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THE NONHOMOGENEOUS MINIMAL SURFACE
EQUATION INVOLVING A MEASURE

WiLLiaMm K. ZIEMER

We find existence of a minimum in BV for the varia-
tional problem associated with div A(Du) + p = 0, where
A is a mean curvature type operator and p; a nonnega-
tive measure satisfying a suitable growth condition. We
then show a local L™ estimate for the minimum. A simi-
lar local L* estimate is shown for sub-solutions that are
Sobolev rather than BV.

1. Introduction. In this paper we initiate an investigation of
weak solutions of the

(1.1) div A(Du) +p =0

in a bounded Lipschitz domain Q2 C R". Here A is a function
for which the mean curvature operator is a prototype and p is a
nonnegative Radon measure supported in (2 that satisfies

(1.2) u(B(r)) < Mri®Y for all B(r) C Q,

where M >0 and 1 < ¢ < 2.
This paper has its origins in the work of [LS] where it was shown
that if u is a weak solution of

Au = p,
where 4 is a measure that satisfies the growth condition
u(B(r)) < Mr™2*e

for some ¢ > 0 and for all balls B(r) of radius r, then u is Holder
continuous. In [RZ] this result was generalized to equations of the
form

(1.3) div A(z,u, Vu) + B(z,u,Vu) + p =0
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where p is a nonnegative Radon measure and A and B are Borel
measurable functions satisfying structural conditions that allow, for
example, the p-Laplacian. It is shown that if u is a Holder continu-
ous solution of 1.3, then p satisfies

u(B(r)) < Mrmre

for some € > 0. Under further restrictions on the structural con-
ditions, it was shown this growth condition on yx was sufficient for
Holder continuity of u.

Recently, Lieberman [L] improved the results in [RZ] by proving
supremum inequalities for solutions of 1.3 without the restrictive
structural conditions, thereby establishing necessary and sufficient
conditions on the growth of x for the Holder continuity of solutions.

All of this analysis takes place in the framework surrounding the
p-Laplacian, p > 1. It is our purpose to address the situation of
p = 1. We first consider the question of existence of solutions of
1.5 in the case A is the mean curvature operator. We establish a
variational solution by minimizing

(1.4) /Q\/l-l— |Vu|® dx-l—/ﬂud,u

in the class u € BV (f2) where u satisfies the Dirichlet condition
u* = f on 0R, with f an integrable function on 0Q2. In order
to ensure the existence of a minimum, it is necessary to assume
that the constant M in 1.2 is chosen sufficiently small. This is
analogous to the assumption made in [M], in which p is taken as a
bounded measurable function. We then show that the minimizer v is
bounded. In this context, it is not possible to utilize the argument
given in [L] to obtain an L* bound since there is no variational
equation associated with 1.4 . Rather, we employ a technique used
in [RZ] modeled on the method of DeGiorgi.

Next, we investigate an equation which contains the formal Euler-
Lagrange equation of 1.4. Thus, we consider a weak solution u €
WhH(Q) N L*®(Q) of the equation

(1.5) div A(Du) +p =0
where we assume there exist non-negative constants ai, a; such that

(1.6) p-Alp) > |p| — a1
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and
(1.7) |A(p)| < az.

It is assumed that p is a nonnegative Radon measure supported
in the bounded domain (2 and satisfies 1.2. We show that if u €
WhH(Q)NL>(Q) is a weak solution of 1.5, then |u| is bounded by the
L'-norm of u with respect to the measure dv = dz+du. Specifically,
we show that u satisfies a supremum inequality, 6.4. The proof of
this follows the proof in the corresponding result of [L]. The method
of DeGiorgi will still work in this case, however the Moser iteration
method used in [L] gives a slightly different result and is included
for this reason. It is well known that weak solutions of 1.5 are
not necessarily continuous, even under the assumption that p is
an absolutely continuous measure with bounded density (c.f. [M]).
Therefore, it is not possible to obtain the weak Harnack inequality
involving a lower bound for the solution.

The results of this paper are valid for equations with a more gen-
eral structure. For the sake of simplicity, we employ this simple
structure which fully illustrates the method. In a forthcoming pa-
per, we will address the question of regularity of solutions of 1.4 in
which almost everywhere continuity is established. The existence of
an a priori L bound will be essential in this future investigation.

2. Preliminaries. Throughout, we assume that 2 is a bounded
Lipschitz domain in R™. The space W11(Q) is the space of L*(£2)
functions whose distributional derivatives also lie in L'(Q).

The class of all functions in L'(2) whose distributional partial
derivatives are measures with finite total variation in €2 comprise
the space BV (2). The notation

/QlDul dx

will be used to represent the total variation of the vector-valued
measure, Du, the gradient of u. Specifically, the total variation of
Du is

sup{/gu divodz : ’U:('Ul,...,vn)ecgo(Q;Rn), ’U‘Sl}
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We also make the notational definition

/ﬂ 1+ |Du)’ dz

=sup{/ﬂ(fdiv'u+vg) dz : v=(v1,...,v) € C(Q),
Vg € CSO(Q), |’UI2 + |’U0I2 < 1}

The space BV (Q) is equipped with the norm

= [ lul dz+ [ |Du] da.
lellsy = [ ful do+ [ 1Dul da

The trace of u on 0f is denoted by u* (c.f. [Z, Section 5.10]). We
will make use of the following lemma on the convergence of the
traces of BV functions.

LEMMA 2.1. Let Q@ C R™ a bounded Lipschitz domain, and let
{ur}, u in BV(Q) with

lim/|uk—u| dz =0
Q

k—o00

. 2 _ 2
klir&/s‘]\/l+|Duk| da:—/n\/1+|Du[ dz.

Then
lim luj — u*| dH™ ! =0,
k—00 Jon

with H"™! the n — 1 dimensional Hausdorff measure.

The proof follows directly from the proof in
[G, Proposition 2.6; p.34].

We will also have need for the following compactness result for
BV functions [Z, Corollary 5.3.4; p. 227].

THEOREM 2.2. Let Q) € R™ be a bounded Lipschitz domain. Then
BV( Q)N {u : |lullpyy < 1} is compact in L}(Q).

It was shown in [MZ] that if yu satisfies the growth condition
w(B(r)) < Mr™! on all balls B(r) (and therefore condition 1.2 in
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particular), then u can be identified with an element of the dual of
BV (Q). Furthermore, its norm

31 =l = sup { [ wdn : Jullay(e < 1)

is comparable to M. Thus,

(2.1) [ wdul < [ 1ul du
Q Q
< lell Null gy ey
<M “u”BV(Q)

The following well known result, [M], will be used in the existence
proof below.

. < * n—1
(2.2) /Q|u|dx_C</Q|Du|da:+/aﬂu dH )
with the constant C = C(Q). This yields

(2.3) lull gy < C ( /Q \Dul dz + /a w dH"-l)

Finally, we state the following Sobolev inequalities which are of
critical importance in our development.

THEOREM 2.3. Let Q be a bounded Lipschitz domain and suppose
1 18 a measure supported in §) satisfying condition 1.2. Then there
exists a constant C = C(£, q,n) such that

/g
(2.4) (/ uqdu) < C’Ml/"/Q |Du| dzx
Q
whenever u € BV () with compact support in €.

The proof may be found in [Z, Lemma 4.9.1; p. 209]. Also needed
is the standard Sobolev inequality for Wi,

If u € Wy (Q) then there exists a constant C = C(f,q,n) such
that

1/
(2.5) ( i uqu) "< C|Dul,.

This is simply the above lemma in the special case that y is
Lebesgue measure.
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3. Existence of a Minimum. With € a bounded Lipschitz
domain and f € L'(99), we define I(u; ) as follows,

I(u;Q)=/Q\/1+|Du|2dac+/nud,u+/;9|u*—f| dH™ .

We wish to minimize I over all v € BV(Q2). That is, we wish to
find a function u € BV (Q) such that

I(u;supp @) < I(u+ @;supp @), V ¢ € C3°(Q).

THEOREM 3.1. Let Q be a bounded Lipschitz domain. With I
defined as above, there exists u € BV (Q) such that
I(y; Q) = verg‘lfr(lﬂ) I(v; Q).
Proof. Following [G, Section 14.4], the first step is to consider a
slightly different Dirichlet problem in the complement of 2. For
this purpose, let B be a ball that contains €, the closure of . Use

Theorem 2.16 of [G] to extend f to a W'! function in B — 2 that
will still be denoted by f. Let

J(u;B)=/B\/1+|Du|2+/Budu.

Note that since supp u C 2, the second integral could have been
taken over 2. We wish to show that there exists u € BV(B),
coinciding with f in B — ), that minimizes J(u; B). We proceed
by showing that J is bounded below if the constant M in 1.2 is
sufficiently small.

J(u; B) Z/BIDuI d:v+/nudu

(by 2.1) > [ 1Du] do ~ 1 |jull gy e
> Y * n—1
_/B|Du| dz M(C’/anugdH
by 2.3 C+1) [ |Dul d
(by 2.3) +(C+1) [ |Dul da)
1 ~
> = _ n—l.
> 2/B|Du| dz MC/andH
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The last inequality is obtained when A is small enough to insure
1-M(C+1) > 1L

Let J(ug) — A a minimum of J. We wish to find v € BV(B)
such that J(u; B) = A. For sufficiently large k£ we obtain from the
above inequality that

1
)\+12—/ | Du| dx—MC’/de”“.
2 /B Q

Thus the terms [z |Duy| dz are uniformly bounded, which implies
by 2.3 and Theorem 2.2 that there exists u € BV (B) with u; — u
in L'(B). The gradient is lower semi-continuous with respect to
L'(B) convergence so that

liéninf/B\/l—l-]Dukfde/ 1+ |Duf da.
—00 B

From Theorem 2.3, the uniform bound on [z |Duy| dz also implies

that the terms
1/q
()
9)

are uniformly bounded. Thus there exists a subsequence, denote it
by {ux}, that converges weakly in L?(£2; u) to some w € LI(2; p).
The Banach—-Saks Theorem implies that there exists a subsequence
of {uy}, again denote it by {uy}, such that the sequence of Césaro
sums, {vy}, defined by

Uy + - 4 ug
k

converges strongly to w in L7(2; ). Moreover, the sequence vy also
converges strongly to w in L*(€2). This can be seen as follows: choose
e > 0 and let N denote an integer for which [lu; — ul| ;) < € for
J,k > N. Then for j <k,

Vi =

[[or—ull
_w—u) 4+ (ug — )
k
o M~ £ ./.c+ oy = ull [l =l + k- + [lux —
B el it 7 | S e a3

- k k
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Thus,
limsup |Jvy — ul| <e,
k—o00

which yields the desired result since € is arbitrary. To show that
w = u almost everywhere in {2 note that the strong convergence
of {vx} to w in L9(Q; ) implies the existence of a subsequence
that converges pointwise to w p-almost everywhere and therefore
(Lebesgue) almost everywhere, since Lebesgue measure is absolutely
continuous with respect to u in 2. But the strong convergence of
{vk} to u in L'(Q) implies the almost everywhere pointwise con-
vergence of a further subsequence to u in €2. Hence, u = w almost

everywhere in (2.
Since uy, converges weakly to u in L9(€; u), the lower semiconti-
nuity of the gradient with respect to L*(2) convergence implies

(3.1) A = liminf J(ug; B) > J(u; B).

k—o0
Since u;, agrees almost everywhere with f in B — €, it follows that
u = f a.e. in B—Q, thus showing that J(u; B) > \. This completes

the first step.
We now proceed with the second and final step of the proof. For

each function v € BV (Q2), define

(z) = v(z) z€Q
KA flz) ze B—-Q

Then vy € BV(B) and by (2.15) of [G],
1+ |Dvs2 d / d
/B + [Dvy|” dz + v dp
=/B\/1+|Dvl2 da:+/B V141D do
du+ [ loh = f| dH™
+ [opdu+ [ 1

=I(v;Q)+/B_5\/1+|Df|2 dz
J(vs; B) = I(1;9) +/B_§ V1+ |Df? da.

Thus, a minimizer of J(v; B) with v = f on B — Q produces a
minimizer of I(v; Q). g

That is,
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4. An energy inequality. Now that we have obtained exis-
tence of a solution u € BV (Q) to 1.4, we will show that u is bounded.
Before doing this we will obtain an energy estimate to be used in
the DeGiorgi type argument of section 5.

Let Bg denote the ball of radius R in R™. Let n be a cutoff
function, n = 1 on B,, 0 < r < ™ < R, n = 0 on 0B,» with
0<7n<1on B, and |Dpy| < 7,2_T. Let ¢ = —n(u — k)T, then

supp ¢ = Ay = {u > k} N B, and

(4.1) I(u; Ag) < I(u + ¢; Ag)

Using

(4.2) /Ak | Dyl d:cg/Ak \/1+|Du|2dx§/Ak |Dul + 1dz

and that on A;
D(u+¢) = (1-n)D(u—k)* — Dn(u - k)*,
we obtain from 4.1

/Ak ID(U—k)+l dz < /Ak(l -n) lD(u_k)+| dr

+r*2_TAk|(u—k)+| dz

+/Ak17'(u—k)+l dp + | Ayl

where |A| is the Lebesgue measure of Ax. This immediately implies

(4.3)
/B, |D(u— k)*| dz < /B n|D(u~ k)*| da

=3/
<
T r*—1JB.

+/B,,. (w— k)*| du+ |4y

(u— k)+’ dz
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5. Supremum estimate for variational solutions.

THEOREM 5.1. Let 0 € (0,1), Q a bounded Lipschitz domain,
and B C Q with R < 1. Then for w € BV (Q2) a minimum of I
there exists a constant C = C(o, M) such that

supu < C (R_"/ ut dr + R / ut d,u)
Bpg Bg

Bsr

where q 1s the constant from 1.2 and u™ is the positive part of u.
Proof. Let k be a positive constant to be specified later. Set
ki=k(1-27"), r; =0cR+27R(1 — o),

and 7; = —;—(rl + Tig1)-
For notational convenience, denote by B; the ball of radius r;, B;
the ball of radius 7;, and let
Ai=B;in{(u - kipp)* > 0}.

Note that B;;; C B; C B;. Also, for all j we will use the notation

dz = R / dz  and ][ dp = R4 / du.
Bj Bj B; B,

Let ¢; be the cutoff functions on B; so that ¢; = 1 on B4, and
2 21+3

1 Dy < — = .
(5.1) Dol S == R =0

Then 4.3 implies

(5.2) ]g | dz

D(U - ki+1)+

2z+3
- R(l —0) ][ (= kia)*

+ R—n+q(n—1)][é‘ u — i+1)+ d,u + R™ 'Azl .
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Now, by 2.4 and 5.1,
— ki + d
]gm(u +1)" dp
< ]{g. pi(u — kip1) " dp
1/q
Ao — . V)Y —g(n—1) 11/
< (f, (ostu—hasa)) du) " (R Dp(a9)

%

< CMU(IR]% lD (%‘(U - kz’+1)+)l dz (R™D pu(A;)) e

< CRMY4 (]g ’D(u — ki) pidz

= b 1D o) (R4

< CRMY1 (ﬁ D (u = kiy1)*| da

+_2_Z_+3_][ (u — k1) dz (R™90=1) 1y 4;)) 11/,
R(1 - 0)/5 i '

Applying 5.2 we have

][ (u— kiy1)" dp
By
1/ 2i+4 4
< —_— —k; d
< CRM (R(l—a)]és,»(u )t de

+ R—n+q(n—1)][B (u _ ki+1)+ du

2

R AL (R

Thus we have the following iteration inequality,
(5.3)
][ (v~ kipr) " dp
Bit1

< CMl/q_ZiJ:l_ (u— k)" d
- (1-0)\Usn u—h) Gz

+ ]g (uw—Fki)"dp+R™" |AZ|> (R_‘I("—l),u(Ai))l—l/q.
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To estimate the quantity p(A;) recall that
A; = {u > kix1} N B;, and note that

kin — ki =k (1—270D) — g (1-279)
=927k (1-27")
=27 (D,

which implies
27 HE < 4 — k; on A;.

Thus

(5.4) R y(4;) < 2741k ]g (u— k) dp
< 2i+ly;, 1

where

Y, = k‘l]é (u — k;)* dz + k‘lﬁ (u— k)" dp.
We estimate |A4;| in the same manner, obtaining
(5.5) R |4] < 24,

Using 5.4 and 5.5 in 5.3 we obtain

(5.6)
k_l]é (u— ki) " dp
i+1
9i-+4
< l/q______ -1 — . +
< oMV (lc ]g (u — k;)* dz

. . 1-1/q
n k—l][B (u— k)" dp+ k~12z+1Yi) (2z+1Yi>

< CMl/q 2i+4
- (1-o0)

i+4

(1-o0)

((1 + k—12i+1) }/z) (2i+1}/7;)1—1/q

< CMYe

(k=1 4 271 (2i+1l/,-)1+a.
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where o =1 — 1/g > 0. Following the same analysis for dz instead
of du we obtain
(5.7) k‘l][ (u — k)" do
Bit1
2i+4 . . 1+a
< 1/q k—l —i—-1 i+1vy/ )
<CM ———(1_0)( +277) (21Y))

Combining 5.6 and 5.7, we have

i+4 ) . a
(5.8) Yi+1 S CMl/q—z-——(k_l + 2—1—1) (2z+1)/;)1+

(1-o0)
2i+4 . 1+a
< CMY1I——— (2i*y;
- k(1 — o) ( z)
where x = min(1,1/(k™* + 27!)). The recursion lemma of
[LU, lemma 4.7; p. 66] then implies that ¥; — 0, and thus
supu < k,
Bsr

provided that

o=k utde+kf udu
Bgr Bgr

25+a ~1/e -1/a?
1/ 24
< (CM i _0)) (2242)

This is true if

M1/ago+6+2/a 1/
Kok > ¢ ][ utdz++ utdul.
(1 - 0) Bgr Br

Since k'/® < 1, the result follows. O

6. A supremum estimate for weak solutions. We will use
a different version of the Sobolev inequalities 2.4 and 2.5.

COROLLARY 6.1. Let Bg a ball of radius R in R™. Suppose
u € Wy (Bg) and p is a measure satisfying 1.2, then there ezists a
constant C = C(q,n) such that

1/q
(6.1) (R—q<"—1> / uqdp,> < MYCR™ [ |Dul d
Br Br
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and
1/q
(6.2) (R‘“ [ da:) <CrR- [ |Du) da.
Br Br
Let u* denote the positive part of u.

THEOREM 6.2. Let B C R" a ball of radius R < 1. Suppose
that u € WH1(Bg) N L®(Bg) satisfies the inequality

(6.3) div A(Du)+p >0 in Bg

with A satisfying 1.6 and 1.7, and p a Radon measure satisfying 1.2.
Then for any € > 0 there exists a constant C = C(gq,n, (a1 + az)/€)
such that

(6.4) sup|u|<C (R'"/ utdz + R_q("_l)/ ut d,u) +e
Bpgr Br

R/2

Proof. Let € > 0 and R < 1. Fix a cutoff function n € C§°(Bg)
such that 7 = 1 in Bg/y, 7 = 0 on 0Bg, and 0 < 1 < 1 in Bg with
|Dn| < 4/R. Set { =n(1—£)* and A, = {¢( > 0} = {u > €} C Bg.
Consider the weak formulation of 6.3 with test function (**~*u?, for
constants k, s and ¢ to be chosen later.

(ks — t) /A ¢ks=t=1y5 D¢ - A(Du) d

+s /A ¢t -ty Dy - A(Du) dz < / Cks=tys dp.
€ AE
Use that D{ = Dn(1 — £) + neu™2Du and 1.6 to obtain

(ks — t) / chs—t=lys(1 — %)Dn . A(Du) dz
+ (ks — t)/A ¢ lufneu?(|Dul| — a;) dz
+ s/;h ¢kt~ (|Du| — ay) dx

S/ Cks—tusdu.
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Which implies that

ks—t, s—1 < ks—t,, s
s/AE( u |Du|d:1:_/AsC u’® dy
(ks — 1) / Chs—t=lys(1 — %)Dn-A(Du) dz
+(ks—t)/A i neu(ay) d

+3/A ¢kt (ay) dx.

Use 1.7 and that €/u < 1 in A, to obtain

(65)
s/ ¢* s~ |Du| da
_ 4(ks —t) e
< ks—t, s az ks—t—1, s
_/Aeg wtdy+ 2222 /eg u® do
+(ks—t)/As(’“ =Ly (quY) dz
+5/ ¢F s~ ay) d

</<kstlsd+a24 /{kstls

+ /A Pty (a7 (ks — t + s) da

S/ Cks—-t~1usdu

4 ax4(ks —t) —;;1 (ks —t+s) / CRt-1y8 .

Set w = ¢**~*u* and consider

/ |Dw| dz < s/ ¢k~ | Du| dz
Ac Ae

+ (ks — t) /A k=193 | DC| d
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< s/ ¢t |Dul dx
Ae

1
_ ks—t—1, s -1
+ (ks t)/AEC u(R+u |Dul) dz
< (s+ks— t)/A ¢t~ | Du| do

(ks —1t) ks—t—1
+ 7 /EC v’ dz.

Then use 6.5 to obtain the energy type estimate
(6.6)

/ \Dw| do
Ae

< f#(/ Cks—t—Qus dp

N axd(ks —t—1)+ai(ks—t—1+3s) / coi-2y0 d:c>
eR A

+ (kS}; t) / Cks—t—-2us dr

<s(1+k) (/A CP 20 dp + (41&'(11 :_ % 1)

1
.E/A ¢hemt=2ys dw), fors>1,t>0, and k > 1/5.

Sobolev inequalities 6.1 and 6.2 imply

1/q 1/q
(6.7) (R‘" /A wqu) +(M“1R“‘1(“‘1) / wqdu)

< C’R‘("_l)/A |Dw| dz

with C = C(n, q). Define v = (*u and set t = q—ET, so that tqg = t+2.
Also, define a measure v by

dx du

dv = Rn(H2 + Re(n—1)(t+2
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which is supported on A, = {u > £} N Bg. We combine inequalities
6.6 and 6.7 to yield

1/q
. Sqd < S .
(6.8) (/Ev 1/) _CS/AE’U dv

where C' = C(g,n, (a1 + az)/¢), since k will be chosen late r to be
q—_2_—1 + 2 and s > 1 will be used.
We now iterate on the inequality 6.8. Take s = 1 in the first

iteration,
1 1/q
-C—;(/qudu> < Aevdl/.

Take s = ¢ in the second iteration,

1(1 .\ M\
—_ | = q < .
C(Cq(/Aev dv) ) _/Aevdv

Proceeding with s = ¢™~! in the m® iteration will yield

(6.9) K, (—é—)sm (/e o™ du) o < /Ae vdv.

with the constants K, and S,, given by
m—1 1 q—lj' m—1 .
=TI (_J)  Se=S1/4.
7=0 \9 §=0

As m — oo the constants Sy, - 4 and K, =+ K, 0 < K < oo.
Since K; > K, > ... > K we have, for all m, from 6.9

cTT)
K

This then implies (with C' replacing

. < .
(6.10) sipv_C/Aevdz/
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On Bgj; we have that ( = (1 — £)*. Thus when u > 2¢, we have
¢ > 3. Set k=1¢+2, and 6.10 implies

sup u < 2Fsupu + 2¢
Br/2 Ae

<C <R_"/ uwdz + R~ ud,u) + 2¢

Ae

and the result follows, noting that / udzr < ut dz. O
A Br
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