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THE NONHOMOGENEOUS MINIMAL SURFACE
EQUATION INVOLVING A MEASURE

WILLIAM K. ZIEMER

We find existence of a minimum in BV for the varia-
tional problem associated with div A{Du) + μ = 0, where
A is a mean curvature type operator and μ a nonnega-
tive measure satisfying a suitable growth condition. We
then show a local L°° estimate for the minimum. A simi-
lar local L°° estimate is shown for sub-solutions that are
Sobolev rather than BV.

1. Introduction. In this paper we initiate an investigation of
weak solutions of the

(1.1) divA(Du) + μ = 0

in a bounded Lipschitz domain Ω C Rn. Here A is a function
for which the mean curvature operator is a prototype and μ is a
nonnegative Radon measure supported in Ω that satisfies

(1.2) μ(B(r)) < Mrq{n~ι) for all B(r) C Ω,

where M > 0 and 1 < q < ^ .
This paper has its origins in the work of [LS] where it was shown

that if u is a weak solution of

Au = μ,

where μ is a measure that satisfies the growth condition

μ(B(r)) < 2

for some ε > 0 and for all balls B(r) of radius r, then u is Holder
continuous. In [RZ] this result was generalized to equations of the
form

(1.3) div A(x, u, Vu) + B(x, u, Vu) + μ = 0
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where μ is a nonnegative Radon measure and A and B are Borel
measurable functions satisfying structural conditions that allow, for
example, the p-Laplacian. It is shown that if u is a Holder continu-
ous solution of 1.3, then μ satisfies

μ(B(r)) < Mrn~p+ε

for some ε > 0. Under further restrictions on the structural con-
ditions, it was shown this growth condition on μ was sufficient for
Holder continuity of u.

Recently, Lieberman [L] improved the results in [RZ] by proving
supremum inequalities for solutions of 1.3 without the restrictive
structural conditions, thereby establishing necessary and sufficient
conditions on the growth of μ for the Holder continuity of solutions.

All of this analysis takes place in the framework surrounding the
p-Laplacian, p > 1. It is our purpose to address the situation of
p = 1. We first consider the question of existence of solutions of
1.5 in the case A is the mean curvature operator. We establish a
variational solution by minimizing

(1.4) / yjl + \Vu\2 dx+ ί udμ

in the class u G J3F(Ω) where u satisfies the Dirichlet condition
u* = f on <9Ω, with / an integrable function on <9Ω. In order
to ensure the existence of a minimum, it is necessary to assume
that the constant M in 1.2 is chosen sufficiently small. This is
analogous to the assumption made in [M], in which μ is taken as a
bounded measurable function. We then show that the minimizer u is
bounded. In this context, it is not possible to utilize the argument
given in [L] to obtain an L°° bound since there is no variational
equation associated with 1.4 . Rather, we employ a technique used
in [RZ] modeled on the method of DeGiorgi.

Next, we investigate an equation which contains the formal Euler-
Lagrange equation of 1.4. Thus, we consider a weak solution u G

ΓΊ L°°(Ω) of the equation

(1.5) diγA(Du)+μ = 0

where we assume there exist non-negative constants αi, α2 such that

(1.6) p A(p)>\p\-ai
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and

(1.7) \A(p)\<a2.

It is assumed that μ is a nonnegative Radon measure supported
in the bounded domain Ω and satisfies 1.2. We show that if u G
V(^1'1(Ω)ΠLOO(Ω) is a weak solution of 1.5, then \u\ is bounded by the
Z^-norm of u with respect to the measure dv — dx + dμ. Specifically,
we show that u satisfies a supremum inequality, 6.4. The proof of
this follows the proof in the corresponding result of [L]. The method
of DeGiorgi will still work in this case, however the Moser iteration
method used in [L] gives a slightly different result and is included
for this reason. It is well known that weak solutions of 1.5 are
not necessarily continuous, even under the assumption that μ is
an absolutely continuous measure with bounded density (c.f. [M]).
Therefore, it is not possible to obtain the weak Harnack inequality
involving a lower bound for the solution.

The results of this paper are valid for equations with a more gen-
eral structure. For the sake of simplicity, we employ this simple
structure which fully illustrates the method. In a forthcoming pa-
per, we will address the question of regularity of solutions of 1.4 in
which almost everywhere continuity is established. The existence of
an a priori L°° bound will be essential in this future investigation.

2. Preliminaries. Throughout, we assume that Ω is a bounded
Lipschitz domain in Rn. The space Wlil(Ω) is the space of Lι(Ω)
functions whose distributional derivatives also lie in L1(Ω).

The class of all functions in L1(Ω) whose distributional partial
derivatives are measures with finite total variation in Ω comprise
the space BV(Ω). The notation

/ \Du\ dx
JΩ

will be used to represent the total variation of the vector-valued
measure, Du, the gradient of u. Specifically, the total variation of
Du is

suplf udivvdx : v = (vu . . . ,vn) G C£°(Ω; iΓ), \v\ <
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We also make the notational definition

+ \Du\2dx

= sup< / (fάivv + v0) dx : v = (vu . . . ,vn) G

[ </Ω

The space BV(Ω) is equipped with the norm

| | u | | B V = I \u\ dx + \Du\ dx.
JΩ Jn

The trace of u on <9Ω is denoted by u* (c.f. [Z, Section 5.10]). We
will make use of the following lemma on the convergence of the
traces of BV functions.

LEMMA 2.1. Let Ω C Rn a bounded Lipschitz domain, and let

{uk}, u in BV(Ω) with

lim / \uk — u\ dx = 0
fc->oo Jςi

lim / \/l + |Duib|2da; = / λ/l + \Du\2 dx.
k-^oojςι v i 7Ω

Γ/ien

lim / luί-uΊ dHn~1=0,
*->oo y^Ω

ϋ" 7 1" 1 then — I dimensional Hausdorff measure.

The proof follows directly from the proof in
[G, Proposition 2.6; p.34].

We will also have need for the following compactness result for
BV functions [Z, Corollary 5.3.4; p. 227].

THEOREM 2.2. Let Ω e Rn be a bounded Lipschitz domain. Then
BV(β) Π {u : |M| B V ( Ω ) < 1} is compact in LX(Ω).

It was shown in [MZ] that if μ satisfies the growth condition
μ(B(r)) < Mr71'1 on all balls B(r) (and therefore condition 1.2 in
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particular), then μ can be identified with an element of the dual of
BV(Ω). Furthermore, its norm

M=\\μ\\= sup

is comparable to M. Thus,

(2.1) / udμ < ί \u\dμ

\Jn Jn
<

< M \\u\\BV{ςι)

The following well known result, [M], will be used in the existence
proof below.

(2.2) / \u\dx<c( ί \Du\ dx+ ί u* dHn~Λ
Jn \JQ Jon )

with the constant C = C(Ω). This yields

(2-3) \\u\\BV(ίϊ) <c(ί \Du\ dx + ί u*
\»/Ω J o\LFinally, we state the following Sobolev inequalities which are of

critical importance in our development.

THEOREM 2.3. Let Ω be a bounded Lipschitz domain and suppose
μ is a measure supported in Ω satisfying condition 1.2. Then there
exists a constant C = C(Ω, q, ή) such that

(2.4) ( ί uqdμ) q < CM1/q ί \Du\ dx
\Jn J Jn

whenever u G BV^Ω) with compact support in Ω.

The proof may be found in [Z, Lemma 4.9.1; p. 209]. Also needed
is the standard Sobolev inequality for W l f l .

If u 6 WQfl{Ω) then there exists a constant C — C(Ω,g,n) such
that

(2.5) (J uqdx\ * K

This is simply the above lemma in the special case that μ is
Lebesgue measure.
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3. Existence of a Minimum. With Ω a bounded Lipschitz
domain and / G Lx(dQ), we define I(u; Ω) as follows,

I(u; Ω) - / Jl + \Du\2dx + ί udμ+ [ |τx* —
Jn Jn Jan

We wish to minimize / over all u G BV{Q). That is, we wish to
find a function u G BV(Ω) such that

I{u\ supp φ) < I(u + φ\ supp φ), V ψ G C

THEOREM 3.1. Zeί Ω fee α bounded Lipschitz domain. With I
defined as above, there exists u G BV(Ω) such that

I(u:Ω) = min J(ι Ω).

Proof. Following [G, Section 14.4], the first step is to consider a
slightly different Dirichlet problem in the complement of Ω. For
this purpose, let B be a ball that contains Ω, the closure of Ω. Use
Theorem 2.16 of [G] to extend / to a W1*1 function in B - Ω that
will still be denoted by /. Let

J(u\ B) = / Jl + \Du\2 + f udμ.
JB JB

Note that since suppμ C Ω, the second integral could have been
taken over Ω. We wish to show that there exists u G BV(B),
coinciding with / in B — Ω, that minimizes J(u\B). We proceed
by showing that J is bounded below if the constant M in 1.2 is
sufficiently small.

J{u\B) > ί \Du\ dx+ ί udμ
JB Jn

(by 2.1) > / \Du\dx-M\\u\\BVW
J B

> ί \Du\ dx - M(C ί u*QdHn~l

(by 2.3) + (C + 1) / \Du\ dx)
Jίϊ '

> - / \Du\ dx - MC ί fdHn-\
- 2 JB ' ' Jan
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The last inequality is obtained when M is small enough to insure
1 - M ( C + 1) > \.

Let J(uk) -» λ a minimum of J. We wish to find u G BV(B)
such that J(u] B) = A. For sufficiently large k we obtain from the
above inequality that

A + 1 > - / \Duk\ dx-MC ί fdHn-\
2 JB Jn

Thus the terms fB \Duk\ dx are uniformly bounded, which implies
by 2.3 and Theorem 2.2 that there exists u G BV(B) with uk —> u
in Lι{B). The gradient is lower semi-continuous with respect to
Lι(B) convergence so that

liminf / γ l + \Duk\
2 dx > / γ l + \Du\2 dx.

k-^oo JB JB

From Theorem 2.3, the uniform bound on JB \Duk\ dx also implies
that the terms

(j uk

q dμ

are uniformly bounded. Thus there exists a subsequence, denote it
by {̂ /c}> that converges weakly in Lq(Ω]μ) to some w G L ς(Ω;μ).
The Banach-Saks Theorem implies that there exists a subsequence
of {uk}, again denote it by {uk}, such that the sequence of Cesaro
sums, {υk}, defined by

U\-\ h uk

k

converges strongly to w in Lgf(Ω; μ). Moreover, the sequence vk also
converges strongly to u in L^Ω). This can be seen as follows: choose
ε > 0 and let N denote an integer for which \\u3, — u\\Ll^ < ε for
j , k> N. Then for j < k,

\\υk-u\\

{uι-u)-\ \- {uk- u)

k

\\UJ\ \\ ~> "• 7 1 7 "I "' fc U"\
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Thus,
limsupll^ — u\\ < ε,

k->oo

which yields the desired result since ε is arbitrary. To show that
w — u almost everywhere in Ω note that the strong convergence
of {vjς} to w in Lg(Ω;μ) implies the existence of a subsequence
that converges pointwise to w μ-almost everywhere and therefore
(Lebesgue) almost everywhere, since Lebesgue measure is absolutely
continuous with respect to μ in Ω. But the strong convergence of
{vk} to u in Lι(Ω) implies the almost everywhere pointwise con-
vergence of a further subsequence to u in Ω. Hence, u = w almost
everywhere in Ω.

Since Uk converges weakly to u in Lg(Ω;μ), the lower semiconti-
nuity of the gradient with respect to L1 (Ω) convergence implies

(3.1) λ = liminf J(uk;B) > J{u\B).

Since uk agrees almost everywhere with / in B — Ω, it follows that
u = / a.e. in B — Ω, thus showing that J{u\ B) > λ. This completes
the first step.

We now proceed with the second and final step of the proof. For
each function υ G BV(Ω), define

, N \vίx) x e ΩVf{x) = [
Then υf € BV(B) and by (2.15) of [G],

/ y/l + \Dvf\
2 dx+ ί υf dμ

J B J B

= ί yjl + \Dv\2 dx + I \jl + \Df\2 dx
JB J B—il

+ f υfdμ+ ί \υ*n- f\ dHn~ι

JB Jan

That is,

J(vf;B) = I(υ-Ω)+ ί _yjl + \Df\2 dx.
J B—Ω

Thus, a minimizer of J(v\ B) with υ = f on B — Ω produces a
minimizer of I(v; Ω). D
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4 An energy inequality. Now that we have obtained exis-
tence of a solution u 6 BV(Ω) to 1.4, we will show that u is bounded.
Before doing this we will obtain an energy estimate to be used in
the DeGiorgi type argument of section 5.

Let BR denote the ball of radius R in Rn. Let η be a cutoff
function, η = 1 on Br, 0 < r < r* < R, η = 0 on dBr* with
0 < η < 1 on Br* and \Dη\ < ^ . Let φ = -η{u - k)+, then
supp φ = Ak = {u> k} Π Br* and

(4.1)

Using

(4.2)

(u; Ak) < φ\ Ak)

/
Ak

and that on Ak

\Du\dx< ί ^Jl + \Du\2dx< ί \Du\
JAk JAk

dx

D{u + φ) = (1 - - Dη(u -

we obtain from 4.1

\D(U - k)+ dx < f (1 - η) \D{U - k)+

' JAk '

\(u-k)

/
Ak

dx

+
r* — r

η\(u-k)+ dμ+\Ak\
Λk '

where \Ak\ is the Lebesgue measure of Ak. This immediately implies

(4.3)

\D(u - k)+\ dx < j η\D(u-k)+

? \(u-k) dx[
r* - r JBT,

\(u~k)+ dμ+\Ak\
Br*



192 WILLIAM K. ZIEMER

5. Supremum estimate for variational solutions.

THEOREM 5.1. Let σ e (0,1), Ω a bounded Lipschitz domain,
and BR C Ω with R < 1. Then for u £ BV(Ω) a minimum of I
there exists a constant C = C(σ, M)

supw < C(i?" n / u+ dx + R-^n-V ί u+ dμ]
BσR \ JBR JBR )

where q is the constant from 1.2 and u+ is the positive part of u.

Proof. Let A; be a positive constant to be specified later. Set

h = k(l - 2~2'), n = aR + 2 - ^ ( 1 - σ),

and n = -(r . + ri+i).

For notational convenience, denote by Bi the ball of radius r,,
the ball of radius fj, and let

Note that Bi+ι C Bi C Bi. Also, for all j we will use the notation

4- dx — R~n I dx and 4- dμ — R~q(<n~1^ I dμ.

J J J J

Let ψi be the cutoff functions on Bi so that ψi = 1 on Bi+ι and

2

(5.1) Wφλ <

n - n+ι

Then 4.3 implies
^+\dx(5.2) / \D(u-ki+ι)

JBi+1 I

yU — ki+ij (Xμ ~r i t | ^ i |
Bi
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Now, by 2.4 and 5.1,

< f. ψi(u -
JBi

dμ

1-1/9

D (φ^u - dx

< CRMι/q U \D(u - ki^)+\ Ψi dx

(u- ki+iy \Dψi\ dx) (R-

B )
<CRM1/q(-f

\JB%

dx

Applying 5.2 we have

(u- ki+1)
+dμ

(u-ki+1)
+dx

Thus we have the following iteration inequality,

(5.3)

f (u
JBi+ι

< CM11"
2i+4

(u — ki)+ dx
(1 - σ) \JBi

(u- ki)+ dμ + BΓn \Ai
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To estimate the quantity μ(Ai) recall that
Aι = {u > ki+ι} Π Bi, and note that

Jfc<+i - hi = k ( l - 2~ ( 2 + 1 )) - k ( l - 2"*)

= 2~{k ( l - 2" 1 )

which implies

2~{i+ι)k <u-ki on A{.

Thus

(5.4) β-^-^μfΛ) < 2i+1k'ι-f {u - ki)+ dμ
JBi

where

We estimate \A{\ in the same manner, obtaining

(5.5) R~n \A{\ < 2i+1Yi.

Using 5.4 and 5.5 in 5.3 we obtain

(5.6)

AT1-/- (u — ki+ι)+dμ

ni+Ί ( r

TΛ HAT1/ (u-ki)+dx
(1 - σ) \ JBi

^-r ((l

-f^-ik'1

(1 - σ)
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where a = 1 — \/q > 0. Following the same analysis for dx instead
of dμ we obtain

(5.7) I \u ~ *Ή \+ dx

(1 - σ)

Combining 5.6 and 5.7, we have

(5.8) y<+1 ^
(1-σ)

/c(l - σ)

where ft = min(l, l/{k~ι + 2"1)). The recursion lemma of
[LU, lemma 4.7; p. 66] then implies that Y{ —> 0, and thus

supn < £;,

provided that

01 ΐlΦ I If / 01 fill
LL UbJu ~T~ ill I Uϋ U/UJ

BR JBR

This is true if

[ ( λ / / μ
\ ( 1 - σ ) / \JBR JBR )

Since K1^ < 1, the result follows. D

6. A supremum estimate for weak solutions. We will use
a different version of the Sobolev inequalities 2.4 and 2.5.

COROLLARY 6.1. Let BR a ball of radius R in Rn. Suppose
u G WQ'1(BR) and μ is a measure satisfying 1.2, then there exists a
constant C — C(g, n) such that

(6.1) (R-q^-^ I uqdμ) Q < Mι/qCRι~n ί \Du\ dx
V JBR J JBR
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and

(6.2) (R-n I uqdx] q < CRι~n ί \Du\ dx.
\ JBR J JBR

Let u+ denote the positive part of u.

THEOREM 6.2. Let BR c Rn a ball of radius R < 1. Suppose
that u € Wι>ι(BR) Π L°°(BR) satisfies the inequality

(6.3) div A(Du) + μ > 0 in BR

with A satisfying 1.6 and 1.7, and μ a Radon measure satisfying 1.2.
Then for any ε > 0 there exists a constant C = C(q, n, (a\ + a2) fέ)
such that

(6.4) sup \u\ < C (R-U ί u+dx + R~^n-^ [ u+ dμ) + ε
BR/2 V JBR JBR J

Proof Let ε > 0 and R < 1. Fix a cutoff function η e C^(BR)
such that η = 1 in BR/2, η = 0 on <9J5#, and 0 < 77 < 1 in S Λ with
IJDIJI < 4/JR. Set ^ = 77(1 — ^)+ and Aε = {ζ > 0} = {u > ε} C BR.

Consider the weak formulation of 6.3 with test function ζ^5""*?/5, for
constants A;, s and t to be chosen later.

(ks -t) ζ^^uWζ A(Du) dx
J Aε

+s / ζ^^u^Du A(Du) dx < I ζ^^u8 dμ.
J Aε J Aε

Use that Dζ = Dη(\ — ̂ ) + ηεu~2Du and 1.6 to obtain

(ks — t) ζ ~ 1 u s ( l )Z)τ7 A(Du) dx

+ (ks - t) [ ζ^-^u'ηεu^dDul - aλ) dx
J Aε

+ s ζks V 1(|Dw| - aι)dx
JAε

< ί
J Ae



NONHOMOGENEOUS MINIMAL SURFACE EQUATION 197

Which implies that

s [ ζ^-'u3-1 \Du\ dx < ί ζ^-'u'dμ
JAε JAε

+ (ks - t) ί Cfcθ~*-V(l - -)Dη A(Du) dx
JAε U

+ (ks-t)[ ζ^-^u'ηεu-^a^dx

+ s ( ζ^-'u'-^a^dx.
JAε

Use 1.7 and that ε/u < 1 in Aε to obtain

(6.5)

s ί ζ^-'u8'1 \Du\ dx
J Aε

< I ζ^u* dμ +
aΛk*"t] ί c*-'-v<k

JAε R JAε

+ {ks - t) [ ζ^-^u'i^u-1) dx
JAε

+ s ί ζ^u^ίajdx
JAε

< ί C*-*-V dμ + aΛkS

n " t] ί ζ^-'u* dx
JAe R JAε

+ I ζkt-*-1u8{aιε-1{ks -t + s)dx
JAt

< ί ζ^-^u'dμ
JAε

εR

Set w = ζks~ιus and consider

-t)+ai(k8-t + 8) f cks-t-lusdχ_

f \Dw\ dx<s[ ζ ^ - V " 1 \Du\ dx
Aε JAε

+ (ks -t) f C*s~'~ V \Dζ\ dx
J Aε
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< s ί ζ^-'u8-1 \Du\
JAe

+ (ks - t) ί C*β~f~ V ( i + u"1 \Du\)
J Aε H

dx

1

dx

ks -t) / ζks ι ιus ι \Du\ dx
J A e

/
JAε

-'-VV dx.
R

Then use 6.5 to obtain the energy type estimate

(6.6)

ί \Dw\ dx
JAe

s + ks-tf f ks_t o , , „
< /

S \JAe

— t — 1) + a\{ks — t — 1 + s) r ζks-t-2usdχ\
JAε )

R

<s(l + k)(ί Cfa"*"2«*dμ + Ukai + °2 + l )

• -= / C f c s~*~2« s^ ), for s > 1, ί > 0, and /c > 1/5.

Sobolev inequalities 6.1 and 6.2 imply

(6.7) ( ϋ Γ n / w9dα;) + (M~1R~q^n~1^ / u) 9dμ)
V VΛ£ / V JAe )

< CR-{n~ι) ί \Dw\ dx

with C = C(n, g). Define v = Cfc^ and set ί = -^j-, so that tq — t+2.
Also, define a measure u by

dx dμ
dp = +Rnζt+2
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which is supported on Aε = {u > ε } Π B R . We combine inequalities
6.6 and 6.7 to yield

(6.8) (I vsqdιλ * <Cs I vsdv.
\JAε J JAε

where C = C(g, n, (a\ + α2)/ε), since k will be chosen late r to be

~τγ + 2 and s > 1 will be used.

We now iterate on the inequality 6.8. Take s = 1 in the first

iteration,

— ([ vqdιλ q < ί vdv.
C \JAε J JAε

Take s = q in the second iteration,

1 / 1 / f 2 \ VΛ1 / q r
^l^-( / v

q dv) < vdv.
C \Cq \JA£ J J ~ JA£

Proceeding with s = qm~ι in the mth iteration will yield

/ 1 \ S r n ί r \ ι/m

(6 9) *-(c) iLvmdv)
with the constants Km and Sm given by

m~ι ί 1 \ ¥ m ~ 1

j=0 \9 / j=0

As m —>- oo the constants 5 m —> ~^γ and K m —>• K, 0 < i f < oo.

Since Ki > K 2 > ••• > K we have, for all m, from 6.9

Of m \ / m ^ ς 1 f
υ dv < C m — / υdvAe J ~ K JAε

This then implies (with C replacing ^ — )

(6.10) snpv <C ί vdv.
Λ, JAε
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On BR/2 we have that ζ = (1 — ̂ ) + . Thus when u > 2ε, we have
C > | . Set k = t + 2, and 6.10 implies

sup u <2k sup u + 2ε
BR/2 Aε

-n I udx + R-<*n-1) f udμ\+2ε

and the result follows, noting that / udx < u+ dx. D

JAε JBR
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