rho\left(A_{n}\right) \subset B_{n}$ and $\rho\left(A_{n+2}\right) \subset B_{n+2}$ coincide and we denote by $\mathcal{F}_{1}, \mathcal{F}_{2}$ the corresponding graphs of $\rho\left(A_{2 n}\right) \subset B_{2 n}, \rho\left(A_{2 n+1}\right) \subset B_{2 n+1}$. A slight modification of the argument in $[\mathrm{O} 3]$ shows that ρ comes from a connection on the following cells satisfying the renormalization rule and the unitarity.

$$
\begin{aligned}
& \xi_{1} \in \mathcal{F}_{1}, \xi_{2} \in \mathcal{G}_{1}, \xi_{3} \in \mathcal{F}_{2}, \xi_{4} \in \mathcal{G}_{2} \quad \text { or } \\
& \xi_{1} \in \mathcal{F}_{2}, \xi_{2} \in \mathcal{G}_{1}, \xi_{3} \in \mathcal{F}_{1}, \xi_{4} \in \mathcal{G}_{2} .
\end{aligned}
$$

The unitarity means that the following matrix is unitary.

The renormalization rule is

$$
\begin{aligned}
& a \\
& \xi_{1} \mid \xrightarrow{\xi_{2}} b \\
& c \xrightarrow{\xi_{4}} d \xi_{3}=\sqrt{\frac{\mu(b) \mu(c)}{\mu(a) \mu(d)}} \xi_{3} \downarrow \\
& a \xrightarrow[\tilde{\xi}_{4}]{a} c
\end{aligned}
$$

where $\tilde{\xi}$ is the reverse path of ξ. (See Section 3 for the notations.)
We come back to our case, namely we assume $\mathcal{G}_{1}=\mathcal{G}_{2}=E_{8}$. To distinguish the vertices of \mathcal{G}_{2} from those of \mathcal{G}_{1}, we use the preceding numbering for \mathcal{G}_{1} and the following numbering for \mathcal{G}_{2}.

$$
\overline{0}-\overline{1}-\overline{2}-\overline{3}-\frac{\overline{7}}{\overline{4}}-\overline{5}-\overline{6}
$$

The Bratteli diagram of $\left(A_{n}\right)$ and $\left(B_{n}\right)$ are as in Fig.1.

Figure 1. The Bratteli diagrams of $\left(A_{n}\right)$ and $\left(B_{n}\right)$.

We have to determine $\mathcal{F}_{1}, \mathcal{F}_{2}$, or equivalently the inclusion matrices of $\rho\left(A_{n}\right) \subset B_{n}$, which we denote by Γ_{n}. Let G_{1}, G_{2} be the matrices
corresponding to $\mathcal{G}_{1}, \mathcal{G}_{2}$ i.e.

$$
G_{1}=\begin{gathered}
1 \\
3 \\
5 \\
7
\end{gathered}\left(\begin{array}{cccc}
1 & 2 & 4 & 6 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

Then G_{1}, G_{2}, Γ_{n} satisfy the following relations.

$$
\begin{gathered}
G_{2}^{t} \Gamma_{2 n}=\Gamma_{2 n+1} G_{1} \\
G_{2} \Gamma_{2 n+1}=\Gamma_{2 n+2} G_{1}^{t}
\end{gathered}
$$

Note that the graph corresponding to Γ_{n} is a part of that corresponding to Γ_{n+2}, and the edges in \mathcal{F}_{1} or \mathcal{F}_{2}, connected to the vertices in \mathcal{G}_{1} which appear in the former, have already been determined by Γ_{n}. Taking this fact into account, we can easily see that the possible matrices are as follows.

$$
\begin{aligned}
& \left.\Gamma_{0}=\begin{array}{c}
0 \\
\overline{1} \\
\overline{3} \\
\overline{5} \\
\overline{7} \\
\hline
\end{array}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \Gamma_{1}=\begin{array}{cccc}
1 & 3 & 5 & 7 \\
\overline{0} \\
\overline{2} \\
\overline{4} \\
\overline{6} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{4}=\begin{array}{c}
0 \\
\overline{1} \\
\overline{3} \\
\overline{5} \\
\overline{7} \\
\hline
\end{array}\left(\begin{array}{cccc}
0 & 0 & 2 & 0 \\
0 & 2 & 3 & 0 \\
1 & 2 & 2 & 0 \\
1 & 1 & 2 & 0
\end{array}\right), \quad \Gamma_{2 n-1}=\begin{array}{cccc}
1 & 3 & 5 & 7 \\
\overline{0} \\
\overline{4} \\
\overline{6}
\end{array}\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 2 & 2 & 1 \\
2 & 3 & 2 & 2 \\
1 & 1 & 1 & 0
\end{array}\right) \\
& (n \geq 3)
\end{aligned}
$$

$$
\Gamma_{2 n}=\frac{\overline{1}}{\overline{3}} \overline{\overline{5}} \overline{7}\left(\begin{array}{cccc}
0 & 2 & 4 & 6 \\
0 & 0 & 2 & 1 \\
0 & 2 & 3 & 1 \\
1 & 2 & 2 & 1 \\
1 & 1 & 2 & 0
\end{array}\right) \quad(n \geq 3)
$$

So \mathcal{F}_{1} and \mathcal{F}_{2} are as in Fig.2.

$$
\mathcal{F}_{1}
$$

\mathcal{F}_{2}

Figure 2. \mathcal{F}_{1} and \mathcal{F}_{2}.
3. Main theorem. In this section we will compute the connections on the cells (2.3). Our aim is not to determine all entries of the connections, but to show that all possible connections satisfy the assumption of Lemma 2.1. For this, it suffices to show that "sufficiently many" entries of the connections take value 0 .

Before starting computation we recall the gauge transformations of connections, (in [O1, page 154] Ocneanu calls perturbations), which become a key technique later. For a vertices x, y we denote by $\operatorname{Path}_{x, y}^{(1)}$ the set of edges between x and y. We consider unitaries

$$
(u(\xi, \eta))_{\xi, \eta} \in \operatorname{End}\left(l^{2}\left(\operatorname{Path}_{x, y}^{(1)}\right)\right)
$$

for all possible vertices x, y in $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{F}_{1}, \mathcal{F}_{2}$, between which there exists at least one edge. For given connection

$$
W\left(\begin{array}{ccc}
a \xrightarrow{\xi_{2}} b \\
\xi_{1} \downarrow & & \xi_{3} \\
c \underset{\xi_{4}}{ } & d
\end{array}\right),
$$

the transformed connection W^{\prime} is defined as follows.

$$
\begin{aligned}
& a \xrightarrow{\xi_{2}^{\prime}} b \\
& \begin{array}{c}
W^{\prime} \xi_{1}^{\prime} \downarrow \\
c \underset{\xi_{4}^{\prime}}{ } d \\
\downarrow_{3}^{\prime}=\sum_{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}} \alpha W \quad \xi_{1} \downarrow \\
c \underset{\xi_{4}}{ } d
\end{array} \\
& \text { for } \quad \xi_{1}^{\prime} \in \mathcal{F}_{1}, \xi_{2}^{\prime} \in \mathcal{F}_{2}, \\
& a \xrightarrow{\xi_{2}^{\prime}} b \\
& \begin{aligned}
& W^{\prime} \xi_{1}^{\prime} \downarrow \\
& c \underset{\xi_{4}^{\prime}}{ } d \\
& \xi_{3}^{\prime}=\sum_{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}} \bar{\alpha} W \quad \xi_{1} \downarrow c \xrightarrow[\xi_{4}]{\longrightarrow} d
\end{aligned} \\
& \text { for } \quad \xi_{1}^{\prime} \in \mathcal{F}_{2}, \xi_{2}^{\prime} \in \mathcal{F}_{1},
\end{aligned}
$$

where $\alpha=u\left(\xi_{1}^{\prime}, \xi_{1}\right) u\left(\xi_{2}^{\prime}, \xi_{2}\right) u\left(\xi_{3}^{\prime}, \xi_{3}\right) u\left(\xi_{4}^{\prime}, \xi_{4}\right)$. Note that the condition in Lemma 2.1 does not depend on the choice of gauges.

We will use the following conventions. As in $[\mathbf{K}]$ we will omit the sign " W " of connections if no confusion arises. Since \mathcal{F}_{1} and \mathcal{F}_{2} have multiedges we need a numbering of edges, and we use that starting from 1 . We mean by

the unitary matrix $\left(v_{i, j}\right)_{i, j}$ where $i=\left(\xi_{1}, \xi_{4}\right), j=\left(\xi_{2}, \xi_{3}\right)$ and

$$
\begin{aligned}
& a \stackrel{\xi_{2}}{\longrightarrow} b \\
& v_{i, j}=\xi_{1} \xi_{1} \downarrow \\
& c \xrightarrow[\xi_{4}]{ }{ }^{\xi_{3}}
\end{aligned}
$$

For example we will write as follows.
where the $\left(\overline{1} 2,4_{2}\right)$ entry means

Let

$$
\begin{gathered}
\mu(0)=1, \mu(1)=\frac{\sin \frac{2 \pi}{30}}{\sin \frac{\pi}{30}}, \quad \mu(2)=\frac{\sin \frac{3 \pi}{30}}{\sin \frac{\pi}{30}}, \quad \mu(3)=\frac{\sin \frac{4 \pi}{30}}{\sin \frac{\pi}{30}} \\
\mu(4)=2 \cos \frac{\pi}{5} \cdot \frac{\sin \frac{3 \pi}{30}}{\sin \frac{\pi}{30}}, \quad \mu(5)=2 \cos \frac{\pi}{5} \cdot \frac{\sin \frac{2 \pi}{30}}{\sin \frac{\pi}{30}}, \quad \mu(6)=2 \cos \frac{\pi}{5}, \\
\mu(7)=\frac{1}{2 \cos \frac{\pi}{5}} \cdot \frac{\sin \frac{4 \pi}{30}}{\sin \frac{\pi}{30}}
\end{gathered}
$$

Then using $(2 \cos \pi / 5)^{2}=1+2 \cos \pi / 5$, we can easily see that $(\mu(i))_{i}$ is the Perron-Frobenius eigenvector of E_{8}, and the following equations hold.

$$
\begin{align*}
& \mu(3)=\mu(6) \mu(7) \tag{3.1}\\
& \mu(4)=\mu(2) \mu(6)=\mu(1) \mu(7) \\
& \mu(5)=\mu(1) \mu(6)
\end{align*}
$$

Now we start computing the connections. Using the gauge freedom of the following edges in order,

$$
\begin{aligned}
& \begin{array}{cccccccc}
1 & 2 & 4 & 3 & 2 & 5 & 4 & 7 \\
\frac{1}{4}, & \mid & \mid & \mid & \mid & \mid & \frac{1}{3} & \frac{1}{1}, \\
2
\end{array}, \overline{5}, \overline{2}, \overline{5}, \overline{4}, \\
& \begin{array}{ccccccc}
4 & 5 & 0 & 5 & 6 & 3 & 4 \\
\mid & \mid & \mid & \mid & \mid & \mid & \mid \\
\overline{7}, & , & \frac{1}{4} & , & \overline{0} & \overline{5} & , \\
4 & , & \frac{3}{3}
\end{array}
\end{aligned}
$$

we may assume as follows.

$$
\begin{aligned}
& 4 \longrightarrow \\
& \downarrow \quad \downarrow=\frac{\overline{5}}{2^{5}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \downarrow \quad \downarrow=\frac{\overline{14}}{2^{4}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text {, } \\
& \longrightarrow \overline{6} \\
& \longrightarrow \overline{5}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \longrightarrow 1 \quad 6 \longrightarrow 5 \quad 6 \longrightarrow 5
\end{aligned}
$$

Applying the renormalization rule to

$$
\begin{aligned}
& 1 \longrightarrow 0 \quad 7 \longrightarrow 4
\end{aligned}
$$

and using (3.1), we have

$$
\begin{aligned}
& 0 \longrightarrow \quad \begin{array}{llll}
1_{1} & 1_{2} & 4
\end{array} \quad . \quad 5 \quad 7 \\
& \downarrow \downarrow=\frac{\overline{5}}{7}\left(\begin{array}{ll}
* & * \\
1 & 0
\end{array}\right), \downarrow \quad \downarrow=\frac{\overline{11}}{{ }^{1} 1}\left(\begin{array}{ll}
* & 1 \\
* & 0
\end{array}\right) \text {. } \\
& \longrightarrow \overline{4} \\
& \longrightarrow \overline{0}
\end{aligned}
$$

So, due to the unitarity we can put as follows.

$$
\begin{gathered}
\varepsilon_{i}(i=1,2,3,4), x, y, u, v \in C \\
\left|\varepsilon_{i}\right|=1, \quad|x|^{2}+|y|^{2}=|u|^{2}+|v|^{2}=1 .
\end{gathered}
$$

Applying the renormalization rule to

$$
i=1,2,
$$

and in the same way as above, we obtain the following.

$$
\begin{aligned}
& \omega_{i}(i=1,2,3) \in C, \quad\left|\omega_{i}\right|=1 .
\end{aligned}
$$

Using the same type of argument as above, from (3.1), (3.2), (3.3), (3.4) we have the following.

where $\quad a=-\frac{\mu(2)+\overline{\omega_{3}} u \mu(1)^{2}}{\sqrt{\mu(2) \mu(6)} \mu(2)}, \quad b=-\frac{\overline{\omega_{3}} v \mu(1)^{2}}{\sqrt{\mu(2) \mu(6)} \mu(2)}$,

$$
c=-\frac{\varepsilon_{4} \bar{v} \mu(1)}{\sqrt{\mu(2) \mu(6)} \mu(2)}, \quad d=\frac{-\mu(2)+\varepsilon_{4} \bar{u} \mu(1)}{\sqrt{\mu(2) \mu(6)} \mu(2)}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
2_{1} & 2_{2} & 4_{1} & 4_{2} & 4_{3}
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& 5 \longrightarrow \\
& - \tag{3.10}\\
& -
\end{align*}=\begin{gathered}
\overline{2^{2}} \\
\overline{1^{4}} \\
\overline{2^{4}}\left(\begin{array}{cccc}
4_{1} & 4_{2} & 4_{3} & 6 \\
* & * & * & 0 \\
* & * & * & \sqrt{\frac{\mu(2)}{\mu(1) \mu(3)}} \\
* & * & * & \frac{\bar{u}}{\sqrt{\mu(6)}} \\
* & * & * & \frac{\bar{v}}{\sqrt{\mu(6)}}
\end{array}\right) .
\end{gathered}
$$

Applying the renormalization rule to

and using (3.1) and the unitarity, we obtain

Thanks to

$$
\begin{aligned}
& 3 \longrightarrow 4 \\
& 1 \downarrow \\
& 1 \\
& \overline{4} \longrightarrow \overline{5}
\end{aligned}
$$

we have

$$
\left.\begin{aligned}
& 4 \longrightarrow 3 \\
& 1 \\
& 1 \\
& \overline{5} \longrightarrow \overline{4}
\end{aligned}\right|_{1}=0 .
$$

Hence the unitarity of

implies that the following two vectors are mutually orthogonal.

$$
\left.\binom{0, a, b, \frac{\overline{w_{3}} u \mu(1)}{\mu(2)}, \frac{\overline{w_{3}} v \mu(1)}{\mu(2)}, \frac{1}{\sqrt{\mu(2)}}, \quad 0}{*, c, d, \frac{\varepsilon_{4} \bar{v}}{\mu(2)},-\frac{\varepsilon_{4} \bar{u}}{\mu(2)}, 0}, \frac{1}{\sqrt{\mu(2)}}\right) .
$$

So we have the following.

$$
\begin{aligned}
0 & =\bar{a} c+\bar{b} d+\frac{\varepsilon_{4} \omega_{3} \overline{u v} \mu(1)}{\mu(2)^{2}}-\frac{\varepsilon_{4} \omega_{3} \overline{u v} \mu(1)}{\mu(2)^{2}} \\
& =\frac{\varepsilon_{4} \bar{v} \mu(1)\left(\mu(2)+\omega_{3} \bar{u} \mu(1)^{2}\right)}{\mu(2)^{3} \mu(6)}+\frac{\omega_{3} \bar{v} \mu(1)^{2}\left(\mu(2)-\varepsilon_{4} \bar{u} \mu(1)\right)}{\mu(2)^{3} \mu(6)} \\
& =\frac{\bar{v} \mu(1)}{\mu(2)^{3} \mu(6)}\left\{\varepsilon_{4}\left(\mu(2)+\omega_{3} \bar{u} \mu(1)^{2}\right)+\omega_{3} \mu(1)\left(\mu(2)-\varepsilon_{4} \bar{u} \mu(1)\right)\right\} \\
& =\frac{\bar{v} \mu(1)}{\mu(2)^{2} \mu(6)}\left(\varepsilon_{4}+\omega_{3} \mu(1)\right) .
\end{aligned}
$$

From $\varepsilon_{4}+\omega_{3} \mu(1) \neq 0$, we obtain $v=0$ and consequently

$$
\left.\stackrel{\downarrow}{6} \left\lvert\,=\begin{array}{c}
\overline{3} \\
\overline{4} \tag{3.11}\\
\hline
\end{array} \begin{array}{cc}
5_{1} & 5_{2} \\
0 & \varepsilon \bar{u}
\end{array}\right.\right), \quad|u|=1 .
$$

The unitarity of

implies

and hence we have

$$
\begin{array}{ll}
4 & 5 \\
1 \\
1 & \downarrow 1=0 . \\
\overline{3} \longrightarrow \overline{4}
\end{array}
$$

So the unitarity of

shows

Applying the renormalization rule to

$$
{ }_{m}{ }_{\overline{5} \longrightarrow \overline{4}}{ }^{n}(m=1,2, \quad n=1,2,3),
$$

and using (3.1), we have
(3.8")

(3.9")
(3.10"' $)$

So the unitarity of

$$
\begin{aligned}
& 3 \longrightarrow \quad 5 \longrightarrow \text {. }
\end{aligned}
$$

implies the following.
(3.9"')

	21	$2{ }_{2}$	4_{1}	42
${ }_{1} 4$	$\left(\frac{\bar{\varepsilon},}{\mu(6) \mu(7)}\right.$	0	0	*
$3 \longrightarrow{ }_{2}{ }^{4}$	0	*	$\bar{a} \sqrt{\frac{\mu(2)}{\mu(6)}}$	0
$\underset{\longrightarrow}{ }{ }^{-}=\frac{}{{ }^{4}}$	*	0	0	$\bar{d} \sqrt{\frac{\mu(2)}{\mu(6)}}$
$\overline{6}$	0	$\sqrt{\frac{\mu(2)}{\mu(1) \mu(3)}}$	$\frac{1}{\sqrt{\mu(6)}}$	0)

(3.10 ${ }^{\prime \prime \prime \prime}$)

In the same way we obtain the following from (3.9"') and (3.10 ${ }^{\prime \prime \prime \prime}$).

		3_{1}	32	51	52	7
$\begin{gathered} 4 \longrightarrow \\ \\ \\ \\ \\ \\ \hline \end{gathered}=$		$\int \sqrt{\frac{\mu(6)}{\mu(2)}}$	0	0	$\frac{\overline{\omega_{2}} \mu(1)}{\mu(2)}$	0
		0	$\sqrt{\frac{\mu(6)}{\mu(2)}}$	$-\frac{\varepsilon_{2}}{\mu(2)}$	0	$\frac{1}{\sqrt{\mu(2)}}$
		0	$-\frac{\sqrt{\mu(6)}}{\mu(7)}$	$\frac{\varepsilon_{2}}{\sqrt{\mu(2) \mu(7)}}$	0	$\frac{\mu(7)}{\mu(2)}$
		*	0	0	*	0
						*

Due to (3.5') and (3.6') we have

The unitarity of this matrix shows $y=0,|x|=1$, and

Finally we have come to the position to prove our main theorem.

Theorem 3.1. For the Coxeter graph E_{8}, there exist two and only two subfactors of the AFD type II_{1} factor up to conjugacy.

Proof. Let ξ be the horizontal path defined in Section 2, and ρ the embedding map defined by one of the connections computed above. By definition $\rho((\xi, \xi))$ is as follows.

$$
\begin{aligned}
& 0 \xrightarrow{\epsilon} \quad \epsilon \\
& +\sum_{\sigma_{+}^{2}, \sigma_{-}^{2}} \frac{\downarrow}{5} \underset{\sigma_{+}^{2}}{\stackrel{\sigma_{-}^{2}}{7}}{ }_{\frac{1}{7}}\left(\sigma_{+}^{2}, \sigma_{-}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 0 \xrightarrow{\epsilon} \stackrel{\epsilon}{\longleftrightarrow} 0 \\
& +\sum_{\sigma_{+}^{4}, \sigma_{-}^{4} \overline{7}} \underset{\sigma_{+}^{4}}{\stackrel{\downarrow}{\sigma_{-}^{4}}}{ }_{\overline{7}}\left(\sigma_{+}^{4}, \sigma_{-}^{4}\right) .
\end{aligned}
$$

So to show the assumption of Lemma 2.1 it suffices to prove

for any pair of paths σ_{+}, σ_{-}in \mathcal{G}_{2} satisfying

$$
\left|\sigma_{+}\right|=\left|\sigma_{-}\right|=|\xi|, \quad s\left(\sigma_{+}\right)=\overline{5}, \quad s\left(\sigma_{-}\right)=\overline{7}, \quad r\left(\sigma_{+}\right)=r\left(\sigma_{-}\right)
$$

Fix an edge $\zeta \in \mathcal{F}_{2}$ connected to the vertex 7

$$
\begin{aligned}
& 7 \\
& \downarrow \\
& \downarrow \\
& w
\end{aligned}
$$

and assume that the following large connection is non-zero.

Thanks to (3.2)- (3.12) we can see by direct computation that z is uniquely determined. (Of course σ is not unique.) That is, if w
is $\overline{4_{1}}, \overline{4_{2}}, \overline{2}, \overline{0}$, then z must be $\overline{7}, \overline{5}, \overline{5}, \overline{7}$, respectively. This means that (3.13) holds and we finish the proof.

Remark. In the same way we can prove the existence of other paragroups. For example, it is much easier to show the existence of E_{6} paragroup. In the case of $D_{\text {even }}$, we can also show the existence using induction.

References

[B] J. Bion-Nadal, An example of a subfactor of the hyperfinite $I I_{1}$ factor whose principal graph invariant is the Coxeter graph E_{6}, in "Current Topics in Operator Algebras (Nara, 1990)", World Scientific, 1991, 104113.
[EK] D. E. Evans, Y. Kawahigshi, Orbifold subfactors from Hecke algebras, Comm. Math. Phys., 165 (1994), 445-484.
[GHJ] F. Goodman, P. de la Harpe, V. Jones, Coxeter graphs and towers of algebras, MSRI Publications 14, Springer Verlag, 1989.
[I] M. Izumi, Application of fusion rules to classification of subfactors, Publ. RIMS, Kyoto Univ., 27 (1991), 953-994.
[J] V. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25.
[Ka] Y. Kawahigashi, On flatness of Ocneanu's connection on the Dynkin diagrams and classification of subfactors, preprint.
[K1] H. Kosaki, Extension of Jones theory on index to arbitrary factors, J. Funct. Anal., 66 (1986), 123-140.
[O1] A. Ocneanu, Quantized group string algebra and Galois theory for algebra, in "Operator algebras and applications, Vol. 2 (Warwick, 1987)," London Math. Soc. Lect. Note Series Vol. 136, Cambridge University Press, 1988, 119-172.
[O2] A. Ocneanu, Quantum symmetry, differential geometry of finite graphs and classification of subfactors, University of Tokyo Seminary Notes, (Notes recorded by Y. Kawahigashi), 1990.
[O3] A. Ocneanu, graph geometry, quantized group and nonamenable subfactors, Lake Taoe Lectures, June-July, 1989.
[P1] S. Popa, Classification of subfactors: reduction to commuting squares, Invent. Math. 101 (1990), 19-43.
[P2] S. Popa, Sur la classification des sousfacteurs d'indice fini du facteur hyperfini, C. R. Acad. Sc. Paris., 311 (1990), 95-100.
[PP] M. Pimsner, S. Popa, Entropy and index for subfactors, Ann. sient. Éc. Norm. Sup., 4, 57-106, 1986.
[SV] V. S. Sunder, A. K. Vijayarajan, On the non-occurrence of the Coxeter graph $E_{7}, D_{\text {odd }}$ as principal graphs of an inclusion of II_{1} factors, Pac. J.

Math., 161 (1993), 185-200.

Received March 20, 1992, revised June 20, 1992 and accepted for publication September 7, 1992.

Kyoto University
Kyoto 606, JAPAN
E-mail address: izumi@kurims.kyoto-u.ac.jp

