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THE CAUCHY INTEGRAL, ANALYTIC CAPACITY
AND SUBSETS OF QUASICIRCLES

XIANG FANG

In this paper, we show that if K C C is AD-regular and
sufficiently flat, then K is a subset of a chord-arc curve if
the Cauchy integral operator is bounded on L2{K). This
result partially answers a question raised by G. David,
P. Jones and S. Semmes. Also, we prove that if K is as
above (locally) and has positive analytic capacity, then
K must contain a subset of a rectifiable curve of positive
length. Finally, we characterize subsets of some quasicir-
cles in terms of a simple geometric condition invented by
P. Jones.

Introduction. Let K C C be a bounded set and, for δ > 0,
write

3: K C \J D(aj9 δj); δj < δ ,

where D(aj,δj) = {z : \z — dj\ < δj}. Then Aδ(K) is a decreas-
ing function of δ. The one-dimensional Hausdorff measure Λ( ) is
defined by

= limAδ(K).

If K is connected and A(K) < oo, then we call it a rectifiable curve.

DEFINITION 1. A Λ-measurable set K C C is said to be regular
in the sense of Ahlfors and David, or AD-regular, if there exists
M < oo such that for all x G K and 0 < r < diam(ii),

M~ιr <A(KnD(x,r)) < Mr.

If K is connected we call it an AD-regular curve.
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A special kind of AD-regular curve Γ is a chord-arc curve which
is defined by the condition that, for any z\, z2 G Γ, Λ(Γ(^χ, z2)) <
C\zχ — z2\, where Γ(zι,z2) is the smallest arc between z\ and z2

and C is a constant independent of z\ and z2.

DEFINITION 2. A bounded Λ-measurable set K C C is said to be
B-regular, if it is a subset of a countable union of rectifiable curves.

Let V be the collection of all dyadic squares. The following very
essential geometric quantity was introduced by P. Jones [19]: For a
square Q e P ,

βκ(Q) = infί{Q)~ι sup dist(^L)
L zeKΠ3Q

where the infimum is taken over all straight lines L, i(Q) is the side
length of Q and the square 3Q is the square with the same center
as Q and £(3Q) = 3£{Q). Let

Qev

DEFINITION 3. Suppose that K c C is compact. Then K is
called locally flat if, for any {Qn} C V, satisfying lim^oo i(Qn) = 0,

\imβκ(Qn) = 0.
n—> oo

Definition 3 means that points of a locally flat set are, locally,
around a straight line. Examples of locally flat sets are subsets of
smooth curves and some snowflake type sets (see §3).

The analytic capacity of a compact set K is defined by the fol-
lowing:

DEFINITION 4. Assume K is a compact subset of C. Then

Ί{K) = sup{|/'(oo)| : / € H°°(Ω), /(oo) = 0, || / ||Loo< 1}

where

/'(oo)=Um */(*)>

Ω = C \ K, and H°°(Ω) = { all analytic bounded functions on Ω}.
It is easy to see Ύ(K) is positive if and only if ^^(Ω) has non-

trivial functions. Let C be the Cauchy integral operator. The main
results of this paper are:
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THEOREM I. Suppose K C C is AD-regular and suppose that C
is bounded on L2(K) and β(K) is sufficiently small with respect to
the L2 norm of C and the constant of AΌ-regularity. Then K is
contained in a chord-arc curve.

THEOREM II. Suppose K is AD-regular and locally flat. Then
j(K) > 0 if and only if there exits a rectifiable curve Γ such that
A(KΠΓ) > 0 .

THEOREM III. Suppose K c C is compact. Then, if β(K) is
small enough, K is a subset of a quasicircle with small constant
(see §i). Conversely, if K is a quasicircle with small constant, then
β(K) is small.

Theorem III, which was suggested by P. Jones characterizes sets
K with small β(K). See §1 Theorem 1.2 for the details of Theorem
III. Theorem I, II partially answer the following open problems:

PROBLEM 1. Suppose K is AD-regular and C is bounded on
L2(K). Is it true that K is contained in an AD-regular curve ?

PROBLEM 2. Suppose K(K) < oo. Does j(K) = 0 if and only if
K is B-irregular ?

Equivalently, we may state Problem 2 as follows:

PROBLEM 2''. Suppose Λ(jfiΓ) < oo. Then η(K) > 0 if and only
if there exists a rectifiable curve Γ such that K Π Γ has positive
one-dimensional Hausdorff measure.

These problems have been raised by G. David, P. Jones and
S. Semmes, and they suggest a connection between L2-boundedness
of C and geometric properties of sets. In 1980, G. David [10] proved
that Problem 1 is true if K is connected. Later on, G. David and
S. Semmes [11] proved that Problem 1 is true if we replace C by all
singular integral operators with odd kernels.

REMARK. In Problem 1, the AD-regular condition is necessary.
Actually, it is not hard to construct a set K which is not contained
in any AD curve, or even any rectifiable curve, but, C is bounded
on LP{K), 1 <p < oo.

It has long been known that the Cauchy integral and analytic
capacity are intimately related. Calderόn's theorem [3] solved what
was known as the Denjoy conjecture:
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T H E O R E M . Suppose K is a subset of a rectifiable curve. Then

Ί{K) >0if and only if A{K) > 0.

Another old conjecture is that j(K) > 0 if and only if Fav(i^) >
0, where Fav( ) is Favard length,

Fav(tf)= Γ A(Kθ)dθ,
Jo

and where K$ is the orthogonal projection of K onto the line Meιθ.
This is known to be false for sets where K has non σ-finite Λ measure
[22].

Besicovitch [2] proved that, for the sets satisfying 0 < A(K) < oo,
Fav(AΓ) = 0 if and only if A(K ΠΓ) = 0 for every rectifiable curve
Γ. We call these kind of sets B-irregular. This leads to Problem
2. It follows from Calderόn's theorem that Ύ(K) = 0 implies K is
B-irregular. So what we need to know is only whether j(K) = 0
if K is B-irregular. For example, in 1970, Garnett [15] proved the
^-Cantor set, which is B-irregular and AD regular, has zero analytic
capacity. In 1987, Mattila [25] showed that η(K) = 0 if K is B-
irregular and satisfies a certain geometric condition, which we call
Mattila's condition (see §3). But, we still do not know much more
about Problem 2. In §3, we prove that the set K in Theorem II fails
to satisfy Mattila's condition; thus, Theorem II extends the results
we known so far.

NOTATIONS. We will use the following notation: R is the real line,
C is the plane, arg(z) denotes the argument of z, the value of arg(z)
is taken modulo 2π. 5R(z) and ^s(z) are the real and imaginary
parts of Zj respectively, and [α, b] is the straight line segment from
a to b. If Γ is a Jordan curve, and α, b G Γ we let Γ(α, b) denote the
arc of smaller diameter between a and b.

1. Quasiconformal circles with small estimate constant.
Recall that Γ is called a quasicircle, if Γ = g(R) where g is a quasi-
conformal mapping of C into C. More geometrically, Γ is a quasi-
circle iff Γ satisfies the "three points condition"

(1.1) \zι - z2\ < Q\zx - zs\
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for a constant Q and any three points on Γ with z2 on the arc of
smaller diameter between z\ and z3 (see [1], Theorem IV. 5).

It is interesting to characterize a set K contained in a quasicir-
cle in terms of the geometric quantity β(K). For that purpose we
introduce the following:

DEFINITION 1.1. A Jordan curve is called an s-quasicircle (s
denoting "small") with constant ε, if it satisfies the following three
points condition: for any three points Z\, z2, £3, on the curve such
that z2 separates z\ and z$, we have

(1.2) \Zι - z2\ + \z2 - z3\ < (1 + ε)\zλ - z3 |

It is clear that an s-quasicircle with constant ε is a quasicircle
with constant 1 + ε but, its converse is not true. We establish the
following result which is a precise version of Theorem III:

THEOREM 1.2. Suppose K c C is compact and suppose ε < γ~.
Then K is the subset of an s-quasicircle with constant C$ε, if it
satisfies

(1.3) β{K) < δ

for δ < 2~πε~ . Conversely, if K is contained in an s-quasicircle
with constant ε , then,

snpβκ(Q) <Coε*,
Qev

where CQ is independent of ε.

REMARK. The best estimate for δ is not known. However, it is
easy to see that Theorem 1.2 is not true if we replace 2~πε~1 by εn,
for any n G ΊΛ.

The proof of Theorem 1.2 is a straight forward construction. We
postpone it and present it in the last section, §4. According to
Theorem 1.2, to prove Theorem I, we need only to consider the set
K which is a subset of an s-quasicircle with constant ε . Actually,
we will see that Theorem I is true for any set K which is a subset of
the quasicircle with constant Q — 1 small, where Q is the constant
in (1.1) (see §2).
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LEMMA 1.3. Suppose T is a quasicircle with constant Q and
K C Γ is compact. Then there is a Jordan curve ΓQ such that
K C Γo and YQ\K = U7 J ; jj is chord-arc curve with the constant
depending only on Q and 7̂  Π Γ = {UJ, Vj} C K

Proof. Let ΩΓ be one of components of C \ Γ. Assume Φ(z)
is a conformal mapping from the upper half-plane to Ωr Note
that Φ can be extended to a quasiconformal mapping, since Γ is a
quasicircle. Let E = Φ " 1 ^ ) . Since K is closed set, R \ E = U/j,
Jj = (%, Vj). We choose z7- = Xj + iy^ where Xj = (UJ + Vj)/2 and

Vj = (vj ~ u j ) / 2 L e t aj = K ?

 zj] u [̂ jj V J] a n d 7i = φ(αy) Finally,
we set Γo = {U7j}Uii:.

It is clear that Γo is a Jordan curve and it contains K. We can
prove easily that jj is a chord-arc curve with constant depending
only on Q, by using the distortion theorem and the following result,
due to Jerison and Kenig (see [17] for both results):

PROPOSITION. // Γ is a quasicircle with constant Q, then the
image under Φ of a line {z = x + eιΘy : y > 0} ; θ G (τr/8, 7π/8), is
a chord-arc curve with estimate constant depending only on Q.

We should point out that the original result is stated only for
vertical lines, i.e., θ — | , but the proof in [17] is valid for the lines
in this Proposition. D

We will use the following elementary geometric property of qua-
sicircles:

LEMMA 1.4. Suppose Γ is a quasicircle with constant Q, Q =
1 + ε, ε < JQ and zu z2 G Γ. Then there is θ G (0, 2τr) such that

Γ(zu z2) \ D(zu lOεr) c L : 3 (e»{z - zx))

where r — \z\ — z2\ and Γ(zχ, z2) is the smaller arc ofT between
Z\ and z2.

Without loss of generality we can assume z\ = 0, z2 = ir. Let

So = [z G C : - ^ < arg(z) < ^TΓ} ,

Sλ - {2; G C : ^ < arg(^) < |jjτr} .
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Using the three points condition (1.1) we can easily prove Γ(zχ, z2) \
D{z\, lOεr) C SQ U S\. By a simple calculation, for z 6 <SQ,

and, for z G <Sχ,

15

I .

Thus, it is enough to show Γ(zi,Z2) \ -D( î, lOεr) is a subset of
either SQ or <Sχ.

CLAIM. // there exists a z e Γ(zχ, 2:2) \ ̂ (2:1, lOεr) satisfying

(1.4) y < arg(z) < —

, 10er)cSi.

Actually, if there is no z G Γ( î,2:2) \ jD(^i,10εr) satisfying (1.4),
then

Γ(zι,z2)\D(z1,10εr)cS0;

otherwise, by the claim,

Γ(z1,z2)\D(zu10εr)cS1.

Thus, Lemma 1.4 follows once our claim is proved.

Proof of Claim. Let C € Γ(zχ, z2) with |C| > lOer. Then -τr/20 <
arg(C) < 21τr/20. Assume arg(C) < τr/6. Let 0 = | arg(C) - aτg(z)|,
then 2τr/3 < β < llτr/10. Thus,

(1.5) \z - C|2 = \z\2 + ICI2 - 2|z| |C| cos^ > |z | 2 + |C| 2 + |

If ζ is between z\ and z, using the three points condition, \z — ζ\ <
(1 + ε)\z\. But by (1.4), (1.5) and ε < 1,
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which is a contradiction. If ζ is between z and Z2, using the three
points condition, \z — ζ\ < ( l+ε) |C| . Again by (1.4), (1.5) and ε < 1,

which is impossible. Thus, arg(ζ) > | . Therefore, the claim is
proved. D

Let Γ be a quasicircle with constant 1 + ε . We pick two points
αz, bi e Γ and define Vi — |o» — b{\ and q = (aι+bi)/2. We choose two
other points αJ7 fy € Γ which are contained in the same component
of Γ \ Γ(αΐ, b{), and define Γj = \a,j — bj\ and Cj = (α^ + 6j)/2 .

LEMMA 1.5. Suppose ε < \. Then the following must be true
that

Proof. By the three points condition (1.1),

(1.5) u = \ai - bi\ < (1 + ε

Without lose of generality we assume r$ < rι and |α» — α l̂ <
|α» — bj\ and fei separates aι from α .̂ Then, by a simple geometric
observation, and the Pythagorean theorem,

Then, by (1.5) and ε<\,

Using this estimate, we have

\Cχ ~Cj\ > \(H-Cj\ - \θi -Ci\

Therefore, D (ch ±n) Π D (Cj, ^ r , ) = φ. D
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2. Proof of Theorem I.
The definition of the Cauchy integral operator on AD reg-
ular sets. We observe that an AD-regular set K with the Euclidean
metric and Hausdorff measure is a space of homogeneous type [9].
We define the Cauchy integral operator as in [5]:

(Cf, 9) = « / 7 [/(CM*) " /(*MC)] dA(C) dΛ(z),

for /, ^ Lipschitz functions. The integral converges absolutely be-
cause of the AD regularity of K and the Lipschitz continuity of /
and g. Thus, C is well-defined as a continuous linear operator from
Lipschitz functions into the class of distributions. It is easy to ver-
ify that the class of Lipschitz functions is dense in L2(K). We may
formally write

We also need the following definitions

C'f(?)= I f{y){x-y)-χdk(y).
\y\

y€K

and
C*f(x) = sup\Cef(x)\.

ε>0

By a standard argument we have

PROPOSITION 1.0. [5]. Let K be AD regular. Then the following
are equivalent:

(i) C is bounded on L2(K),
(ii) Cε is bounded on L2(K), uniformly in ε,
(iii) C* is bounded on L2(K).

Proof of Theorem I. Suppose that K C C is AD-regular with
constant M (see the introduction) and

(2.1) β{K)<δ.

By Theorem 1.2, (2.1) implies K C Γ, where Γ is an s-quasicircle
with constant ε (where ε is sufficient small as long as δ is small
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enough). Thus, Theorem I will be included in the following slightly
more general result:

THEOREM 2.1. Suppose K is AD-regular with constant M and
the Cauchy integral operator is bounded on L2(K). Further suppose
that K is contained in a quasicircle with constant 1 + ε , where
ε > 0 is small enough, depending only on M and \\C\\. Then K is
contained in a chord-arc curve.

Proof. By Proposition 1.0, C* is also bounded on L2(K). Using
Lemma 1.3, we obtain a Jordan curve Γo satisfying T0\K = Ujj, jj
is a chord-arc curve with constant depending only on ε. To verify
Γo is chord-arc curve, we take any two points x\ and x2 on Γo and
we need to show

(2.2) Λ(Γo(xi,^2))<C f o|xi-x 2 | .

Let Q = {7j : jj C ro(xi,x2)}. Then, by the three points condition
(1.1) and AD-regularity, it is easy to see that, to show (2.2), it
suffices to prove

(2.3)

By Lemma 1.3, j 3 (Ί K = {α ,̂ 6j}, let Ij = [dj, fy], then

Let r = \xι — X2\. Thus, in order to prove (2.3), we need to show

(2.4) £ Λ(/, ) < Cor.

To establish (2.4), we introduce the following definition:

DEFINITION 2.2. Suppose V — {/} is a collection of sets and
p > 0. A subcollection {/M} of V is called a p-frame of V, if it
satisfies the following conditions:
(i) There are pairwise disjoint subcoUections VVΆ of V such that
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and, for each index pair (p, q),

(2.5) Σ Λ(J) < CxK{Ip>q),
ieτP,q

where C\ is independent of p, q and p.
(ii) There is a constant C2 independent of p such that

(2-6) Σλ(Ip,q)<C2p.

It follows immediately from the definition of a p-frame that

lev

Let V = {/?}. Hence, our problem is reduced to finding an r-
frame of P. Let Ij = [α,, 6^, 1(1 ά) = \bj - aά\, and let Δ ^ ) =
D(a,j,εj), βj = sί(Ij). Also, for simplicity, we may assume 'P is
a finite set, since our estimate is independent of the number of
elements in V.

To find the r-frame of V, we choose /i?i 6 ? s o that £(I\9ι) is the
maximum of the lengths of the Ij. Let

Pi,i = {Ij e V : l(!i) > εί{IlΛ) and J, ΓΊ

and Δ(Ji,i) = 2Δ(/1 > 1). Define

Assume we have chosen 7 l jj, P 1 } J and J i ^ , 1 < j < z/. Choose

3=1

which is of maximal possible length. Let

I i=i
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and let

After finitely many steps, this procedure will stop. We obtain sub-
collections {Vij} which are disjoint from the elements of {/i,j}

Let X\ — [jjXij. We repeat the same procedure as before to
obtain V2, j and I 2 ) j . Let J 2 = {Jj%2j and keep on going until V
exhausted. Thus, {IPΛ} and {VPiq} are constructed.

We have to check that {Ip,q} is a r-frame of {Ij} By the con-
struction of {PP,J, it is clear that V = U M P M . We verify (2.5).
For each index pair (p, q), by the construction oϊVp,q, we have

εt(IP,q) < l{ί) < l(IM), VJ G V
p,q.

Let IPjq = [αp,ρ, 6p,ρ]. Since K is in a subset of the quasicircle with
constant 1 + ε , by Lemma 1.5, V/<, /j G 7 ^ ,

where ĉ  is the center of Ij. So

1 Q Q 2
π I 1 0 0 I ^ e

Here, we used Ij Π Δ(/P j ί) ^ (/>, which implies £>(CJ, ^^(/ j ) ) C
D(ap9q,ί(Ipiq)). Thus, (2.5) is verified, and, so, (i) is true.

Next, to verify (ii), we need to show (2.6). First, we note that for
any fixed p,

(2-7) U(IP,q) Π U(Ip>ql) = φ,
Δ Δ

if qφ q' and, for any JP)g, there exists /p-i,g', such that

(2-8) / M C

We claim that

Π Δ ( / Λ ί ) c{xeK:C ifyi ,
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By the definition of C*, we can see that it is enough to prove our
claim to show:

(2.10)
dλ(z)

z€K,
ap,q - z

- 1

Let Γαp q be the component of Γ \ {ap<g} which does not contain bPtq.
We choose x G Γα p q such that |αp > g — x\ = £(Ip,q) By Lemma 1.4,
there is θ € [0,2τr) such that

Γ(ap,q,x) \ D(ap>q, 10εί(IM)) C S(ap>q)

= {z : - ap,q)}

and using the three points condition (1.1), we have

Therefore,

f

cΓ(α,,,g,a;)

dA{z)

~ Z

~ 10

dλ(z)

\ap>q - z\

> Co log ε ,

where c0 depends only on the AD-regularity constant M. Thus, we
obtain (2.10) and, consequently, (2.9). Similarly, we can prove, for
any ί,

(2.11)

K Π Δ ( J M ) c{xeK:C* (xD{aiΛΛr)nκ) (x) >
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Because of (2.7), (2.8), (2.9) and the L2 boundedness of C*, we have
the following estimates: for any fixed p,

Σ
q: Ip,qCA(Ip_hq/)

< —^
K

rf(T , Λ
<

if we choose ε small enough, i.e., ε small depending only on M and
||C*||. Since K is AD regular, for any fixed p,

Σ '&*) ^ ^(Vi,,')
9 : / P , ,CΔ(/ p _ 1 ? g f )

Iterating the above inequality and using (2.11), we obtain the fol-
lowing:

q'

Thus, (2.6) is verified by summing over p. This completes the proof
of Theorem 2.1, and, thus, Theorem I is proved, assuming Theorem
1.2 which will be proved in Section 4. D

The author thanks Professor P. Jones for suggesting the use of
weak type estimates in the proof of Theorem 1.2.

3. The Cauchy Integral Operator And Analytic Capac-
ity.
Basic geometric theory. Let us recall some basic definitions and
results from geometric measure theory that we will use.
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DEFINITION 3.1. The upper and lower densities of a closed one-
dimensional set £ a t a point x are defined by

D(E, x) = hm sup
2r

Λ (E Π D(x, r))
D(E, x) = liminf-^ \-LJLL.

DEFINITION 3.2. A one-dimensional set E is said to be regular
in the sense of Besicovitch, or, simply, B-regular if

D(E, x) = D(E, x) = 1.

for a.e. x € E. A point x G E satisfying the above equality is said
to be regular; otherwise it is called B-irregular.

DEFINITION 3.3. A one-dimensional set is B-irregular if almost
all of its points are B-irregular.

Given x e C, a line L containing x and 0 < θ < | , we define the
cone S(x, L, θ) to be the union of all lines passing through x and
making an angle of at most θ with L.

DEFINITION 3.4. Let E be a one-dimensional set and x e E a
point at which D(E, x) > 0. Then a line L passing through x is
tangent to E at x if

Jim r~ιk([E Π D(x, r)] \ S(x, L,θ))=0

for all θ > 0. L is a weak tangent to E at x if "limΓ_>0" above is
replaced by "limr_+o"

Note that the tangent to E expresses a certain smoothness of JE,
but the weak tangent does not contain any information of smooth-
ness for E. We will present a class of sets E at the end of this
section that are B-irregular but there are weak tangents to E at a.e.
x € E in all directions.

The basic results in geometric measure theory we shall need are
the following:

THEOREM 3.5. Let E C C be closed and have finite one-
dimensional Hausdorff measure. Then the following are equivalent:
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• E is regular in the sense of Besicovitch.
• E has a tangent at a.e. x G E.
• E is contained in a countable union of rectifiable curves.

T H E O R E M 3.6. Let E C C be closed and have finite one-dimen-
sional Hausdorff measure. Then the following are equivalent:

• E is irregular in the sense of Besicovitch.
• At a.e. x G E, E has no tangent.
• For any rectifiable curve V, A(E Π Γ) = 0.

For proof of these results see [13].
It is very important to characterize a set of positive analytic ca-

pacity in terms of the geometry of the set. The following theorem
was established by Mattila [25]

T H E O R E M 3.7. Suppose K is compact and B-irregular with
A(K) < oo and suppose that for a.e. x e K, there is at least one
L passing through x which is not a weak tangent to K at x. Then
<y(K) = 0.

DEFINITION 3.8. Suppose K c C is compact and B-irregular.
We say K satisfies Mattila's condition if it satisfies the condition
that for almost all x G K, D{K,x) > 0 and there is no weak
tangent to E at x, at least in one direction.

Using this definition we can restate Theorem 3.7 equivalently as
follows:

THEOREM 3.7'. Suppose A(K) < oo and K satisfies Mattila's
condition. Then ^{K) > 0 if and only if there is a rectifiable curve
Γ such that Λ(Γ Π K) > 0.

A geometric observation for locally flat sets. We note that a
locally flat set is certainly not necessarily B-regular. The following
result describes a geometrical property of locally flat sets:

PROPOSITION 3.9. Suppose K is AD-regular and locally flat.
Then, for almost all points x, either there is a tangent to K at x, or
there are weak tangents to K in all directions at x. In particular, if
K is not B-regular, K does not satisfy Mattila's condition.

To prove Proposition 3.9, we will use the following two theorems
of Besicovitch [13]:
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T H E O R E M 3.10. Suppose K has finite one-dimensional Haus-
dorff measure. Then K can be decomposed into two subsets G and
B such that G is B-regular and B is B-irregular.

T H E O R E M 3.11. Suppose K is B-irregular. Then, given θ G
[0,2τr), φ G (0, τr/2) and a line L which contains x and points in
the direction eιθ,

(3.1) limsupr^ΛOfc: Π D(x, r) Π S+ (x, L,
0

+lim sup r~~ιk(KC\D(x, r)ΠS~ (x, L, φ)) > - sin φ, V α.e. x e K,
0 6

where S+(x, L, φ) is a one-way cone of S(x, L, φ) and S~(x, L, φ) is
the opposite one-way cone.

Proof of Proposition 3.9. By Theorem 3.10, K = G U B where
G is B-regular and B is B-irregular. By Theorem 3.1, there is a
tangent to K at a.e. x G G. So we need only to show that there are
weak tangents to K in all directions at a.e. x G B.

Without loss of generality we may assume K is B-irregular. Let

θp G [0, 2τr) and φq G (0, π/2)

be all possible rational numbers. Set

KVΆ = {x G K : it satisfies (3.1) with θp and φq}

and set

Since A(K \ Km) = 0,

It suffices to show the following:

CLAIM. Any straight line L which contains x G Ko is a weak
tangent to K at x.

Pick φ G (0, | ) . Let L be a line which points in the direction
θ G [0, 2π). Choose (p,q) so that

(3.2) \θ - θp\ < 10-100(V, and φp < l()-l0Ό0φ.
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Because x 6 Ko, by Theorem 3.11 and (3.2), there are points

(3.3) xneS U L, ̂  J Π KQ , n = 1, , oo

such that

%n Φ %m 5 ft 7̂  w and lim x n = :r .
n > o on—>oo

Let rn — \x — xn\, n = 1,2, . We choose Qn 6 £> such that 3Qn

contains both xn and x, and Qn has minimum possible size, i.e.,
~ rn. Let βκ{Qn) = δn. Since i ί is locally flat,

(3.4)
lit—Γυv

We may assume δn < y^. By (3.2)-(3.4) and an elementary calcu-
lation,

A(K Π D(x, aorn) \ S(x, L, φ)) < C(φ)δn rn,

where αo is small independent constant, which implies

liminfr-1Λ(irn^(α;,r)\5(x,L,φ)) < C(φ) lim^δn = 0.

Thus, we showed that L is a weak tangent to K at x and, therefore,
Proposition 3.9 is proved. D

Geometric characterization of analytic capacity of locally
flat sets. By Proposition 2.9, locally flat sets do not satisfy Mat-
tila's condition. So, Mattila's theorem doesn't work for locally flat
sets. We now use Theorem I to study the analytic capacity of K.
But, in general, knowing that η{K) > 0 tells us nothing about the
L2 boundedness of the Cauchy integral operators, because it could
be that K = A U B where j(A) > 0 and ||C|| gives no control on B.
However, M. Christ [6] provided a useful tool:

THEOREM 3.12. Let K c C be AD-regular and suppose that
j(K) > 0. Then there exists an AD-regular set K1 such that C is
bounded on L2{Kf) and A(K Π K1) > 0.

REMARK. In particulars if K is locally flat, we will show the K1

can be constructed to be locally flat.
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In particular, Theorem I together with Theorem 3.12 give us basic
tools to study analytic capacity of locally flat sets. Because Theorem
3.12 is very important to us and its original proof is contained in a
proof of a more general result (see [6] for details), we shall give, for
reader's convenience, the details of a direct proof which contains a
proof of the above Remark. The main idea of this proof is due to
M. Christ. We begin by recalling some definitions and theorems (all
of them can be found in [6]).

DEFINITION 3.13. Suppose K is AD-regular. Then a family

of set Qkj C K is called a dyadic system if there exist constants

r, a > 0, αo, AQ < oo such that

(i) A(K \ \Jj Qkj) = 0, for each k.

(ii) For any, i, j , /, k with I > k, either Q\ C Q) or, Q^Q) =

Φ
(iii) For each (&, j) and each 1,1 < k there is a unique i such that

(iv) Diameter (Qk) < AQrk.

(v) Each Qj contains some disk D(Xj,aork).

(vi) A{y e (ή : dist(y, K\<%) <trk}< A)ίαΛ(Q*), Vj, k.
See [6] for the existence of a dyadic system for an AD-regular set.
Also, following the terminology used in [6], we call Qk a dyadic
cube. (Note that Q* is a subset of K and is not a dyadic square.)

REMARK. The proof of existence of a dyadic system in [6] shows
that any dyadic cube is itself an AD-regular set.

Let V(K) be a dyadic system for K.

DEFINITION 3.14. A function b e L°°(K) is said to be dyadic
para-accretive if for every Q) eV(K), there exists Q\ eV(K), Q\ C
Q*, with / < k + N and

L bdA >
for some fixed c > 0, N < oo.

DEFINITION 3.15. A locally integrable function / belongs to
dyadic BMO if

supinfΛ(Q)-1 / \f(z)-CQ\dA{z) < oo



266 XING FANG

where the supremum is taken over all dyadic cubes.
We will use the following T(b) theorem:

THEOREM 3.16. Suppose that b is a dyadic para-accretive func-
tion on K and that C(b) is in dyadic BMO. Then C is bounded on
L2(K).

Theorem 3.16 is a special version of a general T(b) theorem, which
suffices for our purpose (see [6] Theorem 20, for this general T(b)
theorem).

Proof of Theorem 3.12. It is well-know that if j(K) > 0 then there
is / € H°°(C\K) satisfying \\f\\n < 1, /(oo) = 0 and /'(oo) φ 0.
In fact, we can write / as the Cauchy integral of an L°° function g
supported on K satisfying ||ρ||oo < 1 a n < i IKO^A φ 0.

Let η{K) = c0Λ(UΓ), c0 > 0. Assume K G V(K), denote it by Q\,
and run a stopping-time procedure on it as follows: for Qj G V(K),
which is Q\'s child, we stop the construction, if it satisfies

(3.5) / gdA
JQΓ

i.e. Q2j is a stopping time cube and we put this Qj aside. If it doesn't
satisfy the above inequality, i.e.,

(3.6) / gdA

we turn to the next generation, and repeat this argument. We keep
this argument going on until it goes through all levels. Let S be the
collection of all stopping time cubes. It is clear that the stopping
time cubes are disjoint and satisfy (3.5). Also, it is easy to show

(3.7) A(K \ (UsesS)) > \c0A(K) > 0.

To construct K', we need to replace S by a certain good set, Γ5.
By (iv) and (v) under Definition 3.13, for any S G <S, S contains
a disk D(xs,ds) satisfying xs G S and ds > Cidiam(S') , where
C\ depends only on α0 and Ao, and, thus, we can choose Zι,z2 G

, ds) IΊ S such that

(3.8) \zι - z2\ > c2ds and dist([zi, z2], K\S)>
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where c2 depends only on M and c\.
Let cs = (zι + z2)/2, Is = [zucs] and J 5 = [cs,z2]. Let Γ 5 =

ISU Js Define

By (3.7), k(K Γ) K') > 0 and, using the Remark below Defini-
tion 3.13 and (3.8), we can easily show that K' is AD-regular.

We now prove K' is locally flat. It suffices to show that, for any
Q eV, there is DQ € V such that Q c DQ, ^(£>Q) <
and

where C2 and C3 depend only on M, αo and ylo Let

P Q = {Γ s : 3Q Π Γ s φ φ and 3Q Π (/ί' \ Γ 5 )

Let
.BQ = U{ΓS : Γ 5 €

It is clear that, if PQ = φ, then either 3Q Π ϋf' C Γ 5 or, 3Q Π K' C
•̂  \ Us gsS1. But, in both cases, we have βκ'(Q) < βκ(Q), and we
choose DQ = Q We now assume PQΦ φ. Note, for any Γ5 € PQ,
we can find α G 3<5 Π Γ 5, and 6 e 3Q ΓΊ (AT' \ Γ s ) . By the choice
of Γs, S G «S, it is clear that, there is a constant C depending only
on M, Co and 4̂o such that

A(Γ5) < Ci(Q),

which yields Γ5 C 10CQ. We choose a dyadic square DQ such
that

10CQ C 3£>Q, and £(DQ) < 10i(10CQ).

Then, we have

sup dist(x,L)< sup dist(y,L),
xe(3QuK')UEQ DQK

for any straight line L, and, thus, by the definition of βκ(Q)i this
yields,

βκ'(Q) < £-^βκ(DQ) < 100Cβκ(DQ).
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Hence K1 is locally flat.
By Theorem 3.16, to prove that the Cauchy integral operator is

L2 bounded on K', we need only to find a dyadic para-accretive
function b such that C(b) is a dyadic BMO function defined on K1.
To construct 6, we recall that, for any S G <S, Ts = Is U Js,
Is = [21,05] and J 5 = [c5, z2], where Zi, z2 G 5 and c$ = (zx + z2)/2.
By (3.8), it is clear that

Λ(5) < C4Λ(J5),

where C4 is independent of S. We define a piecewise constant func-
tion gs on Γ 5 by c/5 = C on /5, and gs = -C + ̂ ^y / s 5 rfΛ on J 5 ,
where C = 2C4. By this definition, it is clear that

(3.9)

and, on

(3.10)

Let

Γs,

We show that
First of all,

b is
we

/

1

•

I*
a dyadic

gsdK--

< \gs(z

on .

s on

= / gdk
Js

01 < c.

Γs, S

para-accretive
have to define a dyadic

eS.

function.
system V{K') associated

to K'. Let

VX{K') = {Q1 :Q' = (Q\ US) U (UScQΓs), Q €

which is called the dyadic cube class of type 1. Since Γ5 is an
interval, we define by T>(Ts) to be all bisecting subintervals of IV
It is clear that Is and Js are in T>(TS) Let

which is called the dyadic cube class of type 2. Define Ί>(K') =
V1(K')UV2(K').

We choose Q' e V(K') which is of type 1. Choose Q e K, as-
sociated to Q'. Then Q is not a stopping time cube. By (3.9) and
(3.6),

\ J \ U \ > c'oλ(Q'),



THE CAUCHY INTEGRAL, ANALYTIC CAPACITY 269

where c'o is independent of Q'. Choose Q1 G V(K') which is of type
2, i.e. Qf e V(ΓS) for some S e S. Let R = Q', if Q φ Γ5, and let
β = J5, if Q' = Γ5. Since either R C Is or, i? C J<?, by (3.10),

> Λ(Λ).

Hence, b is a dyadic para-accretive function.
To show that b is a dyadic BMO function, it suffices to show that

(3-11) \C(bχQ)\dλ<Coλ(Q).

Choose Q' e V(K'). Note that, if Q' is of type 2, say Q' <Ξ Ί>(ΓS),
for some S G <S, since the Cauchy integral operator is bounded on
L2(Is) with a constant independent of 5, we can easily show (3.11)
is true for Q'. Thus, we need only to consider the case when Q' is
of type 1. The following two estimates will be used:

(3-12)

and

(3.13)
JQ\S I

J

1

x —

lQ\C(9XQ)\d

y

1

χs~ y
dA(x)dA(y)<C5A(S),

where S' is S or Γs and xs satisfies dist(rrs, Q\S) > cA(S). They
can be proved by using the fact that \f(z)\ < 1, \fz G C \ K and
(i)-(vi) in Definition 3.13. Since Q1 is of type 1, and by (3.9),

9s{x)

χ - y
dA(x)

= C(gχQ)(y) +
y.

dA{x)

+ - y χ - y
dλ{x).
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Hence, using (3.12) and (3.13), we have

ί \C(bχQ)(y)\dA(y)
JQ

< C6λ(Q) + C6

ScQ

Σί ί
έ?U JQ\S Js
ScQJQ\SJS

< C7A(Q) +

< C0Λ(Q)

l

x-y

1
χs-y χ-y

SCQ

dA(x) dA(y)

dA(x) dA(y)

and (3.11) is proved. Therefore, Theorem 3.12 is proved. D

Proof of Theorem II. Since K is AD-regular, without lose of gen-
erality, we may assume K is of finite one-dimensional HausdorfF
measure. By Theorem 3.12, we can find a locally flat K' such that
A(K'P\K) > 0 and C is bounded on L2(K'). Fix an arbitrary small
positive number δ. We claim that K = Z U (UjKj), A(Z) = 0 and,
for each j , Kj is AD-regular and satisfies

Let V(K') = {Qkj}. Let Zk = K'\ (U,Qj) and Z = ΌkZk. Since,
by (i) of Definition 3.13, A(Zk) = 0, Vfc, Λ(Z) = 0. For xeK'\Z,
there exits {Qkjk} such that x 6 ^jQkjk, and, since K' is locally flat,
there exits Qh

kχ containing x such that, VQ G V satisfying

t(Q) < ) and Qn Q% φ φ,

we have
βκ'(Q)<δ.

Letting Kx = Qkχ

kχ, this yields

Since Kx is a dyadic cube, Kx is AD-regular by the Remark follow-
ing Definition 3.13. Using a standard covering argument, we obtain
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our claim. Sine C is bounded on L2(K'), C is uniformly bounded
on L2(Kj), Vj with bound independent of δ. Hence, if we choose
δ to be small enough, then, by Theorem I, Kj is a subset of the
chord-arc curve Γj for all j (therefore, a subset of rectifiable curve).
Hence, there must be ΓJO such that A(K Π Γj0) > 0. Theorem II is
proved. D

COROLLARY. If K is locally flat, A(K) < oo ; and B-irregular,
then j(K) = 0.

The proof of this corollary is obvious and we omit it.

An Example of Locally Flat Set: the Snowflake. The snow-
flake set E constructed by G. David and S. Semmes (see [11],
135-137) is defined as follows: given a sequence {an} of small real
numbers, say less than ^ , we construct En recursively according
to the following recipe. We take EQ to be the unit interval on the
x-axis. Suppose En-\ has been constructed. To construct En we
replace each line segment L of En-\ by four segments Zq, L2, L3,
L4 with the following properties. (See Figure 0.)

(3.14) The length of U is 4~n, i = 1,2,3,4.

(3.15) The endpoint of Li is the initial point of Li+i, 2 = 1,2,3.

(3.16) The Li's make the angles 0, α n , TΓ — α n , and 0, respec-
tively, with L.

(3.17) The midpoint of L is also the midpoint of the segment
that joins the initial point of L\ to the endpoint of L4.
Let E be the limiting set of the En's in the Hausdorff metric. In
[11] they prove the following properties of E:

(i) E is AD-regular.

(ii) E is B-regular iff Σ α^ < 00.

Note, using their construction of the snowflake set E, it not hard to
see, if limn-̂ oo an = 0, E is locally flat. So, we cannot use Mattila's
theorem to characterize its analytic capacity. But, using Theorem
II and (ii), we obtain, immediately, the following result:
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FIGURE 0. the old curves
— the new curves.

PROPOSITION 3.17. Suppose the snow flake set E satisfy s
Oin = 0. Then η(E) > 0 iff Σ ot2

n < oo.

4. A Characterization of Subsets of Some Qusiconformal
Circles. In this section we prove Theorem 1.2. Let K be a com-
pact set (that may not be AD-regular) in the complex plane which
satisfies the condition in Theorem 1.1

(4.0) β{K) < δ

with δ = 2 πε and ε < -^. Without loss of generality we can
assume K C [1/4, 3/4] x [1/4, 3/4], because (4.0) and the three
points condition are dilation and translation invariant.

Some lemmas. To construct an s-quasicircle with constant ε con-
taining K, we begin with some simple lemmas.

L E M M A 4 . 1 . Suppose β(K) < δ, δ < j ^ and suppose x,y,z e K

satisfy

(4.1)

Then

(4.2)

O - y\, \y - z\}

dist(y,L) — z\,
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where L is the straight line containing [x,z].

Proof. Let \x-z\e [2'k"ι,2'k]. Choose Q eV such that t(Q) =
2-*+1 and y e Q. It is clear that i(Q) < 4|x - z\. Since (4.1),
x,y,z E 3Q. Let Lo be the straight line such that

in particular,

dist(w,Lo) < βκ(Q)£(Q), w = x,y,z.

Let L be the straight line containing [x, z]. If Lo is parallel to L
it is easy to prove (4.2). Otherwise, let Lo ΓΊ L = {XQ}. If xo €
[x, 2], without loss of generality we can assume |x — XQ| < |xo —
z\ which implies |x0 — z\ > l /2|x — ^|. If x0 £ [x,^], max{|x —
xo|j |xo — z|} > |x — ^| Without loss of generality we can assume
\xo -z\> l/2|x - z\. Thus, for xz e 3Q Π Lo,

dist(z,L0), ,
distίx/, L) = —1 1— x0 - xι\

\xo~A

Therefore,

dist(y, L) < dist(y, Lo) + sup dist(xj, L)
QL

< 148<S|x-z|.

Lemma 4.1 is proved. D

L E M M A 4.2. Suppose β(K) <δ, δ < ~ and x,y,z satisfy

\x - z\ > - max{|x - j/l, \y - z\}

~ \y-z\ ~ C'
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where C is independent of x,y,z. Then

θx = I arg(z - ar) - arg(y - x)\ < Cλδ

θz = I Άΐg{x -z)- Άΐg(y -z)\< Cxδ,

where Cx = 19τr(l + C).

Proof. By Lemma 4.1,

dist(y,L) < \4&δ\x-z\,

where L is the straight line containing [x, z]. So, by our assumption,

Sin(θx) = ^ ^
F-ί/l

and this yields

^ < 19π(l + C)δ.

Similarly, we can also show

θz < 19ττ(l + C)δ.

Lemma 4.2 is proved. D

LEMMA 4.3. Suppose x,y,z satisfy

\x-y\ + \y-z\< (i + ε)\x-z\,

then

dist(y,L) < 2ε*\x - z\,

where L is a straight line containing [x,z].

Proof Let L be a straight line containing [x,z]. By the Pythagorean
theorem,

2(dist(y, L)f < (\χ - y\ + \y - z\f - \x - z\\

and, then, Lemma 4.3 follows immediately, from our assumption.
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LEMMA 4.4. Suppose Kλ C K and K2 C C. Let K1 = (K \
Kι)UK2. Then

sup
χeκ2n3Q

where Q is any dyadic square.

Proof. Without loss of generality we can assume that K is com-
pact. For any x G K2 Π 3Q, where Q is a dyadic square, there is
XQ e K U 3Q such that \x - xQ\ = dist(x, X Π 3Q). Thus,

(4.2) dist(x, L) < dist(x, X Π 3Q) + dist(xQ, L),

for any straight line L. By the definition of βκ{Q)> there is LQ such
that

£(Q)βκ(Q) = inf sup dist(y, L) = sup dist(y,
L Λ Γ 3 g K 3 Q

and, then, using (4.2), we obtain

(4.3)
sup dist(i/, LQ) < sup dist(y, KΠ3Q)+ £(Q)βκ(Q)

yeK2Π3Q yeK2Π3Q

Thus, if there exists {XJ} C K2 ΓΊ 3Q such that

(4.4) lim dist(xJ,LQ) = sup dist(#, LQ),

where K' = (K \ Kx) U i^2, then, by (4.2),

£(Q)βκ>(Q)< sup dist(i/,LQ)= sup dist(y,KΠ3Q).
K'3Q K3Q

Hence, because of (4.3), Lemma 4.4 follows immediately. We assume
now there is no {XJ} C K2Γ\3Q such that (4.4) holds, which means
that these exists {XJ} C (K\Kι)Γ)3Q such that (4.4) holds. Thus,
we have

t{Q)βκ {Q)< sup dist(y, LQ)
xeK'nsQ

< sup
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Lemma 4.4 now follows. •

LEMMA 4.5. Suppose Γ is a Jordan curve satisfying (4-0) with
constant ε < y^. Then Γ is an s-quasicircle with constant C$ε.

Proof. To show Γ is a s-quasicircle with constant CΌε, we need to
verify that, for x, z G Γ,

\χ - y\ + \y - A < (i + coε)\χ - z\, \/y e r(x, z).

Without loss generality we assume x = 0, z > 0, and \x — y\ <
\y-z\. Choose y e Γ(x, z). If $t(y) > 0, by (4.0) and Lemma 4.1,
it is easy to see that

\χ-y\ + \y-z\<(i + usε)\χ - z\.

We now assume U(y) < 0. Lemma 4.5 follows immediately if we
can prove:

CLAIM. Ify e Γ(x, z) satisfies U{y) < 0; then \x-y\ < 50ε\x-z\.

To prove this Claim, we observe that, if the Claim is false, i.e.,
there is y0 G j(x,z) satisfying 5R(Ϊ/O) < 0 such that \x — yo\ >
50ε\x — z|, then, since Γ satisfies (4.0) with constant ε, we have
I arg(yo)| > 3/4π. We choose Qo e V containing y0 and satisfying

\χ-yo\<ί{Qo)<2\χ-vo\

Then, x e 3Q0, and Γ(yo,x) (and, thus, T(yo,z) Π 3Q0) is
contained in a strip of width less than 2εi(Qo).

Next, since Γ is a Jordan curve, we can choose Qi € V such that

(i) dist(ί/0,3Qi) > 0,

Qi ΓΊ Γ(x, i/o) ^ 0 and 3Qi Π Γ(y0, ^) ^ 0- By (4.0), Γ(y0, x) Π 3Qi
and Γ(?/θ5 ̂ )Π3<5i are contained in a strip of width less than 2εί(Qι)
(see Figure 1). So, we can repeat the above process again. Recur-
sively using (4.0) with constant ε and the fact that Γ is a Jordan
curve, we can find {Qn} C V such that
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Γ{yo.χ) *

FIGURE 1.

(ii) 3 Q n + 1 c 3 Q n , Vn,

(iii) ί ( Q n + 1 ) < 4ε£(Qn), Vn,

(iv) QnΠT(x,yo)φφ and QnnΓ(y0,z) φ φ, Vn.

Since ε < ~, taking limits, we see that Γ(x, y0) Π Γ(yo> z) φ {yo},
which contradicts the fact that Γ is a Jordan curve. The Claim is,
thus, proved. Therefore, Lemma 4.5 is proved. D

Proof of Theorem 1.2. The strategy we use essentially follows
[20]. Using Lemma 4.3, it is easy to show the converse part of
Theorem 2.1. To prove the rest of Theorem 1.2, we choose Zn —
{z™} C K satisfying

(4.6) |z?-z?|>2-Λ, iφj,

and, also, let Kn — Zn\ Zn-\. It is clear that Zn C >2n+i. and
UnZn is dense in K. If we can construct a Jordan curve containing
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UnZn, then, by continuity, the curve will contain the set K. To
construct such a curve, by Lemma 4.5, it is enough to construct Γn

containing Zn with the uniform estimate: β(Tn) < Co£, Vn.
Before we give the details of the construction of Γn, let us describe

the idea of the construction. By (4.0), we can see that the points
of K are distributed in a strip-shaped region at any scale. So, at
the fixed scale 2~n, because of (4.6), we may think of Zn to consist
of groups of points such that the points in the one group are close
to each other, while points from different groups are sufficiently
separated. Hence, we may use Construction-A (see below) to join
the points in the same group, and use Construction-B (see below)
to join different groups, and, by (4.0), essentially, we can control
the estimate β(Γn) uniformly.

Now, let us start the construction of Γn. Our construction is
based on the following:

Construction-A(x, y). Suppose x,y G Zn satisfy \x —y\ < 2~n + 1 0 .
Without loss of generality we may assume x — 0 and y > 0. Taking
all possible Xj G /Cn+i Π D(x,δ~12~n~2), j — 1, ...,m which satisfy
$t(xj) G [x, y] and $l(xj) < 5R(:rj+i), we set

where x0 = x, xm+ι — V, and the construction is completed. (See
Figure 2-(l). ) D

Construction-B(xi, x<ι, x%). Suppose Xi,^25^3 £ C satisfy

\xχ — x2\ < \x2 — ̂ s\ and 2b

and, up to a rigid transformation, X\ = 0, x$ > 0 and arg(x2) £
[0,?]. Then,

• If arg(^2) ^ £•> we choose z G (^1,^3) such that \x\ — X2I =

\x2 — z\, and set

7[χi,χs] = [^1^2] U [x2, A U [z, xz].

• If arg(x2) > ε, we choose z§, z\,..., zs such that z$ = x^ z\ = x2,
and

) - arg(z j +i) = ε and arg(z5_i) - arg(z5) = ε0,

(4.7)
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where 0 < ε0 < ε, zs e (x\,Xs). By (4.7), it is clear that

\ZJ+I\ = 1^12cosε, 0 < j < s — 2,

\zs\ = |zs_i|2cosεo, and

(4.8) sε + βo = arg(x2).

Let

The construction is completed. (See Figure 2-(2), s = 5.)

279

(1)

Zi

(2)

FIGURE 2.

We need the following lemma:

D

LEMMA 4.6. Suppose 7 is constructed by the above constructions.
Then βΊ(Q) < Coε ; for allQeV. Moreover,

(i) 7/7 is constructed by Construction-A, then

s u p d i s t (z, [x, y\) < 1485|rc — y\.

(ii) //7 zs constructed by Construction-B, i.e.

then, let θ be the smaller angle between [^1,0:2] and [xi,zs]j

supdist(z, L) < ε2θε \x\ — x2\ and \x\ — zs\<2θε \x\ — X2\
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where L is the straight line containing [xι,x$].

Proof. Using (4.0), Lemma 4.1, Lemma 4.2 and the assumption
of Construction-B, it is easy to prove βΊ < CQS. (i) follows from
(4.0) and Lemma 4.1.

Let 7 = U^Lo[2 ,̂2^+1], z0 = xi, z\ — x2 and zn+χ = xs. Without
loss of generality we assume x\ = 0, x% > 0. Note that

sup dist i l , R) = max
e } o<j<s

Also, by Construction-B, if arg(zj) > 2ε, then Q^j+i) > ^S(ZJ).

Thus, if we assume Zj0 is maximal, arg(zJ0) < 2ε. Hence, using
(4.7), and (4.8),

< I x x -

Here we used ε(s — 1) < θ. Similarly, we have

\xι ~ zs\ < \xι - X2I25-1 < 2θε'1\xι - x2\.

Thus, (ii) is proved. D

We now use the induction on n to construct the Jordan curve
Γn containing Zn and satisfying the estimate: β(Tn) < Coε. The
construction of Γi is trivial. We omit it. We assume that we have
constructed Γn which satisfies the following conditions:
A-l . Γn contains Zn and consists of intervals such that the smaller
angle between two adjacent intervals is at least π — 2ε. Also, Γn =
U/7/, where / = [2:1,2:2], ^1^2 e Zn, zλ φ z2 such that 7/ Π Zn —
{zi, z2} and, if 7/ is not an interval, i.e.,

7/ = [zuVι]U[υuυ2]U ...U[υm,Z2].

Then there exists z G Zn such that either 2:1 G (2:, Vi), or, V\ G
(2:, 2:1), a n d
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(See Figure 5, zx = um). Let Ln = 2?7re~12~n~1, the next condition
is
A-2. For Q e V, if £(Q) > Ln, then

(i)

and, if 2~n < £(Q) < Ln, then either

(ϋ) βΓn^Coε^ + βΓ^M, ov βrn<Coε,

and, finally, if ί(Q) < 2~n, then

(iii) βrΛQ)<Coε.

Construction of Γn+ι. To construct Γn+χ, we pick w G /Cn+i and
choose UQ G Zn such that \u§ — w\ = dist(tί;, -2Γn). and choose
u_i,^i G 2 n̂ such that u_χ is next to UQ on the left side of UQ
on Γn, and u\ is next to UQ on the right side of UQ on Γn.

Let / = [u-i,uo], J — [WOJ^I]
 a n d 7/? 7 J C Γn. The construc-

tion around w will be considered by several cases.

Case I. One of the intervals is of length less than 2~n + 1 0.

Without loss of generality we assume i(J) < 2~n~ί~10. Let us begin
with the construction in the direction of the right side of u0. Since
I wo — uι\< 2~n + 1 0, we use Construction-A(u0, u\) to obtain a curve
denoted by P[UOjuι] &nd, choose u<ι G Zn at the right side of u\ on Γn,
and next to u\. If \u\ —112] < 2~n+1°, we repeat the above process
to obtain P[UuU2]

 a n d pick u$ G Zn such that us is next to U2 and
at the right side of U2 on Γn. We can keep this process going until,
say, at mth step,

(4.9) \um-um+1\>2-n+l0.

We are now going to use Construction-B to construct the curve
P[um,um+ι) a n d finish our construction in the direction of the right
side of w. (See Figure 3, m=2.)

It will be helpful for understanding our construction if we keep
the following fact in mind: by (4.6) and (4.9), points in /Cn+i that
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W

-O
U3

FIGURE 3.

have not been constructed yet, are either "close" to um, or "far
away" from um. Let

, 2-η n Kn+j u {um} = {yjyj=v

For convenience, we assume um-\ < 0, i.e., arg(um_i) = TΓ, um = 0
and U(ΊJJ) < 3ft(j/j+i), for j = 1,..., 5 - 1 .

Case 1-1. s > 1.

If ysφ um, we choose v G C such that

y 5 e (um,v) and |j/5 |

(See Figure 4-(l).) If ys = um, we choose v £ C such that

^m G (ϊ/β-i, v) and

(See Figure 4-(2).) We are now going to verify the conditions per-
mitting the use of Construction-B. The considerations are divided
into two cases.

Case 1-1.1. Ί[um,um+i] = [um,um+i]. (See Figure 4.)

We will perform Construction-B(um, v, um+\). Since ys,um,
are in K, using Lemma 4.1,

dist(v, [um,um+ι]) <

2dist(y5, [um,um+ι]) < 296δ\um -

By (4.9), it is clear that

\um -V\<\V -

By (4.6), 2~n~ι < \um - ys\ < 2~n. Note

|u m _! -um\ < 2~n + 1 0 and u m _i, um, ys G K,
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0)

(2)

FIGURE 4.

and, by Lemma 4.2 and (4.0), it is easy to see j arg(y5)| < ε. Since
arg(v) = arg(^), and, by A-l, the smaller angle between [um^u uπι]
and [um.Um^i] is at least TΓ — 2ε,

(4.10) 3ε.

Thus, we obtained the condition for Construction-B(um, υ, um+ι).

Therefore, we apply Construction-B(txm,i;,um+i) and obtain
p\um u 4.,]- L e t Vso ^ um a n d let

\[u u

(See Figure 4.)

Case 1-1.2. 7[nm,t*m+i] ^ K , V i l ( S e e Figure 5.)

We will perform Construction-B(t/m, t;, ̂ i). Let

... U

By induction A-l, there is z G Zn such that either um €
(see Figure 5-(l)) or, v\ G {um,z), (see Figure 5-(2)) and

(4.11) \um -Vι\> max ,1 J .
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O

(1)

(2)

FIGURE 5. the old curves

— the new curves.

Let us consider only in the case that um G (z,vι), because the
same argument works for the other case. To verify the conditions
needed to perform Construction-B, we recall

ys e D(um, 2~n) Π /Cn+i and z, um € Zn.

By (4.6), \z-um\ > \ys-um\ and, then, \ys-z\ < 2\z-um\. Thus,
if L is the straight line containing [ιtm, z],

dist(v,L) < 4dist(y5,L)

< 2 1 0 % m - z\ by Lemma 4.1

<219δ\um-vι\ by (4.11).

By the choice of υ and (4.11), it is clear that

\um -v\< \um -υι\.

Using the same argument as in Case 1-1.1, we can prove

(4.12) I arg(v) — arg(vi)| < 3ε.

We can, therefore, use Construction-B(um, v, ^i) and obtain a curve

,u ro+1] \ [Vrniy*])

PUum+1y Let
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where yso = um.
Case 1-2. s = 1.

If there is no x G /Cn+i such that 5R(x) G (n m _i, n m ) , we let

M«m,tίm+l] = 7 [ u m j « m + i ]

and, otherwise, we choose a point x G /Cn+i, SR(x) G [txm-i, wm) such
that x is nearest to um. We may only consider the case 7[um,tιm+i] Φ
[ % , % + i ] , because the same argument works for the other case.
Let θ be the smaller angle between [ttm,vi] and [um,x], where v\
is as in Case 1-1.2. We note that, if θ > π — 2ε, we are done by
letting

Mum,«m+l] = = 7[lίm)ttm+l]

Let us now assume that θ < π — 2ε, i.e.,

I arg(x) - axg(vi)| < TΓ - 2ε.

We choose υ e C such that u m G (x, v) and |ιxm — υ\ = 2~n + 1. (See
Figure 6.)

Since x ^ u m _!, by (4.6), 2- n - χ < \x - u m _ i | < 2" n, and
\um-ι-um\ < 2- n + 1 0 , then, by Lemma4.2, | arg(x)-arg(um_χ)| <
ε. Hence, by A-l and | arg(υ) — arg(x)| = TΓ,

(4.13) | a rg(υ)-arg(υ 1 ) | < 3ε.

Using the same argument as we did in Case 1-1.2, we can prove

L) < 29dist(α:,L) < 2™δ\um-Vι\, and \um~v\ < \v-vλ\

where L is a straight line containing [τzm,υi]. The condition for
Construction-B is, thus, verified. Hence, we apply Construction-
R(um,v,vx) and obtain P[Um9Vly Let

u

FIGURE 6.
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Here, we assume

where VQ = um and Vk+ι = um+\. Similarly, we can construct

P[um,um+1] when 7tt*m,t*m+i] = [v>m,um+ι\. We omit the details. Let

We thus complete the construction for the right side of ^o The
construction in the other direction is exactly same and we omit it.
Assume we end up at the (m! — l)th step. Let

We set

Ίnew9l = S[u_m,,uo] U £[i*o,i*m+i]> ^ n d 7 ^ 1 = Γ n ( u _ m / M m + i ) .

We therefore completed the construction in Case I.

Case II. The length of both / and J are greater or equal to 2~n+1°.
Let

7[tio,tii] = K , Vι] U ... U [v m , Mi],

and

7[t*o,tι-i] = K , ^ i ] U ... U [xm/,ti.i].

Without loss of generality we can assume UQ = 0, υi > 0 and 0 <
arg(w) < I + ε. Indeed, if arg(w) > | + ε, then by A-l, since
the smaller angle between [#1,1x0] and [IXQ, Vi] is larger than TΓ — 2ε,
I arg(tϋ) — arg(#i)| < | + ε, and, so, we may exchange u-χ and wi,
and thus, exchange x\ and v\. Let

o, 2"n) n Kn+ι) U {txo} = {%},s

=1.

It is clear that w G {yj}j=ι and 5 > 1. We assume the index j is
chosen so that

< $R(y i+1e- iar<^>), Vj.

Since to e {ί/j}j=1,

) 0 < 3?(w
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Choose wι such that ys G (u0, Wι) and \ys — Wι\ = 2~n+1. Choose
w2 such that if yι φ uQ, yx G (w2,u0), otherwise, yι G {w2,y2)
and \w2 — 2/χj = 2~n+1. We will use Construction-B (t̂ o, u>i, Vi) and
Construction-B(uo,^25^i) to construct the curve.

Using the same method as we used in Case 1-1, we can show

(4.14) dist^i, L) < 21 9ί|^0 - vλ\

where L is the straight line containing [uo,^i] and it is easy to see
\UQ — wχ\ < I wo — Vι\. Thus, applying Construction-B (UQ^V.VI), we
obtain P(UQiUl]. Let

J W i ] = ( p ίo^] \ K,y s]) u (u^lvjtVj+i])

where yso = u0.
The same argument can be used to construct the curve î u-i.uo]

between w_i and %, we omit the details. (See Figure 7.) Let

Ίnew.l = ^u-i,tio] U P[uo,ni] a n d Ίold,l =

Therefore, the construction in Case II is finished.
Let

1,1 = ( Γ n \ 7oZd,i) U

REMARK 1. The construction is always finished by Construction-
B(xi,^2?^3) Let [2/5,2:3] be the last interval in Construction-B. We
then have

(4.15) m | y , - a ; 3 | > ^ | 3 i - 3 3 | .

Indeed, by Lemma 4.6, if θ < 3ε, by our choice of x2, \xχ — x2\ <5

X\
Vl

FIGURE 7.
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2~9 |#i — £31, then

\ys - X3\ = \χi - X3I - l^i - ys\

> \xι-xs\-2θε~1-\x!-x2\

> (l-2-6) \xx-x31

3

~~ 4

if θ > 3ε, (which happens only in Case II) then, by (4.14), we have

dist(x2,L) < 219δ\xχ — x3 | .

Then, since θ < |τr,

. 1 dist(x2,L) 1 9 _x

~ sin(3ε) ~~

Thus,

\ys-χ3\>\χi-χs\-2θε~ι\χi-χ2\

> \xι-x?t\-2^ε~l\xι-x2\

>(l-ίi21 8)|x!-a;3|

3

~ 4

REMARK 2. In Case I, by (4.0), (4.10)-(4.13) and Lemma 4.6, it
is easy to prove

(4.16) sup d i s t ( z , 7 o W ) 1 ) < C 0 ε 2 - ( n + 1 )

zEqfnew,l

for a numerical constant Co. In Case II, we have more to say.
Let us use the same notations as before. Recall arg(wi) = arg(y5)
and arg(w2) = arg(j/i), or, arg(y2) If arg(^x) < 4ε, | arg(^;2) -
arg(^i)| < 7ε. Here, we used (4.0) and A-l. Hence, by Lemma
4.6, (4.16) is also true. If arg(κ i) > 4ε, | arg(^2) — arg(xχ)| > ε.
Here, we also used (4.0) and A-l. Since arg(wi) < | + ε,

I arg(w2) - arg(xi)| < - + 4ε < - π .
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Thus, by (4.14),

and, let Ln+1 = 2^πε'12~n, then

(4.17) Ln+1 < - m i n { | w o - υ i | , | M O - ^ i | }

Therefore, using Lemma 4.6, it is easy to prove that, for Q e V,

£(Q) < Ln+ι,

(4-18) βynewΛQ) < Coε •

To continue our construction of Γ n + i , we pick w G /Cn+i \ Γn +i 5i.

Repeat the above construction, we obtain jnew,2 and Ίoidz Let

Γn+1,2 = (Γn \ (7^,1 U Ίolda)) {Jilnew,! U

In general, at the kth step, we obtain

Γn+l,Jb = (Γ n \ Uj^Tdrfj) U (U}

and, we keep doing this until JCn+ι is exhausted. We obtain

and {joidj}- Let

Ίnew = V{Ίnewj} &nd Jold = U{jMj}

and let
Γ n + 1 = (Tn\joιd)Ujnew.

It is clear that Γn+χ = Γn_L.î 0, for some &o, since JCn+i is finite,
and Zn+ι C Γn+χ. We now verify A-l and A-2 for Γn+χ. By our
construction, it is easy to see A-l is true for Γn+χ. We need to
check A-2. Choose any Q eV. If l(Q) < 2^n+ι\ by (4.6), it is
easy to prove

βrn+1(Q)<Coε

which is A-2-(iii). By Lemma 4.4,

(4.19) /?Γn+1 (Q) < j ^ sup _ dist(z, Ίold) + βTn (Q)
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By Remark 1, (4.15), it is easy to see that the sets {jnew,k
are separated sufficiently far away from each other so that there
exists kι such that

(4.20) sup d i s φ , ηold) = sup dist(z,
3Q ynew,^ Π3Q

Without loss of generality we may assume kι = 1 and
3(3 n (7ne«M \7ow,i) Φ φ. So, for £(Q) > 2~^n+ι\ if 7 n e f M is con-
structed by Case I, by (4.16) and (4.19)-(4.20),

(4.21) βΓn+1 (Q) < C,ε2-^ + βΓn(Q),

which implies A-2(i)-(ii), and, if jnew,i is constructed by Case
II, then either (4.16) holds which yields (4.21), or, (4.18) holds if
2-(*+i) < t(Q) < L n + 1 . But, (4.17) implies Γ n + 1 n 3 Q =
thus, by (4.18), we obtain

So, A-2-(ii) is verified for Case II. Finally, we need to verify A-
2-(i) when 7ne^,i is constructed by Case II. Since ΊneWjι is built by
Construction-B, using Lemma 4.6-(ii), it is easy to obtain

sup dist(z,70/d?1) < 2 4εL n + i,

and, then, by (4.19)-(4.20), A-2-(i) is verified. Therefore, we com-
pleted the construction of the desired Γn_j_i. D

Let n tend to infinity, we obtain a Jordan curve Γ which contains
K. For Q e V, let i(Q) — 2~5, s > 0, we choose n 0 large enough
such that, for any n > n 0, i{Q) > Ln. Recall Ln = 2fπ ε" 12~ n- 1 .
We choose m such that

Since 2Lk = Lk-\,

Ln + Ln_! +
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Thus, using A-2-(i) repeatedly,

Ln + Ln-1 + - + Lm)+βrm

βΓm_1(Q).

Now, we need A-2-(ii). Let t < m be the index such that Γ* is the
first one such that

βrt <Coε.

By A-2-(ii) and (iii), it is clear that t > s. Using A-2-(ii) recur-
sively,

βΓt(Q)

< 3C 0ε.

We therefore obtain

βrn{Q)<5CQε, Vn>n0.

Since the estimate is independent of n,

(4.22*) βΓ(Q) < 5Coε.

Let Qo = [0,1] x [0,1]. It is easy to see that Γ we just constructed
is contained in QQ. Then, for Q E V, ί{Q) = 2~s with s < 0, by
(4.22),

βτ{Q) < βr(Qo) < 5C0ε.

Therefore, Theorem 1.2 is proved. D

REMARK 3. The curve Γ we constructed here does not cross
infinity. However, using our construction, it is easy to extend Γ to
be the Jordan curve Γ' which crosses infinity and satisfies βγ> (Q) <
CΌε, and therefore, which is an image of R under a quasiconformal
mapping. We leave this to reader.
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