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ESSENTIAL TORI OBTAINED BY SURGERY ON A
KNOT

MARIO EUDAVE-MUNOZ

It is proved that if Dehn surgery on a strongly invert-
ible knot, which is not a satellite knot yields a manifold
containing an incompressible torus, then the slope of the
surgery consists of a certain number of meridians and at
most two longitudes. Furthermore, if the slope has two
longitudes, then there is an incompressible torus which
meets the surgered solid torus twice.

Introduction. Let A; be a knot in 5 3 , and consider the following
construction: Take a solid torus neighborhood η(k) of k, remove it,
and glue it back differently. Let Mk = Ss — intη(k). The different
regluings are parameterized by the isotopy class r, slope, of the
simple closed curve on the torus dMk that bounds a meridional disk
in the reglued solid torus. Denote the resulting closed 3-manifold
by Mk(r), we say that it is obtained by r-Dehn surgery on k. Slopes
on dMk are parameterized by Q (J{l/0}, using a meridian-longitude
basis {μ, λ} for Hι(dMk) Then r corresponds to p/q if and only if
[r] = pμ + qλ in Hχ(dMk). Δ(r, s) denotes the minimal geometric
intersection number of two slopes r, s on dMk. If r, s correspond
to p/q and a/b respectively, then it can be shown that Δ(r, s) =
\pb — qa\. For an excellent exposition of the main problems on Dehn
surgery on knots see the survey paper of C. McA. Gordon [7].

We consider the following problem: Suppose k is not a satellite
knot, i.e. Mk does not contain any incompressible, non-boundary
parallel torus. When is possible that Mk(r) does contain an incom-
pressible torus? i.e. when an essential torus can be created after
surgery?

If k is not a satellite and not a torus knot, then by results of W.
Thurston [20], k is hyperbolic and Mk(r) is hyperbolic for all but
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finitely many r. Also, results of S.A. Bleiler and C.G. Hodgson [1]
show that if k is hyperbolic then Mk(r) has a Riemannian metric of
negative curvature for all but at most 24 values of r. These results
imply that if k is not a satellite knot then Mk(r) may contain incom-
pressible tori at most for 24 values of r. A result of C.McA. Gordon
[8] says that if both Mk(r) and Mk(s) contain an incompressible
torus then Δ(r, s) < 8; this also implies that for all but finitely
many r, Mk(r) does not contain incompressible tori. But these re-
sults do not give information about which values of the slope r are
possible, in case Mk(r) does contain an incompressible torus. In
[7], Gordon conjectured that if Mk(r) contains an incompressible
torus then Δ(r, μ) < 2, in other words, r is homologous to several
meridians and at most two longitudes.

In this paper we prove Gordon's conjecture for the case when
& is a strongly invertible knot (Theorem 6.3); we show also that if
Mk(r) contains incompressible tori and Δ(r, μ) = 2, then there is an
incompressible torus T in Mk(r) which intersects the reglued solid
torus in two meridional disks, or in other words, there is a properly
embedded, incompressible, punctured torus in Mk whose boundary
consist of two curves on dMk of slope r. This last statement can be
seen as a kind of generalization of the cabling conjecture, which says
that only certain surgery on cable knots yields reducible manifolds,
or more explicitly, if Mk{r) is reducible then there is a properly
embedded, essential annulus on Mk whose boundary has slope r on
dMk. There are examples of knots k, where k is not satellite, Mk(r)
contains an incompressible torus for some r so that Δ(r, μ) = 2
and there is an incompressible torus hitting the surgered solid torus
twice. The simplest example I know is 37/2-surgery on the (-2,3,7)
pretzel knot (see [10]). We have an infinite family of such examples;
in those knots there is a non-integral surgery producing a manifold
containing an incompressible torus, which hits the surgered solid
torus twice, and which divides the manifold into two Seifert fiber
spaces with base a disk and 2 exceptional fibers. Those knots also
admit two integral surgeries which yield Seifert fiber spaces with
base a sphere and at most 3 exceptional fibers. Then for those knots
there are 3 different surgeries producing non-hyperbolic manifolds.
It is also satisfied that any two of those exceptional surgeries are
at distance 1. Those examples will be explained in a forthcoming
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paper.
C. Me A. Gordon and J. Luecke have announced a proof of Gor-

don's conjecture for all knots. It is still unknown in the general
case, if when Δ(r, μ) = 2 there is an incompressible torus hitting
the surgered solid torus twice. In the case when Δ(r, μ) = 1 not
too much is known; it is not known for example if there is an upper
bound for the number of times an incompressible torus may hit the
surgered solid torus.

The proof of Theorem 6.3 is somehow inspired by the solution of
the cabling conjecture for strongly invertible knots [6]. First, if for a
strongly invertible knot k, Mk(r) contains an incompressible torus,
then by the equivariant torus Theorem of W.H. Holzmann [11],
there is an incompressible torus equivariant under the involution of
Mjb(r). By taking quotients, the surgery problem is tranlated into a
problem of sums of tangles. In §1 we state the required results about
sums of tangles, which are Theorems 1.3, 1.4 and Corollaries 1.5 and
1.6. In §2, 3 and 4 we prove Theorems 1.3 and 1.4 by using sutured
manifold theory and a combinatorial argument. Corollary 1.5 is
proved in §5, and Corollary 1.6 in §1, for it follows easily from 1.4.
Through the paper we assume familiarity with [16] and [6]. In §6
we apply the Theorems on tangles to get a proof of Theorem 6.3.

1. Theorems from tangle theory.

1.1. A tangle (B, t) is a pair that consists of a 3-ball B and a pair
of disjoint arcs and simple closed curves t properly embedded in B.
Let Bι be the unit ball in i?3, and let α, 6, c, d, be four points in
dBi lying in the lines Y = Z, X = 0 and Y = - Z , X = 0.

A tangle (£?i,ί) is rational if:
(a) It is a trivial tangle, i.e. there is an homeomorphism of pairs

from (J5χ, t) to the tangle (D2 x /, {x, y} x /) where D2 is the unit
ball in R2 and x, y are distinct points in the interior of D2.

(b) tΓldB! = {a, 6, c, d}.
Two rational tangles (2?i,t), {B^V) are equivalent if there is an

homeomorphism of pairs h : (2?i, t) —> (Bι,t) such that h\dBi = id-
There is a "natural" one to one correspondence between rational

tangles and Q{J{1/O} (see [2], [4], [14]). Denote by (Bup/q) the
rational tangle determined by p/q G QU{l/0} As (Bι,p/q) is a
trivial tangle, there is a disk Dp/q properly embedded in B\ which
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separates the strings of (Bup/q). Let Jp/q = dDp/q, it is a simple
closed curve in dB\ — {α, 6, c, d}. Define the distance between two
rational tangles (Bup/q) and (j?i,r/s), denoted by Δ(p/#, r/s), as
half of the minimal number of intersection between the curves Jp/q

and Jr/S. It can be shown that A(p/q,r/s) = |ps — qr\.
A tangle (B, t) is prime if has the following properties:
(a) It has no local knots, i.e. any S2 in B which meets t

transversally in two points, bounds in B a ball meeting t in an
unknotted spanning arc;

(b) There is no disk properly embedded in B which separates
the strings of (2?,ί);

(c) B — t is irreducible, i.e. any sphere in B disjoint from t
bounds a 3-ball disjoint from t.

A knot or link k is doubly composite if it can be expressed as
the sum of two prime tangles, i.e., there is a sphere S meeting k
transversally in four points, such that each of the balls bounded by
S determines, with its intersection with k1 a prime tangle. Such a
sphere is called a tangle-decomposing sphere, or simply a decompos-
ing sphere. A knot or link k is doubly prime if it is prime and is
not doubly composite. A knot or link A; is a satellite knot or link if
there is an incompressible torus in S3 — k which is not parallel to a
component of dη(k). Such a torus is called a satellite torus.

A Seifert surface for a link A; is a compact, orientable surface
none of whose components is closed and whose boundary is the
link. Define χ(k) to be the maximal Euler characteristic of all Seifert
surfaces for k.

1.2. Let A; be a link in S3. Let B be a 3-ball in S3 which intersects k

in two arcs, and such that (J3, B Π k) is a trivial tangle. Suppose also

that {B\ B' Π A;), where B' = cl(S3 — B), is a prime tangle. Fix an

homeomorphism of pairs h : (Bι, 1/0) —> (B,Bf)k). Define a new

link k(B,p/q) by changing (B,BfU) by h((Bup/q)). fc(B, 1/0) is

just k. For simplicity denote h((Bup/q)) by (B,p/q), and h(Jp/q)

by Jp/q.
Let S be a Seifert surface for k with χ(S) = χ(k); it is incom-

pressible. S can be isotoped so that it intersects the 3-ball B in a
collection of disks; two of them have as boundary one arc of B f] k
plus one arc in dB\ the other disks have as boundary a curve paral-
lel to Ji/o, so Sf]dB consist of two arcs and a collection of simple
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closed curves. If S is given an orientation, this induces an orienta-
tion on each simple closed curve oΐSf] dB. We say that B intersects
S always in the same direction if all the curves Sf)dB, with the
induced orientation, are homologous in dB — /ι({α, 6, c, d}).

If k(B,p/q) is doubly composite or satellite and P is a decom-
posing sphere or satellite torus, then P can be isotoped so that it
intersects B in a collection of disks, whose boundaries are parallel
to the curve Jp/q on dB.

THEOREM 1.3. Let k be a link and B a 3-ball as before. Sup-
pose that k(B,p/q) is a doubly composite link. Let P be a tangle-
decomposing sphere for k(B,p/q), isotoped to intersect (B,p/q) in
a minimal number of disks. If Δ(p/g, 1/0) > 3 then one of the
following holds

(a) P is disjoint from B.
(b) S3 — k is irreducible and there is a Seifert surface S for k

with χ(S) = χ(k), and such that S intersects dB only in two arcs,
which join the points /ι({α, 6, c, d}).

IfA(p/q, 1/0) = 3 ; then either (α), (6), or
(c) S3 — k is irreducible and there is a Seifert surface S for k

with χ(S) = χ(k), and such that B intersects S always in the same
direction. Furthermore, P meets dB exactly in one curve parallel
to Jp/q.

IfA(p/q, 1/0) = 2, then either (α), (b), or
(d) S3 — k is irreducible and there is a Seifert surface S for k

with χ(S) = χ(k), and such that B intersects S always in the same
direction. Furthermore, P meets dB exactly in two curves parallel
to Jp/q; or

(e) P meets dB exactly in one curve parallel to Jv/q.

THEOREM 1.4. Let k be a link and B a 3-ball as before. Suppose
that h(B,p/q) is a satellite link, and T is a satellite torus, T not
a swallow-follow torus. Suppose T has been isotoped to intersect
(B,p/q) in a minimal number of disks. If A(p/q, 1/0) > 1 then one
of the following holds

(a) T is disjoint from B.
(6) S3 — k is irreducible and there is a Seifert surface S for k

with χ(S) = χ(k), and such that S intersects dB only in two arcs.

REMARK. Theorem 1.4 is a generalization of Theorem 3.1 in [18].



86 MARIO EUDAVE-MUNOZ

In our terminology they consider only the case Δ = 2.

COROLLARY 1.5. Let k, B, k(B,p/q), P as in Theorem 1.3.
Suppose that k is the trivial knot or a split link. If A(p/q, 1/0) > 2
then one of the following holds

(a) P is disjoint from B; or
(b) Δ(p/g, 1/0) = 2 and P crosses dB in one curve parallel to

Jp/q

COROLLARY 1.6. Let k, B, k(B,p/q), T as in Theorem 14.
Suppose that k is the trivial knot or a split link. If A(p/q, 1/0) > 2
then T is disjoint from B.

Note that when k is a split link, cases (b), (c), (d) of Theorem 1.3,
and case (b) of Theorem 1.4 cannot happen, i.e. Corollaries 1.5 and
1.6 are obvious when A; is a split link. The proof of 1.5 when k is a
trivial knot is given in §5.

Note that Corollaries 1.5 and 1.6 are a kind of generalization of
Theorems 2 and 4 in [5], and Theorems 2 and 3 in [6], by replacing
the fact of being a composite link by the fact of being a doubly
composite or satellite link. Corollaries 1.5 and 1.6 are potentially
useful in determining if a given link is doubly prime or non-satellite.
We have examples of case (b) of 1.5, which produce via double
branched covers, examples for Theorem 6.3 (b). In the case Δ = 1
not too much is known; it is not known for example if there is an
upper bound for the number of disks of intersection between a tangle
decomposing sphere or satellite torus and the ball B.

1.7. Proof of Corollary 1.6. Suppose T is a satellite torus in
k(B,p/q) isotoped to intersect (B,p/q) a minimum number of times.
If (a) of 1.4 happens we are done. If (b) happens then there is a
disk D with dD = &, such that D intersects dB only in two arcs.
Let a be an arc in D joining two points lying in the distinct arcs
of intersection between D and dB. The two strings of the tangle
(£?', B' Π k) are parallel to α, so because (13', B' f] k) is not a trivial
tangle, a is a knotted arc in B'. Let 7\ = dη(B\JD). 7\ is an
incompressible torus in S3 — k(B,p/q), disjoint from B. Looking
at the curves of intersection between T and 2\ it is not difficult to
conclude that T is disjoint from B, except possibly when Δ = 1,
and Γi is the boundary of a neighborhood of a cable knot. D
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2. Preliminary arguments from sutured manifolds.

2.1. Let β be the planar eyeglass 1-complex consisting of two circles
βo and βι and an arc βa joining them. Regard β as a complex in
R2 C R?, and let U and W be regular neighborhoods of β in R2 and
R3 respectively, so that U is a properly embedded planar surface in
the genus two handlebody W. dU C dW has three components;
two of them, denoted by c0 and cχ3 are parallel in U to βo and β\
respectively. Denote the third by ca. Denote the cocore of βa by
Cβ C dW. Let λo, λi be two circles in dW', parallel to Cβ, which
bound properly embedded disks in W which separate it in three
parts, say a neighborhood of each of /?o, β\ and βa. See Figure 2 in
[6]-

2.2. Let fc, B and (j?,ί), where t = 5 f l A;, be as in 1.2. Let W =
£? — int η(t). Clearly W is homeomorphic to a regular neighborhood
of β\ i.e., there is an homeomorphism / : W —> W. Assume that
/(co) is the cocore of one of the arcs of ί, and f{c\) is the cocore of
the other arc. Also assume that f(ca) = Jo and f(cβ) = J\/Q. For
the sake of simplicity we will write Q instead o f / ( Q ) , ί = 0, 1, α, /?
and λ; instead of /(λ^), z = 0, 1; that is, consider β as embedded
in B, and PF as a neighborhood of β in S'3. The curve Jp/ g on
9VF intersects the regular neighborhood of β0 (βι) in a collection of
Δ = Δ(p/g, 1/0) essential arcs, disjoint from Co (ci), and intersects
a neighborhood of βa in 2Δ arcs, each joining λo and λχ

2.3. Let η(k) be a neighborhood of k disjoint from W. Let M —
Ss — intη(k). Note that β0 and βι are parallel to meridians of k.
Note that /3f|^^ = 0 Consider M as a sutured manifold, all of
whose boundary is in R+ or JR_; denote it by (M,7, β) (cf. [16]).
By hypothesis S3 — (k \J B) is irreducible, for (B\ B' f) k) is a prime
tangle; this implies that (M, 7, /?) is /3-irreducible, so (M, 7, /?) is
/3-taut. (M, 7) may not be 0-taut, i.e. it may be reducible or dM
may be compressible. 0 denotes the empty set, to be 0-taut means
to be taut in the Thurston norm.

The proof of Theorems 1.3 and 1.4 will be as follows: First we
take a /?-taut Seifert surface S for A;, and a decomposing sphere
or satellite torus Q for k(B,p/q), which will be considered as a
parameterizing surface; then construct a sutured manifold hierarchy,
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starting with S and respecting Q. The goal is to prove that the final
step in the hierarchy, i.e. (Mn, 7n) is 0-taut, for in this case [17, 2.7]
and [16, 3.3] imply that (M, 7) is 0-taut unless k is the trivial knot,
and S is 0-taut, so χ(S) — χ(&), Ss — k is irreducible and β crosses S
always in the same direction. In this section we show that (M n ,7 n )
is 0-taut if Q is a torus, and if Q is a decomposing sphere we show
the same, except in three cases, one of them being (e) of 1.3. This
implies 1.4 and 1.3 (b), (e); the remaining two cases are treated in
§3 and §4.

2.4. Suppose k(B,p/q) is a doubly composite or a satellite link,
and let P be a decomposing sphere or satellite torus, not a swallow-
follow torus, for k(B,p/q). Consider P as a properly embedded
surface in S3 — intη(k(B,p/q))] note that P is incompressible and
^-incompressible. P can be isotoped to intersect (B,p/q) in a col-
lection of disks Di properly embedded in (B,p/q), and such that
dDi is a curve parallel to Jp/q in dB. Assume this number of disks
is minimal among all the surfaces isotopic to P, and that the inter-
section is not empty, for otherwise we are done.

Let Qa = P- intB. Let (Q,dQ) C (M - intW,dM\JdW) be
a surface consisting of three components, Qo ? Qi and Qa with the
following properties:
(a) Qo (Qι) is an annulus for which one boundary component is
c0 C dW (ci C dW) and the other is a meridian oίdη(k)\ and either
(b) Qa is a connected planar surface, four of its boundary com-
ponents are meridians in 3M, and the others are parallel to Jp/q in

(c) Qa is a connected genus one surface, and all of its boundary
components are parallel to Jp/q in dW.

According to [16, 7.1], Q is a parameterizing surface for (M, 7, β).
Note that Q is incompressible and, because P is not a swallow-follow
torus, Q is also ^-incompressible.

2.5. Let S be a β-taut Seifert surface for k\ put S in normal posi-
tion with respect to Q ([16, 7.2]). (See [16, 7.7] for the definition
of a sutured manifold decomposition respecting a parameterizing
surface). It is not difficult to see and is implicit in [16] that the su-
tured manifold decomposition (M, 7) ——> (Mi, 71) is β-taut and
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respects Q. Here we use the notion of sutured manifold hierarchy
as presented in [17, 2.1]. Construct a /3-taut sutured manifold hier-
archy

respecting Q. (See [17, 2.5], [16, 4.19; 7.8]). dMn is a collection
of spheres. The surface S meets /?0 (βι) in one point and QQ (Qι)
in one arc. Following [16, 2.4(c)], [17, 2.1], the edges /?0, βi and
βa can be oriented so that at any point of intersection with an S{
(hence with Riffi) — R+ili) \JR-(li) ) the orientation points in the
direction of the normal vector to Sj. We can suppose β has one
of the orientations showed in figure 3 in [6] (the choice of one of
them depends on the orientation of Si). Consider R+(ji) (i?_(7z))
as the part of dMi in which the orientation points out of (into) M .̂
Denote by Qi and βτ the remnants of Q and β in Mi. Sometimes
for simplicity βτ, i?+(7i), R_(yz), R(ji) will be denoted by /3, i?+,
i?_, R(j) respectively.

2.6. Recall from [16, 7.4] what the index of a parameterizing sur-
face is, I(Q) — v + μ + K — 2χ(Q), where v is the number of
sutures and μ the number of edges that dQ crosses. For each arc
δ of dQ[}η{v)η where υ is a vertex of β, define κ(δ) to be —1 if δ
passes between an edge of β pointing into the vertex and one point-
ing out, and define κ(δ) = —2 if <5 passes between edges of β both
pointing into the vertex or both pointing out (see figure 4 in [6]).
Let K = Σ K. The curve Jp/q C W has v = 0, μ = 4Δ, K = -6Δ,
and the curves c0, c\ each have v = 0, μ=l,κ = — 1. Hence if
Qa has p boundary components in dW, χ(Qa) ~ x(P) ~ Pi a n d so
I(Qa) = 2p(l - Δ) - 2χ(P). Also I(QQ) = I(Qι) = 0.

2.7. Suppose that for an arc λ of /3n, which contains no vertices,
there is a disk D C Qn, such that dD — δ\ \]δ2, where δι C 7?(λ),
2̂ C dMn, and δ2 crosses a suture; Λ is called a cancellable arc, and

D is called a cancelling disk. Assume w.l.o.g. that the components
of Mn which contain a vertex of β do not contain cancellable arcs
(see [6, 1.6]).

2.8. Denote by Qz?n, % — 0,1, the parameterizing surface obtained
from Qτ at the end of the hierarchy. Similarly denote by /3^n, i =
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0,1, the 1-complex obtained from βι at the end of the hierarchy.

I(Qi,n) < 0, by [16, 7.5; 7.6].

CLAIM . Each component q of QijTl for which dQ^n f)η(βi,n) Φ 0;
is a disk for which I(q) — 0. Indeed dq{\β^n is a single arc and
dq Π ΘMn is a single arc crossing a single suture.

The proof is similar to [18, claim 2]. Note that the surface S\
meets β0 and β\.

This claim implies that there is a component q of Qi)Tl, q a disk,
such that dq runs through one of the vertices; all the other compo-
nents of QiiTl are cancelling disks for an arc of β^n.

2.9. A component of Mn which does not meet β is a 3-ball with a
single suture on its boundary. We will disregard these trivial compo-
nents and suppose with no loss of generality that all the components
of Mn meet β. As a consequence of that we conclude that every
disk component of R± intersects β. Note also that any component
of dMn has sutures (see [6, 1.8] for details).

dMn is a collection of spheres, so (Mn,jn) is 0-taut if and only
if each sphere has only one suture and is the boundary of a 3-ball.
Note that if a component of Mn has connected boundary, then this
sphere bounds a 3-ball, for Mn is contained in 5 3 .

LEMMA 2.10. If none of the surfaces Si intersects βa then (Mn, ηn)
is 0-taut.

For the proof see [6, 1.13].

2.11. If (Mn,7n) is 0-taut then by [17, 2.7] ( M ^ ) is 0-taut for
alH > 1, and either (M, 7) is 0-taut and so is irreducible and d-
incompressible, or M is a solid torus (i.e. k is the trivial knot). Now
in any case, by [16, 3.3] the surface S is 0-taut. It is not difficult to
see that this implies that χ(S) = χ(k) (for a proof see [19, 1.2]).

2.12. Suppose that some surface Si intersects βa. Then there are
two components of βn which have a vertex. Denote the component
which has two ends in R+ (i?_) and one in i?_ (R+) by A+ (A-). De-
note the ends of A+ by α+, α_, 6, and the ends of A- by d+, d_, c,
where 6, c are the ends which are part of βa. α+, α_ (d_|_, d_) are
part of β0 (βι). α+, d+, b lie on i?+, and α_, GL, C lie on i?_. 2.8
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shows that α + and α_ (<2+ and dJ) lie in adjacent components of R±
and there is a disk q component of Qo,n (Qi,n) such that dqΓ)dMn

is an arc joining α + and α_ (d+ and d_) and which crosses a suture.
See figure 5 in [6].

There is a collection of arcs on A+ going from a+ to b; each such
arc λ is contained in the boundary of a component of Qn, and for
this arc κ(λ) = —2. Call the part of A+ which contains these arcs
the negative side of A+. Analogously, there is a collection of arcs
on A+ going from α_ to b. For each such arc λ, κ(λ) = — 1. Call
the part of A+ which contains these arcs the positive side of A+. In
a similar way we define the negative and positive side of A-

LEMMA 2.13. Suppose that some surface Si intersects βa. Then
no component of Qn has negative index.

The proof is as in [6, 1.15].

2.14. If P is a torus then I(Q) = 2p(l - Δ) < 0 whenever Δ > 1.
This would contradict lemma 2.13 if some Si meets βa. So in this
case none of the Sz intersects βai and then by 2.10 and 2.11 the
surface S is 0-taut, S3 — k is irreducible and χ(S) = χ(k), so we
have case (b) of Theorem 1.4. This completes the proof of Theorem
1.4.

If P is a decomposing sphere then I(Q) = 2p(l — Δ) + 4. So
I(Q) < 0 whenever Δ > 3. If Δ = 3 then I(Q) < 0, with equality
occurring only if p = 1. If Δ = 2 then I(Q) < 2, and note that
I(Q) = 2 only if p = 1, I(Q) = 0 only if p = 2, and I(Q) < 0 if
p > 2. If I(Q) < 0, then 2.13 implies that none of the Si intersects
βai and by 2.10 and 2.11 the surface S is 0-taut, χ(S) = χ(k) and
S3-k is irreducible. This implies case (b) of Theorem 1.3. If Δ = 2,
/(Q) = 2 and p — 1 we get case (e) of 1.3.

From now on we will assume that P is a decomposing sphere, and
that I(Q) = 0, i.e. Δ = 3 and p = 1, or Δ = 2 and p = 2.

REMARK. The above proof for the case I(Q) < 0 proves essen-
tially the same thing that is proved in [18] and [12]. Instead of using
an eyeglass complex they use a complex consisting of the wedge of
two circles; it seems that with that complex it is not possible to do
the case when I(Q) = 0. The proof here for the case I(Q) < 0 is
like the one in [16, §8].
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3. The combinatorial setting. Our goal in this and next sec-
tion is to prove that (M n ,7 n ) is 0-taut. We first introduce a com-
binatorial structure on dMn, and then prove Lemmas 3.4 and 3.5.
These Lemmas are used to prove Lemmas 3.6, 3.7, 3.13, 3.14 and
3.15. Lemmas 3.6 and 3.7 are used in §4 to show that if (M n ,7 n ) is
not 0-taut then there is a finite number of possible configurations of
the special vertices (Lemma 4.1). Then it is showed that all these
configurations are in contradiction with 3.13-3.15 (Proposition 4.2).
This will imply 1.3 (c) and (d).

3.1. Let T be one of the sphere components of dMn. The points
β Π T and the arcs dQn f] T can be regarded as a graph Γ in Γ. A
vertex of Γ is a point of β f] T and an edge is an arc component of
dQn Π T, each one of its ends is at a vertex. Denote the components
of dQa — dM by αi, α2 if Δ = 2, and by a\ if Δ = 3. Denote by
ea = dQojTl f]T (cd = dQιtn Π T) the edge joining α+ and α_ (d+ and
cL), this edge exists for 2.8; it crosses a suture.

λj intersects α̂  in 2Δ points, j — 0,1; label them i, i*, i, i*,...
alternately around λj, and so that a point i (i*) in λo is connected,
via a subarc of α̂  contained in dη(βa), to a point labeled i (i*) in
λi- Let v be a vertex in Γ, then υ in W is a circle; label the end of
an edge incident to v, other than ea and e ,̂ with i (i*) if this point
is connected to a point in λo labeled with i (i*), via a subarc of α̂
whose interior misses λ0, v, a± and rf±. See Figure 1 for the case
Δ = 2, and Figure 2 for the case Δ = 3.

Let Δ = 2. The curve αx separates dB in two parts; one of them
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does not contain α2, call it V\. V\ intersects k twice. Choose a
rectangle i?i C Vί, such that dR\ consists of four arcs ei,e2,e3,e4,
where ei,β3 are contained in dV\ = oi, and e2,β4 are arcs properly
embedded in V\. Suppose that Rι Γ\v(k) = 0, then Rx C dW] note
that V\ — R\ has two components, each one of them intersecting
η(k) once, and assume that for any vertex υ in T, v φ a±,d±, we
have that υ Π(^i — R\) — 0 It can be assumed that if v = α±,d±,
then ^Π^Fi C ei U e$ C 5i?χ. Analogously, there is a disk V2

and rectangle i?2 for α2, with <9i?2 = /i,/2,/3,/4 Label the end
of an edge e in Γ, labeled previously 1 or 1*, by l x or 1* (1 3 or
lg) if ef |«i C ei (efl^i C e3). Analogously change 2,2* to 2χ, 2J or
23,23. It can be assumed w.l.o.g. that the collection of labels around
a vertex in Γ, other than α±, c?±, looks like 11 ? 2χ, 2 ,̂ 1J, I3, 23, 2J, I3.
We may assume that α + is labeled by lχ, 2χ, 2g, 1J, and α_ is labeled
by 13, 23,2;, 15. See Figure 3.

Let Δ = 3. The curve a\ separates dB in two parts, Vi, and
V2, and there are rectangles i?i C VΊ, and R2 C V2, as in the
previous case. Label the end of an edge e in Γ, labeled previously
1, by I13 if efj^i C t\ and efj^i C fa. Analogously change the
labels in all the other cases. It can be assumed w.l.o.g. that the
collection of labels around a vertex in Γ, other than α±, d±, looks
like Iχ3,1^, I33,1^, I n , I33. To avoid cumbersome notation change
these labels for the labels 1, 2, 3,4, 5,6. We may assume that α + is
labeled by 1,2, 3, and α_ is labeled by 4, 5, 6. See Figure 4.

The vertices α±, d±, 6, c are named special vertices; any other
is called a simple vertex. Call the part of a special vertex which is
contained in the negative (positive) side of A+ or A_ the negative
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FIGURE 4.

(positive) side of such vertex (see 2.12). b and c have both negative
and positive sides, a+ and d- have only a negative side, α_ and d+

have only a positive side.

3.2. Give an orientation to Qa\ this orientation induces an orien-
tation on the boundary components of Qa. Two components of
dQa — dM are parallel if with the induced orientation they are ho-
mologous in dW\ otherwise they are antiparallel. Analogously we
define paralellism of vertices in Γ (see [6, 2.1] for the definition).
All the vertices of Γ contained in R+ (R-) with the exception of
α+ (α_) are parallel. A vertex in R+ is antiparallel to a vertex in
i2_ (other than α+, cL). The vertex o+, (cL) is parallel to vertices
in i?_ (i2+), other than cL (d+).

We have the following parity rule [6, 2.1]: Let vι, V2 be vertices
of Γ, and let ij G {1,2}.
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(1) If an edge joins parallel vertices v\ and v2 with labels i and j
(i and j * , or 2* and j*) respectively, then α* and aj are antiparallel
(resp. parallel, resp.antiparallel).
(2) If an edge joins antiparallel vertices v\ and v2 with labels i and
j {i and j * , or i* and j*) respectively, then α* and α̂  are parallel
(resp. antiparallel, resp. parallel).

In the present case if Δ = 2 then dQa — dM has two components,
αi and α2, which are antiparallel. If Δ = 3, then dQa — dM has
only one component, i.e. a\\ in this case the parity rule traduces
to: an edge joins parallel vertices v\ and v2 in Γ with labels i, j G
{1,2, 3, 4, 5, 6}, if and only if i and j have different parity.

We make the convention that in all our Figures the vertices paral-
lel to b have labels ordered li, 21? 2*, 1*, 13, 23, 2J, 13 or 1, 2, 3,4, 5,6
in an anticlockwise direction. The vertices antiparallel to b have
labels ordered in the opposite direction.
3.3. An edge is level if its ends are equally labeled (ignoring the
asterisk and the 1,3 subindex). Define a path and cycle in Γ in the
usual way.

For x G {li, 2i, 2*, 1*, 13, 23, 2J, 1$ or x G {1, 2, 3,4, 5, 6}, an x-
path is a path in Λ so that the beginning point of each edge is
labeled with x, and all its vertices are parallel. An x-cycle is an
rr-path which is a cycle. An innermost cycle is a cycle which is
the boundary of a disk without edges or vertices in its interior. A
Scharlemann cycle is an x-cycle which is an innermost cycle. Let 7
be a cycle with edges 61,. . . , en, and vertices vι,..., υn, and so that ê
is incident to vι and υi+ι (mod n), with labels Xi and yι respectively;
the label sequence of 7 is the sequence ?/n, xι, y\, x2^ , yn-\,xn.

Let Λ be a subgraph of Γ, and let x G {li, 2U 2J, 1J, 13,23, 2J, 13}
or x G {1, 2, 3,4, 5, 6}. We say that Λ satisfies P(x) if (see [3, 2.6]):
For each vertex υ in Λ there exist an edge of Λ incident to v with
label x and connecting v to a parallel vertex.

If Λ satisfies P(x) for some x, then it is possible to construct an
x-path beginning at any vertex, and this path will close, forming an
x-cycle in Λ.

LEMMA 3.4. Let A be a subgraph of Γ which consists of the in-
tersection of Γ with a disk, such that all its vertices are parallel,
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and that satisfies P(x) for some x. Then Γ contains a Scharlemann
cycle.

Proof. The proof is a straightforward modification of [3, 2.6.1,
2.6.2]. D

LEMMA 3.5. There is no innermost cycle in Γ whose label se-
quence is one of the following
(a) 1,2,1,2,..., 1,2, in the case Δ = 2, where the asterisk and the
subindex have been ignored.
(b) 7χ, J3, Iu / 3 , . . . , Iι,Is, in the case Δ = 2, where I = 1 or 2 but
the same on each label, and the asterisk has been ignored.

(c) l i_ , 13_, l i_, I 3 - , , li-> I 3 - or l _ l 5 1 _ 3 , l_i , 1 _ 3 , . . . , l_ i , 1_ 3 ;

in the case Δ = 3, where — stands for 1 or 3, but not necessarily
the same on each label, and the asterisk has been ignored.
In particular there is no Scharlemann cycle in Γ.

Proof. Suppose σ is an innermost cycle, say σ consists of vertices
vι,V2,...,vn, and edges 6 χ , . . . , e n , where β{ joins V{ and Vi+\ (mod

n). There is an arc pi in υ^ joining the labels incident to e^-i and
Ci, and which does not contain any label in its interior. Let D be
the disk in Γ bounded by σ, it follows that dD = (Ue*) U ( U A ) . If
σ is a loop then Qa is 5-compressible, which is a contradiction, so
suppose σ has at least two edges.

If the edges e» have endpoints labeled 1-2, then all the arcs pi
lie over the annulus E cobounded by a\ and α2, and when travel-
ing along σ in a given direction all the pi run from a\ to a2 (or
vice versa). The annulus E and the two disks in the interior of
B bounded by a\ and a2 cobound a 3-ball C C B whose interior
is disjoint from Qa. Note that dD C Qa\JE, and then a regu-
lar neighborhood of Qa \J C \J D is a punctured lens space, which is
impossible.

Suppose the edges e» are level. First note that the arcs pi lie all
over Rι or all over R2. To see that suppose the opposite; then there
is an arc pi which lies over Rι and an arc pj which lies over R2, this
is possible only if Δ = 3. Take two points, one in the interior of each
of pi and pj] there is an arc lying over dW which joins them and
which intersects transversally Qa exactly once, and there is also an
arc lying over D joining these points and which is disjoint from Qa.
So there is a simple closed curve meeting transversally the sphere
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P in one point, which is impossible. Therefore the arcs pi lie all
over i?χ or i?2, say R\. pi has its endpoints in e\ and e% (or /Ί and
/3) and when traveling along σ in a given direction all the pi run
from ei to e% (or vice versa). Then 3D C Qa\)Rι, a n d a regular
neighborhood of Qa U R\ \j D is a punctured lens space, which is
not possible.

Finally, note that the label sequence of a Scharlemann cycle is
like one of the above sequences. D

LEMMA 3.6. Suppose that D is a disk component of R(j) which
does not contain a± nor d±. Let Δ = 2 (Δ = 3). Then for each
x G {li, 2χ, 2*, 1*, 13, 23,2*, 1*} (x G {1, 2, 3,4, 5,6}) there is at least
one edge with label x at a vertex in D which crosses the suture 3D.
So there are at least 8 (6) edges crossing 3D.

Proof. If this does not happen for some x then Λ = D f] Γ has
P{x)1 contradicting 3.4 and 3.5. D

LEMMA 3.7. Suppose that D is a disk component of R(j) which
contains only one of α±, d±. Let Δ = 2 (Δ = 3) ; then there are at
least 4 (3) edges which cross 3D, other than eα, e .̂

The proof is as in [6, 2.6].

LEMMA 3.8. Let Δ = 2. d± is labeled in one of the following
ordered ways:

2 * , l t , l 3 , 2 3 ; or 2 ί , i ; j l 1 , 2 1 .

The positive and negative sides of c are labeled in the same way as
d+ and αL respectively.

Proof. The sequence of labels in d+ has to be a subsequence of
1, 2, 2*, 1*, 1, 2, 2*, 1*. Note that, in the given order of the labels, the
first label in d+ is connected to the last label in ύL, via a subarc of a\
or (i2 contained in 3η(βι). So one of these labels is 1 and the other
1* (or 2* and 2), see Figure 1. This implies the sequence of labels in
d+ is like 1, 2, 2*, 1* or 2*, 1*, 1, 2. The label lχ at a+ is joined to the
label I3 at α_, via a subarc of a\ contained in dη(βo)] also, these
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two labels are joined, via subarcs of αi contained in dη(βa) to labels
l i and I3 at d±. If d+ has labels 1,2,2*, 1*, then there is a label lχ
at d+ and a label I3 at d_ (or vice versa), so there is a subarc of a\
contained in dη(βι) which joins these two points. This implies that
a\ meets λ0 U λi in four points, a contradiction. D

LEMMA 3.9. Let Δ = 3. a\ meets the six points of intersection be-
tween aγ and λo in one of the following ways, cyclically, 1, 2, 5,4,3,6
or 1,4, 3, 2, 5,6. {The former is shown in Figure 4 )

Proof Travel around a\ starting at the point labeled 1 in a\ f| λo,
and in the direction of the orientation of β. Note that the odd and
even numbers in a\ f| λo have opposite orientation. It follows from
Figure 2 that traveling in that direction, 6 is followed by 1, 2 by 5,
and 4 by 3. So the sequence of labels in a\ has to be one of those
written above. D

LEMMA 3.10. If aι meets its points of intersection with λo in the
cyclic order 1, 2, 5, 4, 3, 6 thend+ (GL) is labeled 5, 6, 1 (2, 3, 4)
or 2, 3, 4 (5, 6, 1). If aι meets its points of intersection with XQ
in the cyclic order 1, 4, 3, 2, 5, 6, then rf+ (cL) is labeled 3, 4, 5
(6, 1, 2) or 6, 1, 2(3 , 4, 5).

Proof Note that if a pair of labels, say 1,2, are consecutive in
λo (and then in λi) and also in oχ, then one of these labels lies in
<i+, and the other in e/_. This implies that the labels of d± are as
desired. See Figure 2. D

3.11. Let D be a disk contained in T so that dD cuts transversally
two special vertices. Suppose all the vertices in D are parallel,
except possibly one of the special vertices meeting dD. Suppose
that a±,d± are not in the interior of Z), and that no edge crosses
dD. Let Λ = Tf]D. Call the labels of the two vertices which meet
dD, the labels oΐdD. Suppose the labels of dD in the case Δ = 2 are
#i> χ2 5 #3, #4, A4, A;3, &2? &i) ίn this cyclic order, as shown in Figure 5,
where the labels X{ correspond to one of the vertices which meet dD,
and the labels h to the other one. In the case Δ = 3 consider six
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labels in dD, three for each vertex meeting dD. Suppose the vertex
containing the labels xt 's is parallel to all vertices in the interior of
D.

LEMMA 3.12. Let D be as in 3.11. Then for each xi7 i = 1,2,3,4,
there is a Xi-path starting at dD, and finishing at the other side of
dD with label k{.

Proof. For the label X\ take a Xχ-path beginning at dD, this path
has to finish at the other side of dD, otherwise there is a ^i-cycle,
and then by 3.4 a Scharlemann cycle, which contradicts 3.5, so the
path finishes at a label k^ in dD, i\ > 1. The complementary
part of 7i which contains the others labels x^s has P{x2). Now
take a α^-path 72 beginning at dD, it finishes at dD with label ki2,
%2 > i\. Repeating the argument for x3 and £4, we conclude that
each Xi-path has to finish in dD at the label fcz. D

LEMMA 3.13. Let Δ = 2. The following configuration of vertices
is not possible: Suppose we have a situation as in 3.11, where D
cuts one of b or a±, and one of c or d±, and the labels of dD are
in one side the positive or negative side ofb or a±7 and in the other
side the positive or negative side of c or d±.

Proof Suppose first that D cuts b and c, and assume w.l.o.g.
that all the vertices lying in the interior of D are parallel to b.
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Therefore XI,X2 5 ^3J^4 are 13,23,2^,13 or li,2i,23,l* respectively,
and ^1,^2,^3,^4 are 23,1^, 13,23 or 2*, I3, lχ, 2i respectively, for b
and c are antiparallel. See Figure 6. Then by 3.12 for each z, 1 <
i < 4, there is a r^-path 7,- starting at dD with label X{ and finishing
at dD with label kι. Incident to the label k2 (= 1* or I3) is an edge
e whose other end is at a vertex v with label 23 (or 2χ). Construct
a l3-path (or a lx-path) 7 starting at v\ this path will close forming
a cycle or will reach a vertex incident to the path 71. So the path
7i-€-7 will contain a cycle, and by an argument as in 3.4 there will
an innermost cycle σ (σ can be chosen to be a Scharlemann cyle if
it does not contain c, and if it does contain c, then can be chosen
to be a x-cycle, where x is one of the labels 1,1*, 2,2*, and we have
ignored the subindices 1,3). If the vertex c is part of the cycle σ,
then all the edges of σ have ends labeled 1-2 (i.e. σ does not contain
level edges, for no edge incident to c is level); if c is not in the cycle
σ, then σ is a Scharlemann cycle. Both cases contradict 3.5.

Now suppose D cuts b and d±. Then the labels #1, #2, #3,^4
correspond to the labels 13,23,2*, I3 or 11 ? 21? 23,1^, and &χ, fc2, &3, &4
to the labels 23,13,1*, 23 or 2χ, li, I3, 2J, for b and d± are parallel.
Note that in any of the four possible choices of labels there is a label
x in common in b and in d±: which implies that T\JD has P(x),
which contradicts 3.4 and 3.5.

If D cuts a± and one of c or 4 ? an argument as in the previ-
ous cases yields a contradiction. Note that a± is parallel to c and

FIGURE 6.
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antiparallel to d±. D

LEMMA 3.14. Let Δ = 3. The following configuration of vertices
is not possible: Suppose we have a situation as in 3.11, where D
cuts one ofb or a± and one of c or d±, and the labels of dD are in
one side the positive or negative side of b or a±, and in the other
side the positive or negative side of c or d±.

Proof. Suppose first that D cuts b and c, and assume w.l.o.g. all
the vertices lying in D are parallel to b.

Case 1. The labels x^s on dD correspond to the negative side
of b and the ki's to the positive or negative side of c.

Then Xi, X2) ̂ 3 a r e 13 2, 3 respectively and fcl3 &2, k% are 5, 6,1, or
2,3,4, or 3,4,5, or 6,1,2. See Figure 7. Then by 3.12, for each
i,i = 1,2,3, there is a #t-path ji starting in dD at label X{ and
finishing in dD at label k{. If &i, &2, &3 are 2,3,4 or 6,1, 2, this will
contradict the parity rule, for b and any vertex in the interior of D
are antiparallel to c. So suppose first A4, &27 k$ are 5, 6,1. Let e be
the edge incident to c at label k\ the other end of 6 is at a vertex υ at
a label 1. Start a 2-path 7 at v. This path will close forming a cycle,
or will reach a vertex incident to the path 72. So the path 72-^-7 will
contain a cycle, and by an argument as in Lemma 3.4 there will be
an innermost cycle σ. If c is not in σ, then it will be a Scharlemann
cycle, which contradicts Lemma 3.5. If c is part of σ, so is the arc in
c joining the labels k\ and &2 Remember that 1, 2, 3 represent in a
short notation the labels 11 3 ? 1J1? I33, and 4, 5,6 represent the labels
I3U I n , 133- The label sequence of σ is like 1,2,1,2,..., 1,2,6,5, i.e.
is like I13,1J1? 1 1 3 ,1^, . . . , I33, I n . This contradicts 3.5.

Suppose now kι,k2,ks are 3,4,5 respectively. Let e be the edge
incident to c at label &3; its other end has label 3 at a vertex υ. Take
a 2-path 7 starting at v. Then the path 72-6-7 will form a cycle,
and as before there is an innermost cycle σ. If c is not in σ, then
it is a Scharlemann cycle. If c is in σ, then σ has a label sequence
3, 2, 3, 2,..., 3, 2,4, 5, note that this sequence contradicts 3.5.

Case 2. The labels x^s on dD correspond to the positive side of
b.

Then xi,^2,^3 are 4,5,6 respectively, and as in Case 1, there
are four possibilities for the labels &i,&25&3 As in Case 1, the
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FIGURE 7.

sequences 5,6,1 and 3,4,5 are not possible since they contradict
the parity rule. The sequences 2,3,4 and 6,1,2 are not possible
for they would imply the existence of a lens space summand in S3.
In the case 2,3,4 there is an innermost cycle with label sequence
4, 5,4, 5,..., 3,2, and in the case 6,1, 2 there is an innermost cycle
with label sequence 6,5,6, 5,..., 1,2; both contradict 3.5.

Suppose now D cuts b and d±.
The labels x^s on dD correspond to the negative or positive side

of b and the labels A ̂ s to d+ or cL. There are eight possible choices
of labels. Note that in any choice of labels there is a label x, equal
to some fcj, and because b and d± are parallel this implies that Γf]D
has P(x) for some label a;, which contradicts 3.4 and 3.5.

If D cuts a± and one of c or 4 5 an argument as in the previ-
ous cases yields a contradiction. Note that a± is parallel to c and
antiparallel to d±. D

LEMMA 3.15. The following configuration of vertices is not pos-
sible: Suppose we have a situation as in 3.11, where D cuts b and
a±, and the labels of dD are in one side the positive {negative) side
of b, and in the other side α+ (α_).

Proof. Let Δ = 2. Suppose first that the labels of dD corre-
spond to the positive side of b and to α+, and assume w.l.o.g. that
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all the vertices lying in the interior of D are parallel to b. There-
fore #i, :r2? £3,^4 are 13,23,2^1.3 respectively, and ku k2, k$, k± are
li, 2χ, 23,1* respectively, for b and α + are antiparallel. Here we do
an argument as in 3.13. By 3.12 for each i, 1 < i < 4, there is a
α^-path 7i starting at dD with label x\ and finishing at dD with
label k{. Incident to the label k2 — 2χ is an edge e whose other end
is at a vertex v with label 23. Construct a 2^-path 7 starting at v\
this path will close forming a cycle or will reach a vertex incident
to the path 73. So the path 73-6-7 will contain a cycle, and by an
argument as in 3.4 there will an innermost cycle σ. If the vertex
α+ is part of the cycle σ, then all the edges of σ have ends labeled
23 — 2χ (ignoring the asterisk), if α + is not in the cycle σ, then σ
is a Scharlemann cycle; both cases contradict 3.5. If the labels of
dD correspond to the negative side of b and α_, a similar argument
yields a contradiction.

Let Δ = 3. Suppose that the labels of dD correspond to the pos-
itive side of b and to α+, and assume w.l.o.g. that all the vertices
lying in the interior of D are parallel to b. Therefore Xi,x2,^3 are
4, 5,6 respectively, and A4, A:2, ̂ 3, are 1,2,3 respectively, for b and α_
are antiparallel. Then as in the previous case there is an edge with
ends labeled 4 and 1, which lie on antiparallel vertices, which contra-
dict the parity rule. If the labels of dD correspond to the negative
side of b and α_, a similar argument yields a contradiction. D

4. (M n,7 n) is 0-taut.

LEMMA 4.1. Suppose that (M n,7 n) is not Φ-taut. Then dMn

has at most two boundary components. Suppose first that dMn has
only one boundary component. This boundary component has two
innermost sutures, which determine two disks: one is in R+ and
one in itL ; denoted by D+ and D_ respectively. Denote by £L, E+
the annulus incident to D+ and D_ respectively. Note that there
may be more annuli between E+ and E_. In this case the following
are all the possible configurations of the special vertices {see Figure
9 in [6]):

Case 1. α + is in D+, c is in Zλ_, α_ and d_ are in J?_; b and
d+ are in E+.
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Case 2. a+ is in D+, GL is in D-, α_ and c are in E-, b and
d+ are in E+.

Case 3. b is in D+, GL is in D_, α_ and c are in E-, α+ and
d+ are in E+.

Case 4. b is in D+, α_ and GL are in Z?_; c is in E-, α + and
d+ are in E+.

Case 5. b is in D+, α_ and c are in D_, GL is in E-, α+ and
G?+ are in E+.

Case 6. b is in D+, c is in D_ ; α_ and cL are in E-, a+ and
d+ are in E+.

Case 7. a+ and d+ are in D+, c is in D-, α_ and d_ are in
E-, b is in E+.

Case 8. b and d+ are in D+, c is in D-, α_ and d_ are in E-,
α + is in E+.

Case 9. b and c?+ are in D+, α_ and c are in D-, d- is in E-,
α + is in E+.

Case 10. a+ and b are in D+ ; c and rf_ are in Zλ_; α_ is in
E-, d+ is in E+.

Case 11. d+ is in D+, α_ is in D-, c and oL are in E-, b and
α+ are in E+.
Suppose dMn has two boundary components, say T\, T<ι; each has

only one suture, dividing 2\ in Di ) + and -Di,-; and T<ι in Z?2,+ and
D2-. The following are all the possible configurations of the special
vertices {see Figure 10 in [6]):

Case 12. b and d+ are in Di,+ ; rf_ is in Z?i,_, α+ is in D2,+, α-
and c are in D2,-

Case 13. b is in D^+, c is in £>i,-, ^+ and d+ are in D2,+> a-
and GL are in D2,-.

Case 14. α+ and b are in D\^+, α_ is in -Di,-> d+ is in D2j+, c
and d- are in D2^.

Proof. Lemmas 3.6, 3.7 and the fact that the negative side of a
vertex has 4 or 3 labels imply the following facts, whose proofs are
analogous to the corresponding in [6]:

(a) A component N of dMn which does not contain a vertex of β
is a 3-ball with one suture on its boundary, so is 0-taut [6, 3.1].

(b) A disk D in R± contains special vertices [6, 3.2].
(c) A component of R± adjacent to a disk also contains a special

vertex [6, 3.3].
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(d) A disk D in R± contains at most two special vertices [6, 3.4].
(e) A component Γ of dMn has at most three disks components

ofi?( 7) [6,3.5].
(f) Let D be a disk in R±. Suppose that the area adjacent to D

is an annulus E. Suppose a+ (rf_) is the only special vertex in D.
Then D contains simple vertices and E contains either c or d- (b or
α+) [6, 3.6].

(g) A component T of dMn has at most two innermost sutures
[6, 3.8].

(h) Let D be a disk in R±. Suppose that the area adjacent to
D is an annulus E. Suppose α_ (cf+) is in E, and 6 (c) is the only
special vertex in D. Then either c or cL (6 or α+) are in E [6, 3.9].

Note however that the proofs of [6, 3.7; 3.11] do not follow from
3.6, 3.7. Suppose dMn has only one component, then claims (a)-(h)
almost imply which are all the configurations of the special vertices.
Doing an argument similar to [6, 3.12-3.15] we get that Cases 1-11
are all the possible configurations of the special vertices. Cases 10
and 11 do not appear in [6, 3.16], but appear here for we are not
using [6, 3.7; 3.11].

Suppose T is a component of dMn. Then doing an argument as
in [6, 3.17], T cannot meet only α + and α__, or only d+ and cL. This
implies that dMn has at most two components. If dMn has two
components, say T\ and T2, is not difficult to see that Cases 12, 13,
14 are all the possible configurations of the special vertices. Case
14 appears here and not in [6, 3.17] because [6, 3.7; 3.11] are not
being used. D

PROPOSITION 4.2. (Mniηn) is 0-taut.

Proof. We will show that any of the Cases of 4.1 yields a contra-
diction.

Case 1. In this Case α+ is the only special vertex in D+. Doing
an argument as in [6, 3.6], we see that there are simple vertices in
D+, and no edge incident to α + crosses dD+. Then there are exactly
4 edges (or 3, depending if Δ = 2 or Δ = 3) crossing dD+ which
come from simple vertices. These edges have to meet d_. It is not
difficult to see that there is a disk D which cuts a± and d±, as in
3.11, where the labels of <i_ and a+ correspond to the labels of dD.
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Note also that no edge crosses dD. An application of 3.13 and 3.14
yields a contradiction.

Case 2. As in Case 1, a+ is the only special vertex in D+, there
are simple vertices in D+, and no edge incident to α + crosses dD+.
Then there are exactly 4 edges (or 3, depending if Δ = 2 or Δ =
3) crossing dD+ which come from simple vertices. These edges
have to meet the negative side of c. Let kι,k2ikz, /c4 be the labels
corresponding to the negative side of c, ordered according to their
cyclical occurrence in c. Let 71 (74) = (edge incident at c at label
k\ (k±))Γ\E-, and let a be the arc in c which goes through the
negative side of c, and which joins the labels k\ and k±. There is an
arc β C dD+ joining the endpoints of 71 and 74, and so that there
is a disk F C ϋ7_, whose boundary is dF = 71 U 74 U a U β. There
are two possibilities:

(1) α_ lies in F. In this Case we have a situation as in 3.11, with
α_ and the positive side of c as the vertices on the boundary of a
disk D which contains F. An application of 3.13 and 3.14 yields a
contradiction.

(2) α_ does not meet F. In this Case there is a disk D as in 3.11,
with a+ and the negative side of c corresponding to the vertices on
dD. An application of 3.13 and 3.14 yields a contradiction.

Case 3. It is similar to Case 1, with the roles of rf_ and α+
interchanged.

Case 4. In this case 8 (or 6) edges cross ΘD+, at most 4 (3)
of them can reach the negative side of c, so there are 4 (3) edges
incident to the negative side of b which cross 9/)+, and 4 (3) coming
from a simple vertex or the positive side of b which have to meet the
negative side of c. Let fci, k2, &3, A;4 be the labels corresponding to
the negative side of c, ordered according to their cyclical ocurrence
in c. Let 71 (74) = (edge incident at c at label fci (k4))f]E^, and
let a be the arc in c which goes through the negative side of c, and
which joins the labels k\ and £4. There is an arc β c dD+ joining
the endpoints of 71 and 74, and so that there is a disk F C £_,
whose boundary is dF = 71 U7 4UαU/λ There are two possibilities:

(1) The edges incident to the negative side of b meet F. We have
a situation as in 3.11, with the negative side of b and the positive
side of c as the vertices on the boundary of a disk D which contains
F. An application of 3.13 and 3.14 yields a contradiction.
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(2) The edges incident to the negative side of b do not meet F.
Then there is a disk D as in 3.11, with the positive side of b and
the negative side of c corresponding to the vertices on dD. An
application of 3.13 and 3.14 yields a contradiction.

Case 5. It is similar to Case 4, in fact simpler, with d_ instead
of c.

Case 7. It is similar to Case 4, just changing the roles of b and
c.

Case 8. It is similar to Case 5, changing b by c, and d- by α + .
Case 6. In this case doing an argument identical to [6, 4.8] for

the same case, we conclude that the 4 (3) edges incident to the
positive side of b cross dD+ and meet α_, the 4 (3) edges incident
to the negative side of b do not cross 9D + , and there are 4 (3) edges
incident to simple vertices which cross dD+ and meet cL. Then
there is a disk which cuts b and cL, with the negative side of b and
GL as the vertices on dD, and no edge crosses dD. An application
of 3.13 and 3.14 yields a contradiction.

Case 9. In this case doing an argument as in [6, 4.8], we conclude
that there are 4 (3) edges crossing <9D+, all coming from the negative
side of b. Then we can find a disk as in 3.11, where d+ and the
positive side of b correspond to the vertices on dD. 3.13 and 3.14
show that this is not possible.

Case 10. Doing an argument as in [6, 3.11 subclaims 2-4], we
get that no edge joins the positive side of b and α_, no edge incident
to a simple vertex, or to the positive side of b, or to α + crosses dD+.
Then the 4 (3) edges incident to the negative side of b are the only
edges which cross dD+. So there is a disk D which cuts b and α+,
as in 3.11, α + and the positive side of b correspond to the vertices
on dD, and no edge crosses dD. An application of 3.15 yields a
contradiction.

Case 11. Doing an argument as in [6, 3.6 claims 1, 2] we get
that there are simple vertices in JD_, and no edge incident to α_
crosses dD-. So there are 4 (3) edges crossing <9Z)_, all coming
from simple vertices and which have to meet α + or the negative side
of b. An argument as in [6, 3.7 claim] shows that none of the edges
which cross dD_ meet α+, so all have to meet the negative side of b.
Here as in Cases 2 and 4 there are two possibilities, in one we find
a disk as in 3.11 with α_ and the negative side of b as the vertices
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on dD, and in the other a+ and the positive side of b correspond
to the vertices on dD. In both cases an application of 3.15 yields a
contradiction.

For Cases 12, 13 and 14 do an argument similar to Cases 9, 4 and
10 respectively. D

We have proved that (Mnjjn) is 0-taut, then by 2.11 the Seifert
surface S is 0-taut, so χ(S) = χ(k), S3 — k is irreducible and β
always crosses S in the same direction. This implies Cases (c) and
(d) of 1.3. This completes the proof of Theorem 1.3.

5. Proof of Corollary 1.5. In this section we prove Corollary
1.5. Let k be the trivial knot, and assume the hypothesis of Theorem
1.3. We want to prove that conclusions (b), (c) and (d) are not
possible. Suppose there is a β-taut disk S with dS = k. The
decomposition (M, 7, β) ——> (Mi,7i,/?i) is/?-taut, and Mi is a 3-
ball with only one suture on its boundary, i.e. the sutured manifold
hierarchy as constructed in 2.5 consist of only one step. dM\ is
divided into two disks denoted by D+ and £L.

LEMMA 5.1. Case (b) of Theorem 1.3 does not happen.

Proof. If it happens then βa does not intersect 5, so the only
vertices in D± are α±, d±. Then there is a loop at a+ or d+, or there
is an edge e other than ea incident to α+, say, which crosses dD+. If
the former happens then Qa is d-compressible, a contradiction. If
the latter happens then eα and the edge e divides D+ in two regions;
one of them, call it Z), does not contain d+. Take an outermost edge
incident to a+ which crosses dD+\ this determines a region, call it
D again, which does not contain edges in its interior. It is not
difficult to see that, using D, the planar surface P can be isotoped
to intersect W fewer times. D

5.2. Suppose in what follows that either Δ = 2 and p = 2, or
Δ = 3 and p = 1. Keep notation as in §3 and 4.

Note that there are four points of intersection between P and k]
this produces four edges, other than eα, e ,̂ which cross the suture
dD+ (= k). These edges are different, for otherwise there is an
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edge e, say in D+, joining two points on dD+. e divides D+ in two
parts; one of them, call it D, contains at most one of α + or d+.
If there are vertices in D then Γf]D has P(x), for some label x,
which contradict 3.4, 3.5. If there is no vertex in D, this gives a
d-compression disk for Qα, which is a contradiction.

LEMMA 5.3. No edge incident to α±, d± crosses the suture dD+.
(other than ea, e^).

Proof. Let e be an edge incident to α + which crosses dD+. e
divides D+ in two regions, one of them, call it D, does not contain
d+. If there are vertices in the interior of D then Tf]D has P(x)
for some label x, which contradicts 3.4, 3.5. If there is no vertex
inside D, do an argument as in 5.1. D

LEMMA 5.4. Any edge that crosses dD+ is incident to the negative
side of b or c.

Proof This is for index restrictions. Let e be an edge crossing
dD+. e is part of the boundary of a disk g C Qi, with I(q) — 0, and
e contributes one to the index. If e does not meet the negative side
of a vertex, then it reaches either a simple vertex or the positive
side of a special vertex, and the arc of dq next to e contributes one
to the index, so either q is a cancelling disk, which contradicts 2.7,
or e is incident to α_ or d+, which contradicts 5.1. D

LEMMA 5.5. Let e be an edge that crosses dD+. Then the ends
of e are equally labeled.

Proof. This is because D+ and D- form the boundary of a regular
neighborhood of the disk S used in the sutured manifold decompo-
sition, and then they look identical. D

LEMMA 5.6. There are simple vertices in D+ and D_.

Proof. If there is no simple vertex then there are four edges joining
b and c, and because there is no loop in Γ, 2 edges (or 1, depending
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if Δ = 2 or 3) connect each of α + and d+ to 6, so two edges with
consecutive labels connect a+ and d+.

Suppose first that Δ = 2. α+ is labeled 1,2,2,1 and d+ is labeled
2,1,1,2. There are two edges connecting α + and d+ with labels 1, 2
in α + and labels 2,1 in d+. These edges form a cycle with label
sequence 1, 2, 1, 2, which contradicts 3.5.

Suppose that Δ = 3. α + has labels 3,2,1, and d+ has labels 1,6, 5
or 4,3,2 or 5,4,3, or 2,1,6, for α+ and d+ are antiparallel. Then
there is an edge €2 connecting α+ and d+, with label 2 at α + and
label 6, 3, 4, or 1 at d+; note however that if the end of e2 at d+
is 1 or 3, we contradict the parity rule. Let t\ be the other edge
connecting α+ and d+. If the ends of ex and e2 at α+ are labeled 3,
2 respectively, and their ends at d+ are labeled 5, 4 or 1, 6, then
there is an innermost cycle with label sequence 2, 3, 5, 4 or 2, 3, 1,
6; note that both cases are in contradiction with 3.5. If the ends of
61 and e2 at α + are labeled 1,2, and their ends at d+ are labeled 5,
6, then there is an innermost cycle with label sequence 1, 2, 6, 5,
which contradicts 3.5. Note however that if the ends of t\ and 62 at
α+ are labeled 1, 2, and their ends at d+ are labeled 3, 4, then the
innermost cycle with label sequence 1, 2, 4, 3 does not contradict
3.5. In this case there is no edge joining b and c with labels 4, or
5, for none of these labels is in the negative side of b or c, so there
are four edges joining b and c with labels 6, 1, 2, 3. This shows
that there are two edges connecting α_ and cL, with labels 6, 5 and
2, 1 respectively; these edges form an innermost cycle with label
sequence 6,5,1,2, which does contradict 3.5. D

LEMMA 5.7. No edge joins b and c.

Proof. If there is an edge then the argument of 5.5 shows that
b and c come from the same point of intersection between βa and
Sj i.e. βa meets D only once. This implies that there is no simple
vertex in £>+, contradicting 5.6. D

LEMMA 5.8. If to a label x in the negative side of c is incident
an edge t\ that crosses <9D_; then the edge e2 incident to cL at label
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x is level or is incident to the negative side of c.

Proof The edge t\ is part of the boundary of a disk g c Q i , with
/((jr) = 0. 62 is part of the same disk q. By 5.7, e± is incident to a
simple vertex, and then by index restrictions e2 has to meet a simple
vertex or the negative side of c. In the first case 62 has to be level
because e\ is. D

LEMMA 5.9. Let Δ = 2. There is an x-cycle in D+ or D_, for
some label x.

Proof Because each edge crossing dD- is incident to the negative
side of b or c, we can assume w.l.o.g. that there are at least 2 edges
incident to the negative side of c which cross <9Z?_. Suppose the
negative (positive) side of c has labels 23,13,1J, 23 (2χ, lχ, 13, 2*), as
in Figure 8. Note that no edge in D_ with an end labeled I3 or 2\
can cross dD-, for none of these labels is in the negative side of b
or c. If 3 or 4 edges incident to the negative side of c cross dD-,
then 3 or 4 edges incident to d_ are level or are also incident to the
negative side of c. Then for at least one of the labels I3 or 2* there
is no edge connecting d_ and a vertex υ, whose label at υ is I3 or 2*.
This shows that the graph Λ = (ΓfΊ£L) - cL has P{Γ3) or P(2*)\
So suppose exactly two edges incident to the negative side of c cross

Suppose the edges incident to the negative side of c which cross
cλD_ have labels 2 3 ,1 3 in c. The edges incident to d_ at labels 2 3 ,1 3

are level or are incident to the negative side of c, so none of them
has its other end labeled 13 or 2J. Let t\ be the edge incident to
d- at label 13; it is also incident to a vertex v. Let e2 be the edge
incident to ύL at label 1J; if the other endpoint of e2 is not labeled
with I3, then Λ has P ( l 3 ) , so suppose 62 has that label. Start a
lg-path 7 at the vertex v. This path will finish with the edge €2, for
otherwise there is a 13-cycle in D_. Note that €1, 62 and 7 enclose
a region which has P( l i ) .

There are other possibilities for the labels of the edges incident
to the negative side of c which cross the suture dD_, but a similar
argument can be done. If the negative and positive side of c have
the other possible labeling, a similar argument is done. D



112 MARIO EUDAVE-MUNOZ

FIGURE 8.

LEMMA 5.10. Let Δ = 3. There is an x-cycle in D+ or D_, for
some label x.

Proof. Because each edge crossing dD- is incident to the negative
side of b or c, we can assume w.l.o.g. that there are at least 2 edges
incident to the negative side of c which cross dD-. Note that no
edge in D_ with an end labeled 4, 5, 6 can cross d£L, unless it is
incident to the negative side of e, for none of these labels is in the
negative side of b. Let Λ be as in 5.9.

There are several possibilities for the labeling of the negative side
of c and d_, namely 1, 6, 5 or 2, 1, 6 or 4, 3, 2, or 5, 4, 3. Consider
the first two cases; in these cases no edge with a label 4 in Z)_
crosses <9£L, so we look for a 4-cycle in Λ. If 3 edges incident to
the negative side of c cross <9D_, then all the edges incident to d-
are level, by 5.8, and it follows that Λ has P(4). Suppose exactly
two edges incident to the negative side of c cross 5LL; note that
these edges have consecutive labels in c, for otherwise they enclose a
region which has P(4) or P(5). If Λ does not have P(4), then there
is an edge e joining cL and a vertex v, whose label at υ is 4, and its
label at oL is an even number for GL is antiparallel to all vertices in
D-. If d_ is labelled 1, 6, 5, then by the previous observations there
is no such edge e. So suppose cL is labeled 2, 1, 6; the endpoint of e
at GL is 2 or 6, but note that in any case Λ has P(5), see Figure 9.
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FIGURE 9.

When the negative side of c has the third or fourth possible labeling,
do the same argument for the label 6. D

Clearly 5.9 and 5.10 are in contradiction with 3.4 and 3.5. This
completes the proof of Corollary 1.5.

6. Surgery on strongly invertible knots.

6.1. Equivariant torus theorem. Let M be an orientable, irre-
ducible 3-manifold with an involution r. Suppose M contains an
incompressible torus. Then one of the following holds:

(1) There is an incompressible torus or Klein bottle T in int(M)
transversal to Fixτ with T Π TT = 0 or TT = T.

(2) M = VLiUVΐU^-iUt/i, where Vt and U{ are solid tori,
= V{ and τU-ι = U\. There are annuli A{7 i = ± 1 , with

and Vi Π Ui - Ai, V{ f] U-i = rAi7 dV{ = A{ ( J τ A u dU{ = A{

Aι\JA-ι is an incompressible torus transversal to Fixτ. r\Vi is
orientation preserving.

This Theorem follows from [11, 4.5]. See Figure 4 in [11] for
an illustration of Case 2. Let N = M/τ. If Case (2) of Theorem
6.1 happens then it is not difficult to see that M is a Seifert fiber
space over the 2-sphere with 4 exceptional fibers, and that TV is a
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lens space, TV φ S1 x S2, S3. If Case (1) happens with T being
an equivariant Klein bottle, then an Euler characteristic argument
shows that N contains either a Klein bottle or a proyective plane.
These observations imply the following

COROLLARY 6.2. Let M be a 3-manifold which is a double cover
of S3 branched along a link k, with deck translation τ. Suppose M
contains an incompressible torus. Then there is an incompressible
torus T in M which is equiυariant, i.e. TT — T or rTf]T = 0.

THEOREM 6.3. Let k be strongly inυertible knot in S3, which is
not a satellite knot. If Mk(r) contains an incompressible torus then

(a)Δ(r,μ)<2.
(b) If Δ(r, μ) = 2 then there is an incompressible torus in Mk(r)

which intersects the surgery torus in two disks.

Proof. As k is strongly invertible, there is an involution r in 5 3 ,
with τ(k) — k, and kf]Fixτ — {2 points}, Fixr is an unknotted
simple closed curve. A regular neighborhood η{k) of k can be chosen
so that it is invariant under r. Then r resticts to an involution on
Mk = S3 — 'mtη(k). It is not difficult to see that r can be extended
to an involution τ r on Mk(r) for all r.

It follows from [15] that Mk(r)/τr = 5 3 , and that the projection
p : Mk(r) —> S3 is a double cover branched along a link kr — p(Fixτ)
of at most two components. The couple (S'3, kr) can be decomposed
as the sum of two tangles (.62^2)5 (BiiU), where (£25^2) is the
projection of the exterior of A;, and (J5χ, tr) is the projection of the
torus of surgery attached to the exterior of k. (^27^2) is a prime
tangle, (-Bi,ίr) is a trivial tangle. (jBi,ίi/o) can be identified with
the rational tangle (Si, 1/0) (cf. 1.1). (S3,kι/o) is the trivial knot;
therefore (5 3 , kr) can be seen as obtained from kyo by replacing the
tangle (i?i, 1/0) by the rational tangle (£?i,r) = (Bi,£ r), as in 1.2.

Assume in what follows that Mk(r) is irreducible. There is no
loss of generality in doing so, because it is known that only integral
surgeries can yield a reducible manifold [9]; further, by the solution
of the cabling conjecture for strongly invertible knots [6], if this
happened k would be a cable knot, i.e. a satellite knot or a torus
knot.
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We are assuming that Mk(r) contains an incompressible torus;
then by 6.1 there is an incompressible torus T, with τT = T or
rTf\T = 0. Suppose first that τTf]T = 0. In this case P = p(T)
is a torus disjoint from kr. P is incompressible in S3 — kr, and is
not parallel to the boundary of a neighborhood of Λ;r, for otherwise
T would be compressible. So P is a satellite torus. By Corollary
1.6, if Δ(l/0, r) > 1 the torus P can be isotoped to be disjoint from
(]?i,r), and then T can be isotoped to be disjoint from η(k), i.e. k
is a satellite knot, contrary to the hypothesis.

Suppose now that τT = T. By an Euler characteristic argument
Tf]Fixτ — { 4 points }. Then P = p(T) is a sphere intersecting
kr in 4 points, i.e. P decomposes kr as the sum of two tangles,
which are nontrivial, for otherwise T would be compressible. Both
tangles are prime for M^(r) is irreducible and T is incompressible
(see [13, Theorem 5]). By Corollary 1.5, if Δ(l/0,r) > 2 the sphere
P can be isotoped to be disjoint from (J5i,r), and then T can be
isotoped to be disjoint from k, so it is a satellite knot. If Δ(l/0, r) =
2, then P can be isotoped so that Pf]Bι consists of an essential disk
in B\ — tr. This implies that p~ι(Pf]B) = Tf)η(k) consists of two
disks; that is, T — Ίntη(k) is a genus one surface with two boundary
components of slope r on dη(k), where Δ(r, μ) = 2. D

Added in proof: C. Me A. Gordon and J. Luecke have recently
announced a proof of Theorem 6.3 for all hyperbolic knots.
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