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MULTIPLIERS BETWEEN INVARIANT SUBSPACES
OF THE BACKWARD SHIFT

R. BRUCE CROFOOT

Contained in the Hardy space H2 on the unit disk in the
complex plane are certain Hubert spaces which are invari-
ant under the adjoint of the shift. One such space H(b) is
associated with each function b in the closed unit ball of
H°°. In the special case where b is an inner function, 7ί(b)
is just the subspace of H2 orthogonal to the shift-invariant
subspace bH2. It is proven here that for any functions b\
and b2 in the closed ball of H°°, the spaces U(bι) and 7ί(62)
are isometrically isomorphic under a multiplication oper-
ator if and only if there is a disk automorphism r such
that 62 = τobi. In this case, the multiplicative isomor-
phism is determined explicitly and uniquely. This mo-
tivates an investigation of multipliers between Ή,(b\) and
9̂ (62)9 that is, multiplication operators acting bijectively
but not necessarily isometrically. Restricting to the case
where b\ and 62 a r e inner functions, it is shown that a
multiplier between given spaces is unique up to multipli-
cation by a nonzero constant, and several theorems are
proven concerning the existence of such multipliers. Fi-
nally, consideration is given to the implications of these
results for the characterization of the invariant subspaces
in H2 on an annulus.

1. Introduction. To any analytic function / on the unit disk
can be applied the mappings / H-» zf and / ι-> z~ι[f — /(0)]. On
the Hubert space H2 these mappings are adjoint operators called,
respectively, the shift S and the backward shift 5*. For convenience
the notation 5 and 5* will be used even when the mappings are
applied to functions not in H2. If / and g are analytic functions
on the disk, then S*(fg) = fS*g + g{0)S*f. This simple algebraic
identity will be applied repeatedly without comment.
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The shift is an example of a Toeplitz operator. In general, if
u G L°°, the Toeplitz operator with symbol u is the bounded linear
operator Tu defined on functions / in H2 by Tuf = P+(uf), where
P+ is the operator of orthogonal projection from L2 onto H2. (The
Lebesgue spaces here are defined with respect to Lebesgue measure
on the unit circle.) The adjoint of Tu is T* = Tu. If u is analytic,
the projection P+ is redundant and Tu reduces to multiplication by
u. Note that S = TZ and 5* = T*.

Occasionally it will be useful to allow u to be unbounded. If
u G L2, Tu is defined as above except that now it is an unbounded
operator with domain {/ G H2 : uf G L2}.

For any h G if2, Th commutes with S and T^ commutes with
5*. The commutators of Th with 5* and T^ with 5 are rank-one
operators:

(If /i and /2 are in if2, /i®/2 denotes the rank-one operator which
acts on h e H2 according to the rule fi<8>f2{h) = (h,/2)/i, where
( , •) is the inner product in H2.)

A subspace of if2 will always mean a Hubert subspace. As is
well known, Beurling's theorm characterizes the nonzero 5-invariant
subspaces of H2 as being precisely the subspaces φH2, for inner
functions φ. The 5*-invariant subspaces are just the orthogonal
complements of these. Thus there is associated with each inner
function φ an 5*-invariant subspace, here denoted by Ή,(φ), which
is the orthogonal complement of φH2 in ϋf2. It is easy to show that
S*φ G Ή(φ)] in fact, H(φ) is the ^-invariant subspace generated
by £*</>.

In ϋf2, evaluation of any function / at a point w of the disk
is accomplished by the inner product (f,kw), where kw = (1 —
wz)~ι is called the kernel for evaluation at w. The function kw is
in Ή,(φ) if and only if φ(w) = 0. In particular, 1 G Ή(φ) if and
only if 0(0) = 0. If φ is a finite Blaschke product, then Ή(φ) is
finite-dimensional, with dimension equal to the number of zeros of
φ (counting multiplicities); conversely, if Ή(ς6) is finite-dimensional,
then φ is a finite Blaschke product [6, p. 33].

The 5*-invariant subspaces of H2 can be placed in a more general
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context. Corresponding to any function b in the closed unit ball of
H°° there is a Hubert space Ή(6) contractively contained in H2

(where "contractively" means that the %(&) norm dominates the
H2 norm). Introduced by de Branges and Rovnyak [1], these spaces
have been investigated more recently by Sarason [9, 10]. Sarason
defines H(b) to be the range of the operator (1 — T&T&)1/2, endowed
with the Hubert space structure which makes this operator into a
partial isometry. For any 6, Ή(6) is 5r*-invariant [9, p. 156]. In the
special case where b is an inner function, the operator T^Ti is the
orthogonal projection onto the subspace 6i/2, and the Hubert space
7ί(b) is exactly the 5*-invariant subspace defined above, namely the
subspace of H2 orthogonal to bH2.

In the Hubert space Ή(6), the kernel for evaluation at w is the
function kb

w = [1 — b(w)b]kw. This means (/, &£,)& = f(w) for all
f eH(b) and all points w in the open unit disk. (The inner product
and norm in Ή(b) will be distinguished notationally by a subscript

The notion of a multiplier between two spaces %{b\) and
will be defined in Section 2. Of special interest are isometric multi-
pliers, which are defined and characterized in Section 3. Beginning
in Section 4, discussion is restricted to the subspaces Ή(0), where
φ is an inner function. It is shown that if there exists a multiplier
between two such subspaces, it is unique up to multiplication by a
nonzero constant. In Section 5, some general theorems are proven
concerning existence of multipliers and their relationship to the sub-
spaces on which they act. Evaluation kernels act as multipliers in
a simple manner, discussed in Section 6. Certain rational functions
formed from these kernels are the only possible multipliers between
finite dimensional subspaces. Section 7 describes how to construct
multipliers as infinite products. In Section 8, multipliers are ap-
plied to certain invariant subspaces in H2 on an annulus. Section 9
concludes with two open questions.

The unit disk will be denoted by D and the unit circle by Γ. The
symbols ΛΓ, Z, R and C will be used respectively for the natural
numbers, integers, real numbers and complex numbers.
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2. Formulation of the Multiplier Problem.

DEFINITION 1. Let b\ and b2 be functions in the closed unit ball
of H°°. A multiplier from H(bι) onto Ή(δ2) is an analytic function
m on D such that πιH{bι) = Ή,(b2). A multiplier between %{bχ) and
W(b2) is an analytic function m on D such that m%(bι) = Ή(b2) or
mn(b2)=H(b1).

For the remainder of this section, b, bι and b2 will denote arbitrary
functions in the closed unit ball of H°° which are not unimodular
constants (so that the corresponding spaces H(b), Ή,{b\) and Ή(&2)
are nontrivial).

Suppose m is a multiplier from Ή,{pι) onto 7ί(b2). Since H(b2)
contains outer functions (for example, the evaluation kernels), the
functions in Ή(b2) have no common inner factor and therefore no
common zero. Consequently m has no zeros, and m~ι is an analytic
function on D. Evidently m is a multiplier from Ή,(bι) onto %{b2)
if and only if m~ι is a multiplier from %{b2) onto

PROPOSITION 2. Let m be an analytic function on D with no
zeros. The following statements are equivalent:

(i) rriU(b) is S*-invariant,

(ii) 5*m G mU(b),

(iii) S*(m-1) eH(b).

Proof For any / G Ή(6), 5*(m/) = mS*/ + f(0)S*m. From this
identity and the S'*-invariance of Ή(6), it follows that (i) and (ii)
are equivalent. The equivalence of (ii) and (iii) is a consequence of
the identity m(0)mS*{m~ι) = —5*m. D

Following immediately from this proposition are some useful nec-
essary conditions for m to be a multiplier:

COROLLARY 3. If m is a multiplier from lί(bι) onto Ή,(b2), then
S^m-1) G n(h) and 5*m G Ή(b2).

COROLLARY 4. If m is a multiplier between 7ί(bι) and Ή.(b2),
then m and m~ι are outer functions in H2.

The following proposition shows that multipliers, when they ex-
ist, act as topological vector space isomorphisms. The proof is a
standard application of the Closed Graph Theorem.
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PROPOSITION 5. Let m be a multiplier between Ή(6i) and%(b2).
As an operator between %{bι) and Ufa), multiplication by m is
bounded. Its inverse, multiplication by m~~ι, is also bounded.

Proof. Suppose W(b2) = mU(bι). Let (fn)%Li be a convergent
sequence in Ή(6χ) such that {mfn)^Lι converges in W(b2). Let /oo
denote the limit of (/n), and let g be the limit of (mfn). Since
fn —> /oo in Ή{bι) (hence also in i/ 2 ), fn -> / ^ pointwise. Thus,
for all z € D, m(z)fn(z) —> m(z)foo(z). On the other hand, since
mfn -> 9 in Ή(h)i ™>(z)fn(z) —> ΰ(z) for all z G D. Therefore
g = m/oo This proves that the operator of multiplication by m
from Ή(6i) onto ^(62) has a closed graph, which implies that it is
bounded. The same argument applies to m~ι as a multiplier from
H(b2) onto U(bι). D

3. Isometric multipliers. Some multipliers act to preserve not
only the topology, but the norm. These will be called isometric
multipliers. Here is a precise definition:

DEFINITION 6. Let b\ and b2 be functions in the closed unit ball
of H°°. A multiplier m from %{bχ) onto %{b2) is called an isometric
multiplier if multiplication by m is an isometry on H(bχ).

We will prove (Theorem 10) that an isometric multiplier exists
between spaces %(b\) and Ή(&2) if and only if b2 — r o 6χ, where
r is some conformal automorphism of the disk. The isometry was
suggested by a theorem of D. Sarason [11] (p. 489, Theorem 2),
which gives general conditions under which a function in H2 acts
isometrically as a multiplication on %{φ) when φ is an inner func-
tion.

Foτw e D,\etaw = (w-z)(l-wz)-1 and gw = ( 1 - H 2 ) 1 / 2 ( l -
wz)~ι. Thus aw is a disk automorphism, and gw is just kw normal-
ized in H2, that is, gw = A

LEMMA 7. Let b be a function in the closed unit ball in H°
Then, for any w G D,
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Proof. Fix w £ D. For convenience, let h = (1 — tub)"1. Thus,
<7iι> ° & = (1 — M 2) 1/ 2/* and awob = (w — b)h. The proof is just a
calculation:

= (l-\w\2)(ThTh-TbhTVh)

= (Tfc - ttfΓwOίΓft - wΓjϋ) - (wTh - Tbh)(wT-h - TVh)

D

LEMMA 8. ieί 6χ and 62 be functions in the closed unit ball in
H°°, both vanishing at the origin. If there exists an isometric mul-
tiplier m from H(bχ) onto Hfa), then b2 = λδi for some constant
λ £ T, and m is a unimodular constant.

Proof. Suppose m is an isometric multiplier from %{bι) onto
U(b2). Since 1 = kfr £ U{bλ) and 1 = kb

0

2 £ U(b2), it follows
that m £ %{b2) and m~ι £ Ή{b\). Since multiplication by m is an
isometry on Ή(&i), (m, 1)&2 = (ljm" 1)^, that is, m(0) = m~1(0).
Hence |m(0)| = 1. Furthermore, ||m|| < ||m||62 = | | l | | 6 l = 1. Thus
||m|| < |m(0)|, which implies m = ra(0), a unimodular constant.
It follows that Ίi{b2) = H(bι). Equivalently, b2 = λbi for some
constant λ £ T. D

The following lemma is from a general theorem by R. G. Dou-
glas [2]. The symbol _L is used in the usual way for the relation of
orthogonality, and the null space of a linear operator A is denoted
byλίA.

LEMMA 9. Let A and B be bounded linear operators on a Hilbert
space K. If AA* < BB*, then:
(i) AK C BK

(ii) There exists a contraction C on K such that A = BC and C
maps {MA)L into (ΛίB)L.

THEOREM 10. (a) Let b be a function in the closed unit ball in
H°°, and letweD. Define aw and gw as above. Then gw o b is an
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isometric multiplier from Ή,(b) onto 7ί(aw o b).
(b) Let b\ and b2 be functions in the closed unit ball in H°°, neither
of which is a unimodular constant. If there exists an isometric mul-
tiplier from Ή,{bι) onto 7ί(b2), then b2 = r o b\ for some disk auto-
morphism T. Ifrrii andrri2 are two such multipliers, then m2 — Ύmi
for some constant 7 of unit modulus.

Proof, (a) Let A = T^l-T^)1'2 and B = (l-TQwθbT&wθby/2.
Then, according to Lemma 7, AA* = BB*. Hence, by Lemma 9,
AH2 = BE2, that is, T9wθbH(b) = H(aw o b). Thus gw o b is a
multiplier from Ή,(b) onto fί(aw o b).

Now it will be shown that T9wθb acts isometrically on H(b). By
Lemma 9, there exists a contraction C on H2 such that A = BC and
C maps {MA)1- into (λίB)1. Let f e%{b), and let h be the unique
function in H2 such that {l-ThTιfl2h = f and h ± M{l-ThTι)1'2.
Since T9wθb is injective, ΛίA = λί(l - TbTι)1'2. Thus h _L MA, and
hence Ch _L MB. Also, BCh = Ah = T9υ}θbf. By definition of
the norms on H(b) and H(aw o 6), | | / | | 6 = ||Λ|| and \\Tgwθbf\\awθh =
IICΛy. Since C is a contraction, \\Tgwθbf\\awθb < \\f\\b. By a similar
argument, if / G H(awob), then | | T ( ^ o 6 ) - i / | | 6 < | |/| |α wo6. It follows
that the norms in these inequalities are in fact equal,
(b) Let wι = fei(O) and w2 — &2(0). Using part (a), gWl o bι is an
isometric multiplier from Ή,(bι) onto %(aWι o bι), and gW2 o 62 is an
isometric multiplier from Ή(62) onto Ή,(aW2 o62). If m is an isometric
multiplier from H(bι) onto Hfa), then m ^ ^ o bι)~λ(gW2 o b2) is an
isometric multiplier from /H(aWl o 6X) onto Ή,(aW2 ob2). Since both
α^oδχ and aW2ob2 vanish at the origin, Lemma 8 applies: 0^062 =
λaWl o 61? for some λ G Γ, and the multiplier m ^ ^ o δ i ) " 1 ^ ^ o 62)
is a unimodular constant. Now b2 = r o 61, where r = α ^ o (λα^J.

If mi and m 2 are two isometric multipliers from Ί~L(bι) onto Hip*}),
then both mι(gWl o δ i ) " 1 ^ ^ ° ^2) and m2(gWl o h)~1(gW2 o δ2) are
unimodular constants, and hence so is m2/mι. D

4. Uniqueness. The Hubert spaces Ή(δ) provide a natural set-
ting for isometric multipliers, but not for multipliers in general.
Useful results about non-isometric multipliers emerge only for the
special case of spaces Ή(φ) corresponding to inner functions 0, that
is, the 5*-invariant subspaces of H2. It will be shown that if a mul-
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tiplier exists between given subspaces Ή,{φ\) and Ή(</>2), it is unique
up to multiplication by a constant (Corollary 13). For spaces Ή(b)
in general, multipliers are far from unique. For example, if b is any
function in the open unit ball in H°°, then the set %(b) is equal
to H2, and any invertible function in H°° is a multiplier from %{b)
onto itself.

LEMMA 11. Let φ be an inner function, and let m G H2. Then

Proof. The algebraic identity mS*φ = φS*m-φ(0)S*m+m(0)S*φ
can be used to show that

{mS*φ,φS*m) = \\S*m\\2 - φ(0)(S*m,φS*m).

Using the Cauchy-Schwarz inequality, \(S*m,φS*m)\ < \\S*m\\
\\φS*m\\ = \\S*m\\2, and hence

\(mS*φ,φS*m)\ > (1 -

D

PROPOSITION 12. Let φ be a nonconstant inner function, and
let m G H2, m ψ 0. The following statements are equivalent:

(i) mH(φ)=H(φ),

(ii) mΊi{φ) CH{φ),

(iii) mS*φ e U{φ),

(iv) m is a constant function.

Proof Clearly (iv)=>(i)=>(ii). Also, (ii)=>(iϋ), since S*φ G
Ή(φ). If (iii), then (mS*φ, φS*m) = 0, from which, using Lemma 11,
(1 - |0(O)|)||S*ra||2 = 0. Since φ is not constant, 1 - \φ(0)\ > 0.
Therefore S*m = 0, which implies (iv). D

COROLLARY 13. Let φ and φ be nonconstant inner functions.
If there exists a multiplier m from Ή,(φ) onto 7ί(ψ), then the set of
all such multipliers is {λm : λ G C, λ φ 0}.
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Proof. Suppose there exists a multiplier from Ή(0) onto 7ί(φ).
Choose one such multiplier m. If λ € C and λ φ 0, then clearly λra
is also such a multiplier. On the other hand, if m is any multiplier
from U(φ) onto H(ψ), then mU(φ) = H(φ) = mU(φ\ and hence
mm-ιH(φ) = Ή(</>). By Corollary 4, mm" 1 e H2. Then, by Propo-
sition 12, mm'1 is a constant, which is obviously nonzero. D

5. Existence. For which inner functions φ and φ does there
exist a multiplier between %{φ) and Ή(φ)Ί In case such a multiplier
exists, how is it related to φ and φΊ

The next theorem provides a necessary condition for the existence
of a multiplier. In the proof of the theorem the following notation
will be used: if φ is an inner function, Sψ will denote the restriction
of S* to the invariant subspace H(φ), and specβS£ will denote the
essential spectrum of Sψ. According to [6] (pp. 62-65), specβ5£ is
the set of singularities of φ on T.

THEOREM 14. Let φ andφ be inner functions. If there exists a
multiplier between H(φ) and Ή(ψ), then φ and φ have the same set
of singularities on the unit circle.

Proof Let m be a multiplier from H(φ) onto %(φ) Let A denote
the restriction of Tm to W(φ). By Proposition 5, A is bounded. Re-
stricting the domains of the operators in the commutation relation
5*Tm - TmS* = (S*m) ® 1 gives 5 ; A - AS; = (S*m)®l. (Each
side of this equation is regarded as an operator on Ή(φ).) Hence
A~lS^A — Sψ = m"1(S*m) ® 1. Since the operator on the right side
of this equation has rank one, and is therefore compact, the oper-
ators A~lS^A and Sφ on the left side belong to the same coset in
the Calkin algebra C{Tί(φ))/ΊC(Ή,(φ)), and therefore have the same
essential spectrum. Furthermore, A~lS^A and 5^ have the same es-
sential spectrum because they are similar. Thus spece5£ = speceSψ.
As noted above, this implies that φ and φ have the same set of sin-
gularities on Γ. D

Approaching the existence question from a different perspective,
let us regard m as given and search for inner functions φ and φ to
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satisfy πιH{φ) = Ή,(ψ). A clue is provided by the algebraic rela-
tionships involved: if m is an analytic function on D with no zeros,
multiplication by m~ι maps the linear span of {S^m}™^ onto the
linear span of {Sf*n(τ72~1)}^=1. This is easily seen by induction once
it is noted that for any n G iV,

Thus we are led to investigate the invariant subspaces generated by
S*manά S*(m~ι).

For / G i/ 2, the S*-invariant subspace generated by f is the closed
linear span of {S*nf}^L0. If this subspace is the entire space i ϊ 2 , /
is called cyclic, or more precisely, S*-cyclic. If / is noncyclic, the 5*-
invariant subspace generated by / is 7ί(φ) for some inner function φ,
determined by / uniquely up to a constant. The same statement ap-
plies with / replaced by S*f (which is obviously noncyclic whenever
/ is noncyclic). Define θ ( / ) to be the inner function (determined
up to a constant) such that Ή,{β(f)) is the 5*-invariant subspace
generated by S*f. Note that for any inner function </>, Θ(φ) = φ,
since the ^-invariant subspace generated by S*φ is Ή, (φ).

The following lemmas are not new: Lemma 15 is essentially The-
orem 3.1.5 in [7] (cf. [6] pp. 30,31) and Lemma 16 is similar to
Theorem 3.1.1 in [7], Proofs are given here because the lemmas are
crucial for Theorem 17.

LEMMA 15. Let φ be an inner function. Then, for any f G H2,
S*f G H(φ) if and only if φf G H2.

Proof First note that Ή(φ) is the null space of the Toeplitz op-
erator Tφ. This follows from the fact that Tφ is the adjoint of Tφj

which has range φH2.
Let / G H2. Then S*f G U(φ) if and only if TφS*f = 0. Since

T$S*f = T2φf = P+(zφf), where P+ denotes the orthogonal pro-
jection of L2 onto # 2 , TφS*f = 0 if and only if zφf G ~zΉ2, that is,

φfeH2. D

LEMMA 16. Let f be an outer function in H2 such that f~ι G
H2. Then f is cyclic if and only if f~ι is cyclic. For any inner
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functions φ and φ, the following statements are equivalent:
(i) / is noncyclic, and there exists an inner function ξ such that

φ =z ξθ(f~1) and ψ = £Θ(/) (up to constants).

(ii) (fΦ)/(fΦ) is constant on T.
If f is noncyclic, then [/θ(/)]/[/Θ(/~1)] is constant on T, and
θ(/) and θ(/~1) are relatively prime.

Proof. Suppose / is noncyclic. Then θ(/) is defined, and S*f G
H(Θ(f)). By Lemma 15, the_function θ(/) / is in if2. Its outer
factor has modulus |θ(/) / | = |/ | and therefore equals /. So
θ(/) /' = ρf for some inner function ρ. Rearranging this equation,
ρ. /-i = θ(/) f-1. Thus ρ f~λ G # 2 , which means S*(/-χ) G
Ή(ρ). This implies that Z"1 is not cyclic and also that W(Θ(f~1)) is
contained in %(ρ). Hence θ(/~1) divides ρ. By the same argument
with Z"1 in place of /, θ(/~1) f~ι = σ/"1 for some inner function
σ divisible by θ(/). So Q{f~ι) - θ(f) = ρσ. Since θ ( / " 1 ) divides
ρ and θ(/) divides σ, it follows that ρ = θ(/~ 1) and σ = θ(/) (up
to constants). Then [/θ(/)]/[/θ(/~1)] is constant.

In the course of the above argument it was shown that f~ι is
noncyclic whenever / is noncyclic. It follows that / is cyclic if and
only if f~ι is cyclic.

Let φ and φ be inner functions. Suppose (f/φ)/(fφ) is constant
on T. Then φf G if2, and therefore S*f G H(φ) (Lemma 15).
So / is noncyclic, and W(θ(/)) C U(φ), that is, θ(/) divides φ.
Similarly, Q{f~l) divides φ. Let ξ = φ/θ(f~ι). Then

Φ
W ) fφ /©(/) *

The right side of this equation is a constant. Thus, up to a con-
stant, Ψ = ξθ(/). This proves (ii)=^(i). Conversely, (i) implies
UΦ)IUΦ) = [fθ(f)]/[f®(f~l)l w h i c h has been shown to be con-
stant on T.

Now suppose 77 is a common divisor of θ(f~ι) and θ(/), and let
φ = θ(f-ι)/η and φ = θ(f)/η. Then

(ΪΦ)/(fΦ) = / 1

which is constant. Therefore θ(/~ x) divides 0 and θ(/) divides φ,
which means that η must be constant. Thus θ(/) and θ ( / " x ) are
relatively prime. D
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Now these ideas will be applied to the multiplier problem.

THEOREM 17. Let φ and ψ be nonconstant inner functions.
(a) If rn is a multiplier from Ί~L{φ) onto W(φ), then (φm)/(φm) is
constant on T, m is noncyclic, and there is some inner function ξ
such that φ = ξθ(m~ι) and ψ = ξθ(m).
(b) If m is an analytic function on D such that rriH(φ) C H2 and
m~17ί(φ) C H2, and if (φfh)/(φm) is constant on T, then m is a
multiplier from H(φ) ontoW(φ).

Proof (a) Suppose rriU(φ) — Ή(ψ). A calculation is needed:

Now note that S*(mφ) e U{φ), since S*(mφ) = mS*φ + φ(0)S*m,
and hence TφS*{mφ) = 0. So T^S - STm-φφ = 0, that is, Tmφrp

commutes with S. This implies rhφψ G H2. Since πιH(φ) C if2,
it follows that mφψH(φ) C H2. In fact mφψH(φ) C H(ψ), as
shown by the following calculation: for all / e Ή(φ) and h G i/°°,
(fhφψf, ψh) = (/, φmh) = 0. The same argument can be applied to
m~1 as a multiplier from %{^) onto Ί-L(φ), resulting in the inclusion
m^φφni'φ) C H(φ). Thus mφψU(φ) = 7ί_(^). Since multipliers
are unique up to constants (Corollary 13), fhφψ/m is constant, that
is, (ψfh)/(φm) is constant. Then, by Lemma 16, m is noncyclic,
and there is some inner function ξ such that φ = ^©(m"1) and
Ψ = ξθ(m).
(b) Let m be an analytic function on D such that rrιH(φ) C if2 and
m~ιΉ(φ) C iϊ 2 . Since 7/(<̂ ) contains functions which are invertible
in if00 (for example, 1 — φ(O)φ)j the inclusion rriH(φ) C if2 implies
m G iί 2 . Similarly, m" 1 G ίί 2 , and therefore m is outer.

Suppose (ψfh)/(φm) = λ, where λ is a constant. Let / G %(</>)• If
/ι G i/°°, then (mf,ψh) = (f,ψmh) = (f,\φmh) = 0. Thus m/ i.
ψH°°, and therefore m/ G Ή.(ψ) This proves mW(0) C u\φ).
Since {φfh~ι)/(ψm~ι) is a constant (namely λ), the same argument
can be applied with φ and φ interchanged and m~ι in place of m,
proving that mrxU{$) C W(0). Thus mW(0) = H(^). D
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COROLLARY 18. Let m e H°° such that m~ι e H°°. If m is
noncyclic, then m is a multiplier from Ή,(θ(m~1)) onto %(θ(ra)).
For any nonconstant inner functions φ and φ, the following state-
ments are equivalent:
(i) m is a multiplier from %{φ) onto H{φ),

(ii) (φfh)/(φm) is constant on T,

(iii) m is noncyclic, and there is some inner function ξ such that
φ == ξθ(m~ι) and φ — ξθ(m).

Proof If m is noncyclic, then by Lemma 16, [rhQ(m)]/[mQ(m~1)]
is constant. Clearly πιH{Q(m-1)) C H2 (since m G H°°) and
m^Hiθim)) C H2 (since m"1 6 H°°). Hence, by Theorem 17(b),
m is a multiplier from Ίί(θ(m~1)) onto ?£(θ(m)). If φ and φ
are nonconstant inner functions, then (i)<Φ(ii) by Theorem 17, and
(ii)4φ(iii) by Lemma 16. D

COROLLARY 19. Let m be an analytic function on D, and let
φ, φ and ξ be nonconstant inner functions. Then

mU(φξ) = H{φξ) = > πιH(φ) = U{φ).

If both m and m~ι are in H°°, then

mH(φξ) = U(φξ) <=ϊ mU(φ) =

Proof. Suppose mH(φξ) = H(φξ). By Theorem 17(a),
(φζffi)/(φξm) — λ for some constant λ. Then (φfh)/(φm) = λ. Fur-
thermore, mU(φ) C mH(φξ) = H(ψξ), and therefore mU(φ) C H2.
Similarly, rrΓxH(φ) C H2. By Theorem 17(b), mU{φ) = H{φ).

If m and m~ι are bounded, the equivalence rriU(φξ) = H(φξ) <=>
rriU(φ) = Ή(^) follows immediately from Corollary 18. D

COROLLARY 20. Xβί 0 and φ be nonconstant inner functions
which are relatively prime. If m is a multiplier from Ή,(φ) onto
H(φ), then φ = ©(m"1) and φ — θ(m) {up to constants).

Proof. Suppose πιH(φ) = W(φ). By Theorem 17(a), there is some
inner function ξ such that φ = ^©(m"1) and φ = ξθ(m). Since 0
and φ are relatively prime, ξ = 1. D
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COROLLARY 21. Let φ and φ be inner functions one of which
is a nonconstant multiple of the other. Then there is no multiplier
between H(φ) and7ί(φ).

Proof Suppose φ = ξφ for some inner function ξ. The aim is to
show that if there is a multiplier between %{φ) and W(φ), then ξ
must be constant. It is tempting to appeal to Corollary 19 to reduce
the problem to the trivial case of a multiplier between Ή(ξ) and
Έ(l) = {0}, but this is not legitimate because the inner functions
in Corollary 19 are supposed to be nonconstant.

Let m be a multiplier from H(φ) onto Ή(φ). By the argument
at the beginning of the proof of Theorem 17, the operator T^ψφ
commutes with S. Note that Tm^ = T^|, and so T^S-ST^ = 0.
Since T^S-ST^ = l®[S*(m£)], it follows that S*(mξ) = 0, which
means that mξ is constant. This is possible only if both m and ξ
are constant. D

6. Evaluation kernels as multipliers. For w G D, let βw =
Xw(z — w)(l — wz)~ι, where λ^ is a normalization constant which,
for purposes of this section, can be chosen arbitrarily. The subspace
Ή(βw) is one-dimensional, spanned by kw. (Recall that kw denotes
the kernel in H2 for evaluation at w.)

PROPOSITION 22. Let w and w' be any two points in D. Then,
for any inner function ξ, (kw>/kw)W(βwξ) = Ή(βw'ξ).

Proof. Since %{βw) is spanned by kw and Ή,(βw>) is spanned by
Av, it is clear that (kw>/fkw)H(βw) = H(βW'). Then, by Corollary 19,
(kw>/kw)'H(βwξ) = Ή(βw>ξ) for any inner function ξ. D

COROLLARY 23. Let n e N, and let (wj)j=i an^ (^O^i ^e any
two sequences of length n in D. Let φ = Π£=i βwj> let Ψ = Πj=i βw'.>
and let m = Y[n

j=ι{kwlj/kWj). Then mU(φ) = H(ψ).

Proof. Apply Proposition 22 repeatedly. D

COROLLARY 24. Let φ and φ be finite Blaschke products. The
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following statements are equivalent:
(i) There exists a multiplier between %(φ) and Ή(φ),

(ii) Ή,(φ) and Ή,(φ) have the same dimension,

(iii) φ andψ have the same number of zeros (counting multiplicities).

Proof If {/i,/25 •••j/n} is a linearly independent set of analytic
functions and g is an analytic function which is not the zero func-
tion, then {5/1,5/2? •• ?5f/n} is linearly independent. From this it
follows that (i)=>(ii). The equivalence (ii)^(iii) is a fact about 5*-
invariant subspaces, noted already in Section 1. If (iii) holds, then
Corollary 23 gives a multiplier between Ή(φ) and 7ί(φ). D

The following proposition shows how to use the kernel k^ as a
multiplier even if φ does not have a zero at w.

PROPOSITION 25. Let φ be an inner function and w g D. Then

= U(tl>), where φ = zβ~ι[φ - φ(w)][l - φ&ήφ}-1.

Proof Let ξ = [φ - φ(w)] [1 - φ(w)φ}~1. Note that ξ(w) = 0,
and so βw divides ξ. Let ψ = zξ/βw. By Theorem 10(a), the
function (1 — \φ(w)\2)1/2 [1 — φ(w)φ]~1 is an isometric multiplier
from H(φ) onto H{ξ). Hence [1 - φ(wjφ}~ιn(φ) = H(ξ). Applying
Proposition 22, k~ιn(ξ) = U(ψ). Since k* = [1 - φ(w)φ]kw, it
follows that (kt)-ιH(φ) = Ή{ψ). D

7. Multipliers via infinite products.

LEMMA 26. Let ( u ^ ) ^ and (wf

k)
(

kLι be any two sequences in D.
If any of the following series converges, then they all converge.

oo

(i) Σ
k=l - wkw'k

1 l7iι' 12
ib=i ι ~ \wk\
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If the series converge and one of the sequences is a Blaschke se-
quence, then so is the other sequence.

The proof of this lemma is straightforward and will be omitted.
In the next theorem, the symbol A will be used for the disk algebra

(consisting of all C-valued continuous functions on the closed unit
disk which are analytic on the open disk), and A~ι will denote
the set of invertible elements of A (the functions / G A such that
f~~ι G A). The closed unit disk will be denoted by clZλ

THEOREM 27. Let ( u ^ ) ^ and (wk)
(^=1 be Blaschke sequences in

D such that the series (i)-(vi) in Lemma 26 are convergent. Then
ΠjfcLi(l ~~ ̂ /c^)(l ~~ ̂ 'kz)~l converges absolutely and uniformly on
clD. Let m denote the function on c\D defined as the value of this
product. Then:

(a) m G A"1, and m~ι = ΠkLΛ1 ~ wj^)(l - wkz)~ι.

(b) 1/C < \m\ < Cf, where

C — exp
έΐ i-KI a n d

(c) m is a multiplier from Ή(φ) onto Ή(ψ), where φ and ψ are
the Blaschke products for the sequences (wk) and (wf

k): φ =

Proof. For each z G cLD and k G JV,

- wkz
l-w'kz

- 1
wίz ~ l-\wί

By hypothesis, the series ^ |κ;^—^|(1 —1^|) x converges. It follows
that the product Π(l — Wfcz)(l ~~ ̂ j ^ ) " 1 converges absolutely and
uniformly on clίλ Let m be the function defined by this product.
Then m is continuous, and m is analytic on D—that is, m G A.

For each z G cl£> and k e N,

1 -

K l-w'kz i - Kl
Thus each factor in the product Π(l — w*2)(l — wkz) ι is bounded
away from 0 and bounded away from oo. For such products, uniform
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convergence means that the sequence of partial products converges
uniformly to a limit which is also bounded away from 0 and oo.
Therefore m e A~ι, and in fact m~ι is given by the product Π(l —
wkz)(l -wkz)~ι.

Let C and C be the constants defined in the statement of the
theorem. Both are finite, since they are defined in terms of conver-
gent series. For each n £ N, let mn = Πjb=i(l ~ Wkz)/(1 — wkz).
Then, for each n and for all z € cLD,

\mn(z)\ =

Thus |mn| < C. Similarly \mn

ι\ < C, that is, \mn\ > 1/C. Letting
n -> oc, 1/C < jmj < C

It remains to prove (c). Let / be any function in Ή(φ). For n G JV,
let <£n = ΠLi A** and ^ n = ΠLi βw'k Note that W(^n) = mnH(φn)
(Corollary 23). Let fn be the orthogonal projection of/ onto W(φn)>
Since each function φn divides φ and the sequence {φn)^=ι converges
pointwise to 0, it can be shown that %{φ) is the closed linear span
of the subspaces 7ί(φn) [6] (pp 34,35). Consequently fn -» / in H2

as n -> oo. Since the functions m and mn are uniformly bounded
(by C"), rnn/n —> m/ in i ί 2 as n -> oo. Thus m/ is the limit of a
sequence in H(ψ), and is therefore in H^). This proves πιH(φ) C

By the same argument, m^Hiψ) C H(0). Thus ( )

8. Application to the Annulus. The above results concerning
multipliers between £*-invariant subspaces in H2 on the disk can
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be applied to the Z-invariant subspaces of H2 on an annulus, where
Z denotes the operator of multiplication by z. These subspaces
have been characterized by D. Hitt [3]. It was the application of
multipliers in understanding Hitt's characterization which originally
motivated their investigation.

In the interest of precision, the notation L2(T) will now be used
in place of L2, and the space H2 will be written either as H2(T)
(when viewed as a subspace of L2(T)) or as H2(D) (when regarded
as a space of analytic functions on D).

Let r G i?+. Let rD = {rz : z G D} (that is, the disk \z\ < r),
and let rT = {rζ : ζ G T} (that is, the circle \z\ = r). Let A denote
the annulus bounded by the circles T and rT. The Hubert space
H2(dA) is defined to be a subspace of L2(T) 0 L2(rT) as follows:

H2(dA) = {(/,</) G L2(T)φL2(rT) : g(n) = rnf(n) for all n G Z},

where / denotes the Fourier transform of /. For each function
(/, g) in H2(dA), there is an analytic function on A with (/, g) as
its boundary value function. These analytic functions form a space
H2(A). The norm of a function in H2 (A) is defined to be the norm
of its boundary value function in H2(dA). Thus the spaces H2(A)
and H2(dA) are isometrically isomorphic, like H2(D) and H2(T).

An inner function on A is a function (/, g) in H°°{dA) such that
(I/I, l̂ l) = (αi, Gte) for some positive constants a\ and a<ι (depending
on / and g). Divisibility can be defined for inner functions on A
just as on D: if Φ and Φ are inner functions, we say that Φ divides
Φ when there is an inner function Ξ such that Φ = ΦΞ. There is
also a definition of outer functions on A, resulting in a factorization
theorem as follows: each function / G H2(A) can be factored as
the product of an inner function and an outer function, and this
factorization is unique up to multiplication by functions of the form
czn, where c G C \ {0} and n G Z (see [3]). These functions czn

are called units. They are inner functions which divide every inner
function, and they are also outer functions.

Assume r < 1. Let D~ι = {z~ι : z G D], and let H^rD"1) =
z-ιH2(rD-1). If / G H2(D) and g G H2(rD'1), then / + g is
defined and analytic on A~in fact, / + g G H2(A). If h G H2(A),
then the Laurent series for h provides a decomposition of h in the
form h = f + g, where / G H2(D) and g G H^rD'1). What has
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just been described is a one-to-one correspondence between H2(A)
and H2(D)@Hl(rD~ι). This correspondence is a topological linear
isomorphism but not an isometry.

Let r G (0,1), and let A = {z G C : r < \z\ < 1}. If F G
H2(A) has boundary value function (/, g) G H2(dA), then zF has
boundary value function (zf.zg). Then zF G i?2(A), and | | ^ F | | ^ =
| |/| |2 + φ | | 2 < | |/| |2 + IMI2 = \\F\\\, where II \\A denotes the norm
in H2(dA). Hence multiplication by z is a bounded linear operator
on H2(A), which we denote by Z. This operator is invertible—its
inverse is multiplication by z~ι.

If Φ is an inner function on A, then Φ£Γ2(̂ 4) is a subspace of
H2(A) which is both Z-invariant and Z~1-invariant. Conversely,
if M is a subspace of H2(A) which is both Z-invariant and Z" 1 -
invariant, and if M Φ {0}, then M = ΦH2(A) for some inner func-
tion Φ. (For a proof of this, see [8, Theorem 1].) These subspaces
are called fully invariant subspaces of H2(A). Subspaces which are
Z~1-invariant but not Z-invariant are called simply Z~ι-invariant

The simply ^"^invariant subspaces of H2(A) have been charac-
terized by D. Hitt [3]. Actually Hitt's annulus is A = {z G C :
1 < \z\ < R}, where J? > 1, and his characterization concerns
the Z-invariant subspaces of H2(A) for this annulus. However the
transformation z t-ϊ 1/z yields an equivalent characterization of the
Z~^invariant subspaces for our annulus.

Hitt's characterization involves subspaces Mψ defined as follows:
if φ is any inner function on D, Mφ = Ή(φ) Θ Hl(rD~ι). When
H2(A) is identified with H2(D)® H2(rD~ι), the operator Z " 1 acts
as follows:

(/ e H2(D),9€ H

Consequently, for any inner function 0, Mφ is a simply Z~1-invariant
subspace. According to Hitt, if λΛ is any simply Z~1-invariant sub-
space of H2(A), then M — ΦfMφ for some 0, / and Φ, where φ
is an inner function on D, Φ is an inner function on A, and / is an
outer function in H2(D) such that multiplication by / is isometric
on Ή,(φ) in H2(D). The functions Φ, / and φ are not uniquely
determined by Λ4. The inner function Φ is the greatest common
divisor of the inner factors of the functions in ΛΊ, and is determined
uniquely up to multiplication by units. The following propositions
describe the non-uniqueness of / and φ.
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PROPOSITION 28. Let φ and ψ be inner functions on D, and let
m G H°°(D) such that m~ι G H°°(D). Then rnH{φ) = H(φ) if and
only if mMφ = Mψ.

Proof According to the definitions above, Mφ — Ή,(φ)®Hl(rD~ι)
and Mψ = H{φ) Θ H^rD'1). Suppose mMφ = Mψ. Then
certainly m7ί(φ) C Mψ, and since m is analytic on D, it fol-
lows that mU{φ) cn{φ). Similarly, m""1 %(?/>) CH{φ), and thus
mH(φ)=H(ψ).

Now suppose rriU(φ) = Ή(ψ). To prove mMφ C Mψ, it will
suffice to show that mH^rD'1) C Mψ. Note that H^rD'1) is
the closed linear span in H2(A) of the set {z~j : j G iV}. Since
m is bounded on A, multiplication by m is continuous on H2(A).
Consequently mHl(rD~ι) C Mψ if and only if mz~j G Mψ for
each j G iV. For j = 1, mz~ι = S*m + m(0)z~l, and this is in
Mψ because S*m G lί(ψ) (Corollary 3). By induction, mz~j =
S*jm + ^j, where gj G Hl(rD~λ), and hence m^~J G Λ ί̂̂ . This
completes the proof that mMφ C. Mψ. By the same argument,
m~ιMψ C Λ^ ,̂ and thus mΛΊ ,̂ = Mψ. D

PROPOSITION 29. Let φ\ and Φ2 be inner functions on D. Let
fx and f<ι be outer functions on D such that f\ acts isometrically
when multiplying 7ί(φι) and f2 acts isometrically when multiplying
Ή{Φ2)- If f\Mφι = f2Mφ2, then /1//2 is an isometric multiplier
from Ή(φι) onto %(φ2), and there exists w G D such that Φ2 =
aw o φlf where aw = (w — z)/(l — wz).

Proof lίhMφι = f2Mφ2, then (f1/f2)H(φ1) = W(^), and Λ//2

multiplies Ή,(φι) isometrically. This means that /1//2 is an isomet-
ric multiplier from Ή(0i) onto Ufa)- By Theorem 10, φ2 = Oίwoφλ

for some w £ D. D

9. Open questions.
1. Are there any unbounded multipliers? More precisely, if m is

a multiplier between subspaces H(φ) and Ή(ψ), where (/> and
-0 are inner functions, is it necessary that m G H°°Ί

2. Let I denote the set of inner functions with the topology in-
herited from H°°. The connected components of X have been
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studied by V. Nestoridis [4, 5], among others. If there ex-
ists a multiplier between subspaces %(φ) and Ή,(ψ), is it true
that the inner functions φ and φ must be in the same compo-
nent? Based on the theorems and examples above, this would
appear to be a reasonable conjecture. The converse is false,
however. There are nonconstant inner functions φ such that
φ and zφ can be joined by a path in X [4] (p. 475, Propo-
sition 2), whereas there is no multiplier between %{φ) and
H(zφ) (Corollary 21).
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