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ESSENTIAL TORI OBTAINED BY SURGERY ON A
KNOT

MARIO EUDAVE-MUNOZ

It is proved that if Dehn surgery on a strongly invert-
ible knot, which is not a satellite knot yields a manifold
containing an incompressible torus, then the slope of the
surgery consists of a certain number of meridians and at
most two longitudes. Furthermore, if the slope has two
longitudes, then there is an incompressible torus which
meets the surgered solid torus twice.

Introduction. Let k be a knot in 53, and consider the following
construction: Take a solid torus neighborhood 7(k) of k, remove it,
and glue it back differently. Let My = S3 — intn(k). The different
regluings are parameterized by the isotopy class r, slope, of the
simple closed curve on the torus 0 M} that bounds a meridional disk
in the reglued solid torus. Denote the resulting closed 3-manifold
by My(r), we say that it is obtained by r-Dehn surgery on k. Slopes
on M, are parameterized by @ |U{1/0}, using a meridian-longitude
basis {p, A} for Hy(OMjy,). Then r corresponds to p/q if and only if
[r] = pu + gX in Hy(OMy). A(r,s) denotes the minimal geometric
intersection number of two slopes r, s on M. If r, s correspond
to p/q and a/b respectively, then it can be shown that A(r,s) =
|pb— qal|. For an excellent exposition of the main problems on Dehn
surgery on knots see the survey paper of C. McA. Gordon [7].

We consider the following problem: Suppose k is not a satellite
knot, i.e. Mj does not contain any incompressible, non-boundary
parallel torus. When is possible that My(r) does contain an incom-
pressible torus? i.e. when an essential torus can be created after
surgery?

If k£ is not a satellite and not a torus knot, then by results of W.
Thurston [20], k£ is hyperbolic and My(r) is hyperbolic for all but
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finitely many r. Also, results of S.A. Bleiler and C.G. Hodgson [1]
show that if £ is hyperbolic then M (r) has a Riemannian metric of
negative curvature for all but at most 24 values of r. These results
imply that if £ is not a satellite knot then M (r) may contain incom-
pressible tori at most for 24 values of r. A result of C.McA. Gordon
[8] says that if both M (r) and Mj(s) contain an incompressible
torus then A(r,s) < 8; this also implies that for all but finitely
many 7, My (r) does not contain incompressible tori. But these re-
sults do not give information about which values of the slope r are
possible, in case M;(r) does contain an incompressible torus. In
[7], Gordon conjectured that if Mj(r) contains an incompressible
torus then A(r, ) < 2, in other words, 7 is homologous to several
meridians and at most two longitudes.

In this paper we prove Gordon’s conjecture for the case when
k is a strongly invertible knot (Theorem 6.3); we show also that if
M;,(r) contains incompressible tori and A(r, u) = 2, then there is an
incompressible torus 7" in Mj(r) which intersects the reglued solid
torus in two meridional disks, or in other words, there is a properly
embedded, incompressible, punctured torus in M; whose boundary
consist of two curves on M}, of slope r. This last statement can be
seen as a kind of generalization of the cabling conjecture, which says
that only certain surgery on cable knots yields reducible manifolds,
or more explicitly, if M (r) is reducible then there is a properly
embedded, essential annulus on M, whose boundary has slope r on
OM,. There are examples of knots k, where k is not satellite, Mj(r)
contains an incompressible torus for some r so that A(r,pu) = 2
and there is an incompressible torus hitting the surgered solid torus
twice. The simplest example I know is 37/2-surgery on the (-2,3,7)
pretzel knot (see [10]). We have an infinite family of such examples;
in those knots there is a non-integral surgery producing a manifold
containing an incompressible torus, which hits the surgered solid
torus twice, and which divides the manifold into two Seifert fiber
spaces with base a disk and 2 exceptional fibers. Those knots also
admit two integral surgeries which yield Seifert fiber spaces with
base a sphere and at most 3 exceptional fibers. Then for those knots
there are 3 different surgeries producing non-hyperbolic manifolds.
It is also satisfied that any two of those exceptional surgeries are
at distance 1. Those examples will be explained in a forthcoming
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paper.

C. McA. Gordon and J. Luecke have announced a proof of Gor-
don’s conjecture for all knots. It is still unknown in the general
case, if when A(r,u) = 2 there is an incompressible torus hitting
the surgered solid torus twice. In the case when A(r,u) = 1 not
too much is known; it is not known for example if there is an upper
bound for the number of times an incompressible torus may hit the
surgered solid torus.

The proof of Theorem 6.3 is somehow inspired by the solution of
the cabling conjecture for strongly invertible knots [6]. First, if for a
strongly invertible knot k, M (r) contains an incompressible torus,
then by the equivariant torus Theorem of W.H. Holzmann [11],
there is an incompressible torus equivariant under the involution of
My (r). By taking quotients, the surgery problem is tranlated into a
problem of sums of tangles. In §1 we state the required results about
sums of tangles, which are Theorems 1.3, 1.4 and Corollaries 1.5 and
1.6. In §2, 3 and 4 we prove Theorems 1.3 and 1.4 by using sutured
manifold theory and a combinatorial argument. Corollary 1.5 is
proved in §5, and Corollary 1.6 in §1, for it follows easily from 1.4.
Through the paper we assume familiarity with [16] and [6]. In §6
we apply the Theorems on tangles to get a proof of Theorem 6.3.

1. Theorems from tangle theory.

1.1. A tangle (B,t) is a pair that consists of a 3-ball B and a pair
of disjoint arcs and simple closed curves ¢ properly embedded in B.
Let B; be the unit ball in B3, and let a, b, ¢, d, be four points in
0B lying in the linesY =272, X =0and Y = -2, X =0.

A tangle (B, t) is rational if:

(a) It is a trivial tangle, i.e. there is an homeomorphism of pairs
from (Bj,t) to the tangle (D? x I, {z,y} x I) where D? is the unit
ball in R? and z, y are distinct points in the interior of D2.

(b) tNIBy ={a, b, ¢, d}.

Two rational tangles (By,t), (Bi,t') are equivalent if there is an
homeomorphism of pairs h : (Bi,t) — (Bi,t') such that hlsp, = id.

There is a “natural” one to one correspondence between rational
tangles and QU{1/0} (see [2], [4], [14]). Denote by (B1,p/q) the
rational tangle determined by p/q € QU{1/0}. As (By,p/q) is a
trivial tangle, there is a disk D,,, properly embedded in B; which
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separates the strings of (By,p/q). Let J,;q = 0Dy, it is a simple
closed curve in 0B; — {a,b,c,d}. Define the distance between two
rational tangles (Bi,p/q) and (By,r/s), denoted by A(p/q,r/s), as
half of the minimal number of intersection between the curves J,/,
and J,/,. It can be shown that A(p/q,r/s) = |ps — qr].

A tangle (B, t) is prime if has the following properties:

(a) It has no local knots, i.e. any S? in B which meets ¢
transversally in two points, bounds in B a ball meeting ¢ in an
unknotted spanning arc;

(b) There is no disk properly embedded in B which separates
the strings of (B, t);

(c) B —t is irreducible, i.e. any sphere in B disjoint from ¢
bounds a 3-ball disjoint from ¢.

A knot or link k£ is doubly composite if it can be expressed as
the sum of two prime tangles, i.e., there is a sphere S meeting k
transversally in four points, such that each of the balls bounded by
S determines, with its intersection with £, a prime tangle. Such a
sphere is called a tangle-decomposing sphere, or simply a decompos-
ing sphere. A knot or link & is doubly prime if it is prime and is
not doubly composite. A knot or link % is a satellite knot or link if
there is an incompressible torus in S — k which is not parallel to a
component of dn(k). Such a torus is called a satellite torus.

A Seifert surface for a link k is a compact, orientable surface
none of whose components is closed and whose boundary is the
link. Define x(k) to be the maximal Euler characteristic of all Seifert
surfaces for k.

1.2. Let kbealinkin S3. Let B be a 3-ball in S® which intersects k
in two arcs, and such that (B, B k) is a trivial tangle. Suppose also
that (B’, B'Nk), where B' = cl(S® — B), is a prime tangle. Fix an
homeomorphism of pairs h : (B;,1/0) — (B, BN k). Define a new
link k(B,p/q) by changing (B, BNk) by h((B1,p/q)). k(B,1/0) is
just k. For simplicity denote h((Bi1,p/q)) by (B,p/q), and h(Jp/q)
by Jp/q-

Let S be a Seifert surface for £k with x(S) = x(k); it is incom-
pressible. S can be isotoped so that it intersects the 3-ball B in a
collection of disks; two of them have as boundary one arc of BNk
plus one arc in 0B; the other disks have as boundary a curve paral-
lel to Jy 9, so SN OB consist of two arcs and a collection of simple
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closed curves. If S is given an orientation, this induces an orienta-
tion on each simple closed curve of S 0B. We say that B intersects
S always in the same direction if all the curves S dB, with the
induced orientation, are homologous in 0B — h({a, b, ¢, d}).

If k(B,p/q) is doubly composite or satellite and P is a decom-
posing sphere or satellite torus, then P can be isotoped so that it
intersects B in a collection of disks, whose boundaries are parallel
to the curve J,/4 on 0B.

THEOREM 1.3. Let k be a link and B a 3-ball as before. Sup-
pose that k(B,p/q) is a doubly composite link. Let P be a tangle-
decomposing sphere for k(B,p/q), isotoped to intersect (B,p/q) in
a minimal number of disks. If A(p/q,1/0) > 3 then one of the
following holds

(a) P is disjoint from B.

(b) S — k is irreducible and there is a Seifert surface S for k
with x(S) = x(k), and such that S intersects OB only in two arcs,
which join the points h({a,b,c,d}).

If A(p/q,1/0) = 3, then either (a), (b), or

(c) 83—k is irreducible and there is a Seifert surface S for k
with x(S) = x(k), and such that B intersects S always in the same
direction. Furthermore, P meets OB exactly in one curve parallel
to Jp/q.

If A(p/q,1/0) = 2, then either (a), (b), or

(d) S® — k s irreducible and there is a Seifert surface S for k
with x(S) = x(k), and such that B intersects S always in the same
direction. Furthermore, P meets OB ezactly in two curves parallel
to Jy/q; or

(e) P meets OB ezactly in one curve parallel to J,q.

THEOREM 1.4. Let k be a link and B a 3-ball as before. Suppose
that k(B,p/q) is a satellite link, and T is a satellite torus, T not
a swallow-follow torus. Suppose T has been isotoped to intersect
(B,p/q) in a minimal number of disks. If A(p/q,1/0) > 1 then one
of the following holds

(a) T is disjoint from B.

(b) S3 — k is irreducible and there is a Seifert surface S for k
with x(S) = x(k), and such that S intersects 0B only in two arcs.

REMARK. Theorem 1.4 is a generalization of Theorem 3.1 in [18].
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In our terminology they consider only the case A = 2.

COROLLARY 1.5. Let k, B, k(B,p/q), P as in Theorem 1.5.
Suppose that k is the trivial knot or a split link. If A(p/q,1/0) > 2
then one of the following holds

(a) P is disjoint from B; or

() A(p/q,1/0) = 2 and P crosses OB in one curve parallel to
Jp/q-

COROLLARY 1.6. Let k, B, k(B,p/q), T as in Theorem 1.4.
Suppose that k is the trivial knot or a split link. If A(p/q,1/0) > 2
then T is disjoint from B.

Note that when k is a split link, cases (b), (c), (d) of Theorem 1.3,
and case (b) of Theorem 1.4 cannot happen, i.e. Corollaries 1.5 and
1.6 are obvious when k is a split link. The proof of 1.5 when & is a
trivial knot is given in §5.

Note that Corollaries 1.5 and 1.6 are a kind of generalization of
Theorems 2 and 4 in [5], and Theorems 2 and 3 in [6], by replacing
the fact of being a composite link by the fact of being a doubly
composite or satellite link. Corollaries 1.5 and 1.6 are potentially
useful in determining if a given link is doubly prime or non-satellite.
We have examples of case (b) of 1.5, which produce via double
branched covers, examples for Theorem 6.3 (b). In the case A =1
not too much is known; it is not known for example if there is an
upper bound for the number of disks of intersection between a tangle
decomposing sphere or satellite torus and the ball B.

1.7. Proof of Corollary 1.6. Suppose T is a satellite torus in
k(B,p/q) isotoped to intersect (B, p/q) a minimum number of times.
If (a) of 1.4 happens we are done. If (b) happens then there is a
disk D with dD = k, such that D intersects 0B only in two arcs.
Let o be an arc in D joining two points lying in the distinct arcs
of intersection between D and 0B. The two strings of the tangle
(B', B'N k) are parallel to «, so because (B’, B'(k) is not a trivial
tangle,  is a knotted arc in B'. Let T} = on(BUD). T; is an
incompressible torus in S® — k(B,p/q), disjoint from B. Looking
at the curves of intersection between T and 73 it is not difficult to
conclude that T is disjoint from B, except possibly when A = 1,
and T is the boundary of a neighborhood of a cable knot. (|
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2. Preliminary arguments from sutured manifolds.

2.1. Let § be the planar eyeglass 1-complex consisting of two circles
Bo and B; and an arc f3, joining them. Regard 8 as a complex in
R? C R?, and let U and W be regular neighborhoods of 8 in R? and
R3 respectively, so that U is a properly embedded planar surface in
the genus two handlebody W. U C OW has three components;
two of them, denoted by ¢y and ¢y, are parallel in U to Gy and (;
respectively. Denote the third by c,. Denote the cocore of 3, by
cg C OW. Let Ag, A1 be two circles in OW, parallel to cg, which
bound properly embedded disks in W which separate it in three
parts, say a neighborhood of each of 3y, 51 and (.. See Figure 2 in

[6).

2.2. Let k, B and (B,t), where t = Bk, be asin 1.2. Let W' =
B—intn(t). Clearly W’ is homeomorphic to a regular neighborhood
of 3; i.e., there is an homeomorphism f : W — W’. Assume that
f(co) is the cocore of one of the arcs of ¢, and f(c;) is the cocore of
the other arc. Also assume that f(ca) = Jo and f(cg) = Jij0. For
the sake of simplicity we will write ¢; instead of f(¢;),7 =0, 1, a, 8
and ); instead of f(A;), ¢ = 0, 1; that is, consider § as embedded
in B, and W as a neighborhood of 8 in S The curve Jp/, on
OW intersects the regular neighborhood of 3y () in a collection of
A = A(p/q,1/0) essential arcs, disjoint from ¢y (¢1), and intersects
a neighborhood of §, in 2A arcs, each joining A and ;.

2.3. Let n(k) be a neighborhood of k disjoint from W. Let M =
S3 —intn(k). Note that B, and B, are parallel to meridians of k.
Note that 3NOM = (). Consider M as a sutured manifold, all of
whose boundary is in Ry or R_; denote it by (M,~, 3) (cf. [16]).
By hypothesis S® — (kU B) is irreducible, for (B, B'Nk) is a prime
tangle; this implies that (M,~, ) is f-irreducible, so (M,~, () is
B-taut. (M,~y) may not be (-taut, i.e. it may be reducible or OM
may be compressible. () denotes the empty set, to be (-taut means
to be taut in the Thurston norm.

The proof of Theorems 1.3 and 1.4 will be as follows: First we
take a (-taut Seifert surface S for k, and a decomposing sphere
or satellite torus @ for k(B,p/q), which will be considered as a
parameterizing surface; then construct a sutured manifold hierarchy,
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starting with S and respecting ). The goal is to prove that the final
step in the hierarchy, i.e. (Mp,y,) is O-taut, for in this case [17, 2.7]
and [16, 3.3) imply that (M, ) is O-taut unless £ is the trivial knot,
and S is 0-taut, so x(S) = x(k), S®—k is irreducible and 3 crosses S
always in the same direction. In this section we show that (M, ;)
is (-taut if Q is a torus, and if @ is a decomposing sphere we show
the same, except in three cases, one of them being (e) of 1.3. This
implies 1.4 and 1.3 (b), (e); the remaining two cases are treated in
83 and §4.

2.4. Suppose k(B,p/q) is a doubly composite or a satellite link,
and let P be a decomposing sphere or satellite torus, not a swallow-
follow torus, for k(B,p/q). Consider P as a properly embedded
surface in S® — intn(k(B,p/q)); note that P is incompressible and
O-incompressible. P can be isotoped to intersect (B, p/q) in a col-
lection of disks D; properly embedded in (B,p/q), and such that
0D; is a curve parallel to J,/, in 0B. Assume this number of disks
is minimal among all the surfaces isotopic to P, and that the inter-
section is not empty, for otherwise we are done.

Let Q, = P —intB. Let (Q,0Q) C (M — intW,0M JdW) be
a surface consisting of three components, (o, (); and (), with the
following properties:
(a) Qo (@1) is an annulus for which one boundary component is
co C OW (¢; C OW) and the other is a meridian of dn(k); and either
(b) Q. is a connected planar surface, four of its boundary com-
ponents are meridians in M, and the others are parallel to J,/, in
oW ; or
(c) Q. is a connected genus one surface, and all of its boundary
components are parallel to J,/, in OW.

According to [16, 7.1], Q is a parameterizing surface for (M, v, 3).
Note that () is incompressible and, because P is not a swallow-follow
torus, @ is also d-incompressible.

2.5. Let S be a S-taut Seifert surface for k; put S in normal posi-
tion with respect to Q ([16, 7.2]). (See [16, 7.7] for the definition
of a sutured manifold decomposition respecting a parameterizing
surface). It is not difficult to see and is implicit in [16] that the su-
tured manifold decomposition (M, ) —2— (M, y,) is f-taut and
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respects (). Here we use the notion of sutured manifold hierarchy
as presented in [17, 2.1]. Construct a -taut sutured manifold hier-
archy

(M>77/8) —SLEEI_) (M17717ﬁ1) % PN S ” (Mnyfynaﬂn)

respecting Q. (See [17, 2.5], [16, 4.19; 7.8]). OM,, is a collection
of spheres. The surface S meets §y (31) in one point and @y (Q1)
in one arc. Following [16, 2.4(c)], [17, 2.1], the edges 3y, 1 and
B can be oriented so that at any point of intersection with an 5;
(hence with R(7;) = R4 (v;) UR_(v:) ) the orientation points in the
direction of the normal vector to S;. We can suppose [ has one
of the orientations showed in figure 3 in [6] (the choice of one of
them depends on the orientation of S7). Consider Ry (7;) (R-(7:))
as the part of 9M; in which the orientation points out of (into) M;.
Denote by @); and (3, the remnants of @) and § in M,;. Sometimes
for simplicity f,, Ri(vi), R_(7.), R(v;) will be denoted by 3, Ry,
R_, R(y) respectively.

2.6. Recall from [16, 7.4] what the index of a parameterizing sur-
face is, I(Q) = v + p + K — 2x(Q), where v is the number of
sutures and p the number of edges that 0@Q) crosses. For each arc
0 of QN n(v), where v is a vertex of (3, define x(J) to be —1 if §
passes between an edge of 3 pointing into the vertex and one point-
ing out, and define k(6) = —2 if § passes between edges of § both
pointing into the vertex or both pointing out (see figure 4 in [6]).
Let K = Y k. The curve J,,, C W has v =0, u = 4A, K = —6A,
and the curves ¢g, ¢; each have v = 0, u = 1, kK = —1. Hence if
Q. has p boundary components in OW, x(Q.) = x(P) — p, and so
I{Qq) = 2p(1 — A) — 2x(P). Also I(Qo) = I(Q1) = 0.

2.7. Suppose that for an arc A of (,, which contains no vertices,
there is a disk D C Q,, such that 9D = d; U d2, where §; C n(A),
09 C OM,, and d, crosses a suture; \ is called a cancellable arc, and
D is called a cancelling disk. Assume w.l.o.g. that the components
of M, which contain a vertex of # do not contain cancellable arcs
(see [6, 1.6]).

2.8. Denote by Q;n, ¢ = 0,1, the parameterizing surface obtained
from @), at the end of the hierarchy. Similarly denote by 3;,, i =



90 MARIO EUDAVE-MUNOZ

0,1, the 1-complex obtained from fJ; at the end of the hierarchy.
I(Q;) <0, by [16, 7.5; 7.6].

CLAIM . Each component q of Q;n for which 0Q;n N1(Bin) # 0,
is a disk for which I(q) = 0. Indeed 0g Bin is a single arc and
0q N OM,, is a single arc crossing a single suture.

The proof is similar to [18, claim 2]. Note that the surface S
meets Gy and f;.

This claim implies that there is a component g of Q; ,, ¢ a disk,
such that 0q runs through one of the vertices; all the other compo-
nents of Q; , are cancelling disks for an arc of §;,.

2.9. A component of M, which does not meet 3 is a 3-ball with a
single suture on its boundary. We will disregard these trivial compo-
nents and suppose with no loss of generality that all the components
of M,, meet 3. As a consequence of that we conclude that every
disk component of R, intersects 5. Note also that any component
of OM,, has sutures (see [6, 1.8] for details).

OM,, is a collection of spheres, so (M,,~,) is @-taut if and only
if each sphere has only one suture and is the boundary of a 3-ball.
Note that if a component of M,, has connected boundary, then this
sphere bounds a 3-ball, for M, is contained in S3.

LEMMA 2.10. If none of the surfaces S; intersects B, then (My, yn)
is 0-taut.

For the proof see [6, 1.13].

2.11. If (M,,~,) is 0-taut then by [17, 2.7] (M;, ;) is O-taut for
all 7 > 1, and either (M,~) is @-taut and so is irreducible and 0-
incompressible, or M is a solid torus (i.e. k is the trivial knot). Now
in any case, by [16, 3.3] the surface S is (-taut. It is not difficult to
see that this implies that x(S) = x(k) (for a proof see [19, 1.2]).

2.12. Suppose that some surface S; intersects (,. Then there are
two components of 3, which have a vertex. Denote the component
which has two ends in Ry (R-) and onein R_ (R;) by Ay (A_). De-
note the ends of A, by a;, a_, b, and the ends of A_ by d,, d_, c,
where b, c are the ends which are part of §,. a4, a— (d4, d_) are
part of By (01). ay, dy, blieon Ry, and a_, d_, clieon R_. 2.8
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shows that a, and a_ (dy and d_) lie in adjacent components of R
and there is a disk ¢ component of Qg , (Q1,) such that dgN oM,
is an arc joining a4 and a_ (d; and d_) and which crosses a suture.
See figure 5 in [6].

There is a collection of arcs on A, going from a, to b; each such
arc A is contained in the boundary of a component of ¢),, and for
this arc k(A) = —2. Call the part of A, which contains these arcs
the negative side of A,. Analogously, there is a collection of arcs
on A, going from a_ to b. For each such arc A, k(\) = —1. Call
the part of A, which contains these arcs the positive side of A, . In
a similar way we define the negative and positive side of A_

LEMMA 2.13. Suppose that some surface S; intersects B,. Then
no component of @, has negative indez.

The proof is as in [6, 1.15].

2.14. If P is a torus then I(Q) = 2p(1 — A) < 0 whenever A > 1.
This would contradict lemma 2.13 if some S; meets (.. So in this
case none of the S, intersects (., and then by 2.10 and 2.11 the
surface S is (-taut, S® — k is irreducible and x(S) = x(k), so we
have case (b) of Theorem 1.4. This completes the proof of Theorem
1.4.

If P is a decomposing sphere then I(Q) = 2p(1 — A) +4. So
I(Q) < 0 whenever A > 3. If A = 3 then I(Q) < 0, with equality
occurring only if p = 1. If A = 2 then I(Q) < 2, and note that
I(Q) =2onlyifp=1, I(Q) =0 only if p = 2, and I(Q) < 0 if
p>2. If I(Q) < 0, then 2.13 implies that none of the S; intersects
Ba, and by 2.10 and 2.11 the surface S is O-taut, x(S) = x(k) and
S3 —k is irreducible. This implies case (b) of Theorem 1.3. If A = 2,
I(Q) =2 and p =1 we get case (e) of 1.3.

From now on we will assume that P is a decomposing sphere, and
that [(Q) =0,ie. A=3andp=1,or A=2and p=2.

REMARK. The above proof for the case I(Q) < 0 proves essen-
tially the same thing that is proved in [18] and [12]. Instead of using
an eyeglass complex they use a complex consisting of the wedge of
two circles; it seems that with that complex it is not possible to do
the case when I(Q) = 0. The proof here for the case I(Q) < 0 is
like the one in [16, §8].
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3. The combinatorial setting. Our goal in this and next sec-
tion is to prove that (M,,,) is O-taut. We first introduce a com-
binatorial structure on dM,, and then prove Lemmas 3.4 and 3.5.
These Lemmas are used to prove Lemmas 3.6, 3.7, 3.13, 3.14 and
3.15. Lemmas 3.6 and 3.7 are used in §4 to show that if (M,,y,) is
not P-taut then there is a finite number of possible configurations of
the special vertices (Lemma 4.1). Then it is showed that all these
configurations are in contradiction with 3.13-3.15 (Proposition 4.2).
This will imply 1.3 (c) and (d).

3.1. Let T be one of the sphere components of dM,,. The points
GNT and the arcs 0Q, NT can be regarded as a graph I' in 7. A
vertex of I' is a point of 3N T and an edge is an arc component of
0@, NT, each one of its ends is at a vertex. Denote the components
of 0Q, — OM by a;,a, if A = 2, and by a; if A = 3. Denote by
€a = 0Qon NT (64 = 0Q1, NT) the edge joining a and a_ (d; and
d_), this edge exists for 2.8; it crosses a suture.

A; intersects a; in 2A points, j = 0,1; label them 1, %, 7, ¢*, ...
alternately around J;, and so that a point ¢ (z*) in Ag is connected,
via a subarc of a; contained in 07(8,), to a point labeled i (3*) in
A1. Let v be a vertex in I', then v in W is a circle; label the end of
an edge incident to v, other than €, and €4, with ¢ (¢*) if this point
is connected to a point in Ay labeled with 7 (¢*), via a subarc of q;
whose interior misses Ag, v, a+ and dy. See Figure 1 for the case
A = 2, and Figure 2 for the case A = 3.

Let A = 2. The curve a, separates 0B in two parts; one of them

*

FIGURE 1.
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does not contain ag, call it V. V) intersects k£ twice. Choose a
rectangle Ry C Vi, such that OR; consists of four arcs ej, es, €3, €4,
where eg, e3 are contained in 0V; = a1, and ey, e4 are arcs properly
embedded in V;. Suppose that R N\n(k) = @, then R; C 8W; note
that V; — R, has two components, each one of them intersecting
n(k) once, and assume that for any vertex v in T, v # a4, dy, we
have that v (Vi — R;) = 0. It can be assumed that if v = a4, d4,
then v OV C ey Ues C OR;. Analogously, there is a disk V;
and rectangle Ry for ap, with ORy = f1, fo, f3, f4. Label the end
of an edge € in T, labeled previously 1 or 1*, by 1; or 1} (13 or
1%) if eNa; C e; (€Na; C e3). Analogously change 2,2* to 24,2} or
23,25. It can be assumed w.l.o.g. that the collection of labels around
a vertex in I', other than ay, di, looks like 1,, 24, 23, 17, 13, 23, 27, 13.
We may assume that a is labeled by 1;,2;, 23,17, and a_ is labeled
by 13,23, 27,15. See Figure 3.

Let A = 3. The curve a; separates 0B in two parts, Vi, and
Vo, and there are rectangles Ry C Vi, and Ry C V5, as in the
previous case. Label the end of an edge € in I', labeled previously
1, by 13 if eNay C e; and eNa; C f;3. Analogously change the
labels in all the other cases. It can be assumed w.l.o.g. that the
collection of labels around a vertex in I', other than a4, di, looks
like 143, 177, 133, 15;, 111, 155. To avoid cumbersome notation change
these labels for the labels 1,2,3,4,5,6. We may assume that ay is
labeled by 1, 2,3, and a_ is labeled by 4,5,6. See Figure 4.

The vertices a4, d4, b, ¢ are named special vertices; any other
is called a simple vertex. Call the part of a special vertex which is
contained in the negative (positive) side of A, or A_ the negative
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FIGURE 4.

(positive) side of such vertex (see 2.12). b and ¢ have both negative
and positive sides, a, and d_ have only a negative side, a_ and d
have only a positive side.

3.2. Give an orientation to (); this orientation induces an orien-
tation on the boundary components of ),. Two components of
0Q, — OM are parallel if with the induced orientation they are ho-
mologous in OW; otherwise they are antiparallel. Analogously we
define paralellism of vertices in T (see [6, 2.1] for the definition).
All the vertices of T contained in R, (R_) with the exception of
a; (a_) are parallel. A vertex in R, is antiparallel to a vertex in
R_ (other than ay, d_). The vertex a, (d_) is parallel to vertices
in R_ (R,), other than d_ (d).

We have the following parity rule [6, 2.1]: Let vy, vy be vertices
of I, and let 4,5 € {1, 2}.
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(1) If an edge joins parallel vertices v; and vy with labels ¢ and j

(¢ and j*, or 7* and j*) respectively, then a; and a; are antiparallel

(resp. parallel, resp.antiparallel).

(2) If an edge joins antiparallel vertices v; and vy with labels 7 and
(¢ and j*, or ¢* and j*) respectively, then a; and a; are parallel

resp. antiparallel, resp. parallel).

J
(

In the present case if A = 2 then 0Q, — M has two components,
a1 and ag, which are antiparallel. If A = 3, then 0Q, — OM has
only one component, i.e. a;; in this case the parity rule traduces
to: an edge joins parallel vertices v; and vy in I' with labels 7, j €
{1,2,3,4,5,6}, if and only if  and j have different parity.

We make the convention that in all our Figures the vertices paral-
lel to b have labels ordered 1y, 2;,23,17,13,23,27,15 or 1,2,3,4,5,6
in an anticlockwise direction. The vertices antiparallel to b have

labels ordered in the opposite direction.
3.3. An edge is level if its ends are equally labeled (ignoring the

asterisk and the 1,3 subindex). Define a path and cycle in I" in the
usual way.

For z € {11,2,,23,1%,15,23,27,13} or z € {1,2,3,4,5,6}, an z-
path is a path in A so that the beginning point of each edge is
labeled with z, and all its vertices are parallel. An z-cycle is an
z-path which is a cycle. An innermost cycle is a cycle which is
the boundary of a disk without edges or vertices in its interior. A
Scharlemann cycle is an z-cycle which is an innermost cycle. Let
be a cycle with edges €1, . . ., €,, and vertices vy, . . ., Un, and so that ¢;
is incident to v; and v;4; (mod n), with labels z; and y; respectively;
the label sequence of +y is the sequence y,, z1,y1,%2, - -, Yn_1, Tn-

Let A be a subgraph of ', and let z € {14, 21, 23,17, 13, 23, 2, 15}
orz € {1,2,3,4,5,6}. We say that A satisfies P(z) if (see [3, 2.6]):
For each vertex v in A there exist an edge of A incident to v with
label x and connecting v to a parallel vertex.

If A satisfies P(z) for some z, then it is possible to construct an
z-path beginning at any vertex, and this path will close, forming an
z-cycle in A.

LEMMA 3.4. Let A be a subgraph of I' which consists of the in-
tersection of I' with a disk, such that all its vertices are parallel,
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and that satisfies P(x) for some z. Then T contains a Scharlemann
cycle.

Proof. The proof is a straightforward modification of [3, 2.6.1,
2.6.2]. O

LEMMA 3.5. There is no innermost cycle in I' whose label se-
quence s one of the following
(a) 1,2,1,2,...,1,2, in the case A = 2, where the asterisk and the
subindezr have been ignored. A
(b) IL,I3,I,13,...,11, I3, in the case A =2, where I =1 or 2 but
the same on each label, and the asterisk has been ignored.
(C) 11_, 13_, 11_., 13_, cany 11_, 13- or 1_.1, 1_3, 1__1, 1_3, ey 1_1, ].__3,
in the case A = 3, where — stands for 1 or 3, but not necessarily
the same on each label, and the asterisk has been ignored.
In particular there is no Scharlemann cycle in T.

Proof. Suppose o is an innermost cycle, say o consists of vertices
V1, V2, ..., U, and edges €, ..., €,, where ¢; joins v; and v;; (mod
n). There is an arc p; in v;, joining the labels incident to ¢;_; and
€;, and which does not contain any label in its interior. Let D be
the disk in T bounded by o, it follows that 0D = (Ue;) U(Up;). If
o is a loop then @, is 0-compressible, which is a contradiction, so
suppose o has at least two edges.

If the edges ¢; have endpoints labeled 1-2; then all the arcs p;
lie over the annulus F cobounded by a; and a,, and when travel-
ing along o in a given direction all the p; run from a; to ay (or
vice versa). The annulus E and the two disks in the interior of
B bounded by a; and a; cobound a 3-ball C' C B whose interior
is disjoint from @,. Note that 0D C Q,UZE, and then a regu-
lar neighborhood of Q, U C U D is a punctured lens space, which is
impossible.

Suppose the edges ¢; are level. First note that the arcs p; lie all
over R; or all over Ry. To see that suppose the opposite; then there
is an arc p; which lies over R; and an arc p; which lies over Ry, this
is possible only if A = 3. Take two points, one in the interior of each
of p; and p;; there is an arc lying over OW which joins them and
which intersects transversally @), exactly once, and there is also an
arc lying over D joining these points and which is disjoint from Q.
So there is a simple closed curve meeting transversally the sphere
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P in one point, which is impossible. Therefore the arcs p; lie all
over Ry or Ry, say Ry. p; has its endpoints in e; and e3 (or f; and
f3) and when traveling along o in a given direction all the p; run
from e; to e (or vice versa). Then 0D C Q.U Ry, and a regular
neighborhood of Q.U R; U D is a punctured lens space, which is
not possible.

Finally, note that the label sequence of a Scharlemann cycle is
like one of the above sequences. Il

LEMMA 3.6. Suppose that D is a disk component of R(y) which
does not contain ay nor dy. Let A =2 (A = 3). Then for each
z € {11,21,23,17,13,23,27, 13} (z € {1,2,3,4,5,6}) there is at least
one edge with label x at a vertex in D which crosses the suture 0D.
So there are at least 8 (6) edges crossing 0D.

Proof. If this does not happen for some x then A = DNI has
P(z), contradicting 3.4 and 3.5. |

LEMMA 3.7. Suppose that D is a disk component of R(y) which
contains only one of ax, dy. Let A =2 (A = 3), then there are at
least 4 (3) edges which cross D, other than €,, €q.

The proof is as in [6, 2.6].

LEMMA 3.8. Let A = 2. dy is labeled in one of the following
ordered ways:

2371){71&23; or 2;71§a11721'

The positive and negative sides of ¢ are labeled in the same way as
dy and d_ respectively.

Proof. The sequence of labels in d; has to be a subsequence of
1,2,2%,1* 1,2, 2% 1*. Note that, in the given order of the labels, the
first label in d. is connected to the last label in d_, via a subarc of a,
or ay contained in dn(f;). So one of these labels is 1 and the other
1* (or 2* and 2), see Figure 1. This implies the sequence of labels in
d, islike 1,2,2%,1* or 2*,1*,1,2. The label 1, at a is joined to the
label 13 at a_, via a subarc of a; contained in dn(fp); also, these



98 MARIO EUDAVE-MUNOZ

two labels are joined, via subarcs of a; contained in dn(g,) to labels
1; and 13 at dy. If dy has labels 1,2, 2% 1%, then there is a label 1;
at dy and a label 13 at d_ (or vice versa), so there is a subarc of a,
contained in dn(f;) which joins these two points. This implies that
a; meets \g U A; in four points, a contradiction. O

LEMMA 3.9. Let A = 3. a, meets the sixz points of intersection be-
tween a; and Xy in one of the following ways, cyclically, 1,2,5,4,3,6
or1,4,3,2,5,6. (The former is shown in Figure 4.)

Proof. Travel around a; starting at the point labeled 1 in a; N Ao,
and in the direction of the orientation of 3. Note that the odd and
even numbers in a; () Ao have opposite orientation. It follows from
Figure 2 that traveling in that direction, 6 is followed by 1, 2 by 5,
and 4 by 3. So the sequence of labels in a; has to be one of those
written above. O

LEMMA 3.10. If a; meets its points of intersection with Ay in the
cyclic order 1, 2, 5, 4, 3, 6 thend, (d_) is labeled 5, 6, 1 (2, 3, 4)
or2, 3, 4 (5, 6, 1). If ax meets its points of intersection with g
in the cyclic order 1, 4, 3, 2, 5, 6, then d (d-) is labeled 3, 4, 5
(6, 1, 2) or6, 1, 2 (3, 4, 5).

Proof. Note that if a pair of labels, say 1,2, are consecutive in
Ao (and then in A;) and also in a;, then one of these labels lies in
d,, and the other in d_. This implies that the labels of d,. are as
desired. See Figure 2. O

3.11. Let D be a disk contained in T so that dD cuts transversally
two special vertices. Suppose all the vertices in D are parallel,
except possibly one of the special vertices meeting D. Suppose
that a4, ds are not in the interior of D, and that no edge crosses
0D. Let A =T'ND. Call the labels of the two vertices which meet
0D, the labels of 9D. Suppose the labels of 0D in the case A = 2 are
X1, To, T3, T4, kg, k3, k2, k1, in this cyclic order, as shown in Figure 5,
where the labels z; correspond to one of the vertices which meet 0D,
and the labels k; to the other one. In the case A = 3 consider six
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labels in 0D, three for each vertex meeting 0D. Suppose the vertex
containing the labels z;’s is parallel to all vertices in the interior of
D.

LEMMA 3.12. Let D be as in 3.11. Then for each x;, 1 = 1,2, 3,4,
there is a x;-path starting at 0D, and finishing at the other side of
0D with label k;.

Proof. For the label x; take a z,-path beginning at 0D, this path
has to finish at the other side of dD, otherwise there is a zi-cycle,
and then by 3.4 a Scharlemann cycle, which contradicts 3.5, so the
path finishes at a label k;, in 0D, i; > 1. The complementary
part of y; which contains the others labels z;’s has P(z;). Now
take a xo-path 7, beginning at dD, it finishes at 0D with label k;,,
12 > 11. Repeating the argument for 3 and x4, we conclude that
each z;-path has to finish in 0D at the label ;. J

LEMMA 3.13. Let A = 2. The following configuration of vertices
is not possible: Suppose we have a situation as in 3.11, where D
cuts one of b or ay, and one of ¢ or dy, and the labels of D are
in one side the positive or negative side of b or a, and in the other
stde the positive or negative side of ¢ or dy.

Proof. Suppose first that D cuts b and ¢, and assume w.l.o.g.
that all the vertices lying in the interior of D are parallel to b.
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Therefore z;, s, 3,4 are 13,23,27,15 or 14,21, 23, 17 respectively,
and ki, ko, k3, ks are 23,17,13,23 or 27,13, 11, 2; respectively, for b
and c are antiparallel. See Figure 6. Then by 3.12 for each i, 1 <
t < 4, there is a z;-path ; starting at 0D with label z; and finishing
at 0D with label k;. Incident to the label k; (= 13 or 13) is an edge
e whose other end is at a vertex v with label 23 (or 2;). Construct
a 13-path (or a 1;-path) +y starting at v; this path will close forming
a cycle or will reach a vertex incident to the path ;. So the path
~v1-€-y will contain a cycle, and by an argument as in 3.4 there will
an innermost cycle o (o can be chosen to be a Scharlemann cyle if
it does not contain ¢, and if it does contain ¢, then can be chosen
to be a z-cycle, where z is one of the labels 1, 1*,2,2* and we have
ignored the subindices 1, 3). If the vertex c is part of the cycle o,
then all the edges of o have ends labeled 1-2 (i.e. o does not contain
level edges, for no edge incident to c is level); if ¢ is not in the cycle
o, then o is a Scharlemann cycle. Both cases contradict 3.5.

Now suppose D cuts b and di. Then the labels z,,zs, 23,24
correspond to the labels 13, 23, 27,15 or 14, 2y, 23, 13, and &y, ko, k3, ks
to the labels 23, 13,17, 23 or 24,14, 13,27, for b and dy are parallel.
Note that in any of the four possible choices of labels there is a label
z in common in b and in d, which implies that I' U D has P(x),
which contradicts 3.4 and 3.5.

If D cuts a4 and one of ¢ or di, an argument as in the previ-
ous cases yields a contradiction. Note that a4 is parallel to ¢ and

27 23 1 14

13‘0’1’1" 23w21
1y 15 2} 23
2 2, o1y

FIGURE 6.
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antiparallel to d.. O

LEMMA 3.14. Let A = 3. The following configuration of vertices
18 not possible: Suppose we have a situation as in 3.11, where D
cuts one of b or ax and one of ¢ or d+, and the labels of 0D are in
one side the positive or negative side of b or a4, and in the other
side the positive or negative side of c or d.

Proof. Suppose first that D cuts b and ¢, and assume w.l.o.g. all
the vertices lying in D are parallel to b.

Case 1. The labels z;’s on 0D correspond to the negative side
of b and the k;’s to the positive or negative side of c.

Then z, x5, z3 are 1,2, 3 respectively and kq, ko, k3 are 5,6, 1, or
2,3,4, or 3,4,5, or 6,1,2. See Figure 7. Then by 3.12, for each
i,7 = 1,2,3, there is a z;-path +; starting in 0D at label z; and
finishing in 0D at label k;. If ky, ko, k3 are 2,3,4 or 6,1, 2, this will
contradict the parity rule, for b and any vertex in the interior of D
are antiparallel to c. So suppose first ki, ko, k3 are 5,6,1. Let € be
the edge incident to c at label k;; the other end of € is at a vertex v at
a label 1. Start a 2-path « at v. This path will close forming a cycle,
or will reach a vertex incident to the path 5. So the path ys-e-y will
contain a cycle, and by an argument as in Lemma 3.4 there will be
an innermost cycle o. If ¢ is not in o, then it will be a Scharlemann
cycle, which contradicts Lemma, 3.5. If ¢ is part of ¢, so is the arc in
c joining the labels k; and k. Remember that 1,2, 3 represent in a
short notation the labels 1y3,17,, 133, and 4, 5, 6 represent the labels
1%, 111, 135. The label sequence of o is like 1,2,1,2,...,1,2,6,5, i.e.
is like 113, 1{1, 113, 1{1, RN 133, 111. This contradicts 3.5.

Suppose now ki, ko, k3 are 3,4, 5 respectively. Let € be the edge
incident to ¢ at label ks3; its other end has label 3 at a vertex v. Take
a 2-path <y starting at v. Then the path ~s-e-y will form a cycle,
and as before there is an innermost cycle o. If ¢ is not in o, then
it is a Scharlemann cycle. If ¢ is in o, then o has a label sequence
3,2,3,2,...,3,2,4,5, note that this sequence contradicts 3.5.

Case 2. The labels z;’s on 0D correspond to the positive side of
b.

Then z;,x,,z3 are 4,5,6 respectively, and as in Case 1, there
are four possibilities for the labels ki, ko, k3. As in Case 1, the
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sequences 5,6,1 and 3,4,5 are not possible since they contradict
the parity rule. The sequences 2,3,4 and 6,1,2 are not possible
for they would imply the existence of a lens space summand in S3.
In the case 2, 3,4 there is an innermost cycle with label sequence
4,5,4,5,...,3,2, and in the case 6,1,2 there is an innermost cycle
with label sequence 6, 5,6, 5, ...,1,2; both contradict 3.5.

Suppose now D cuts b and d...

The labels z;’s on 0D correspond to the negative or positive side
of b and the labels k;’s to d, or d_. There are eight possible choices
of labels. Note that in any choice of labels there is a label z; equal
to some k;, and because b and d. are parallel this implies that I' D
has P(z) for some label z, which contradicts 3.4 and 3.5.

If D cuts a4+ and one of ¢ or di, an argument as in the previ-
ous cases yields a contradiction. Note that a. is parallel to ¢ and
antiparallel to d. O

LEMMA 3.15. The following configuration of vertices is not pos-
sible: Suppose we have a situation as in 3.11, where D cuts b and
a+, and the labels of 0D are in one side the positive (negative) side
of b, and in the other side a4 (a-).

Proof. Let A = 2. Suppose first that the labels of 0D corre-
spond to the positive side of b and to a,, and assume w.l.o.g. that
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all the vertices lying in the interior of D are parallel to b. There-
fore 1, %9, 3, T4 are 13,23, 27, 13 respectively, and ki, k2, ks, k4 are
11,21, 23, 17 respectively, for b and a, are antiparallel. Here we do
an argument as in 3.13. By 3.12 for each ¢, 1 < ¢ < 4, there is a
x;-path v; starting at D with label z; and finishing at 0D with
label k;. Incident to the label k2 = 2; is an edge € whose other end
is at a vertex v with label 23. Construct a 2-path v starting at v;
this path will close forming a cycle or will reach a vertex incident
to the path 3. So the path ~y;-e-y will contain a cycle, and by an
argument as in 3.4 there will an innermost cycle o. If the vertex
a.. is part of the cycle o, then all the edges of o have ends labeled
23 — 2; (ignoring the asterisk), if a, is not in the cycle o, then o
is a Scharlemann cycle; both cases contradict 3.5. If the labels of
0D correspond to the negative side of b and a_, a similar argument
yields a contradiction.

Let A = 3. Suppose that the labels of 0D correspond to the pos-
itive side of b and to a,, and assume w.l.o.g. that all the vertices
lying in the interior of D are parallel to b. Therefore z;, x5, z3 are
4,5, 6 respectively, and ki, ko, k3, are 1, 2, 3 respectively, for b and a_
are antiparallel. Then as in the previous case there is an edge with
ends labeled 4 and 1, which lie on antiparallel vertices, which contra-
dict the parity rule. If the labels of D correspond to the negative
side of b and a_, a similar argument yields a contradiction. O

4. (My,,~,) is (-taut.

LEMMA 4.1. Suppose that (M,,7,) is not O-taut. Then OM,
has at most two boundary components. Suppose first that OM,, has
only one boundary component. This boundary component has two
innermost sutures, which determine two disks: one is in R, and
one in R_, denoted by D, and D_ respectively. Denote by E_, E,
the annulus incident to D, and D_ respectively. Note that there
may be more annuli between Ey and E_. In this case the following
are all the possible configurations of the special vertices (see Figure
9 in [6]):

Casel. apisinDy, cisinD_, a_ andd_ arein E_, b and
dy are in E.
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Case 2. ayisinDy, d_isinD_, a_ andc arein E_, b and
dy arein E,.

Case3. bisinD,, d_isimD_, a_ andcarein E_, ay and
dy arein E,.

Case4. bisin Dy, a_ andd_ arein D_, cisin E_, a, and
dy are in E.

Case 5. bisim Dy, a_ andcarein D_, d_isin E_, a, and
dy are in E,.

Case 6. bisinDy, cisinD_, a_ andd_ arein E_, a, and
dy are in E,.

Case 7. ay and dy are in Dy, cisin D_, a_ and d_ are in
E_, bisin E,.

Case 8. banddy aremm Dy, cisin D_, a_ andd_ are in E_,
ay 1sin B,

Case 9. banddy arein Dy, a_ andcarein D_, d_isin E_,
ay isin B,

Case 10. a4 and b are in Dy, c and d_ are in D_, a_ is in
E_, dyiswm E,.

Case11. dyisinD,y, a_isinD_, candd_ arein E_, b and
ay are in E,.

Suppose OM,, has two boundary components, say Ty, Ty; each has
only one suture, dividing Ty in Dy 4 and Dy _, and T, in Dy 4 and
D, _. The following are all the possible configurations of the special
vertices (see Figure 10 in [6]):

Case 12. banddy arein Dy 4, d_tsin Dy _, ay isin Dy, a_
and c are in D, _.

Case 13. biusin Dy 4, cisin Dy, ay and dy are in Dy, a_
and d_ are in D, _.

Case 14. ay andbarein Dy 4, a_ s Dy _,dy isin Dy, c
and d_ are in D, _.

Proof. Lemmas 3.6, 3.7 and the fact that the negative side of a
vertex has 4 or 3 labels imply the following facts, whose proofs are
analogous to the corresponding in [6]:

(a) A component N of dM,, which does not contain a vertex of
is a 3-ball with one suture on its boundary, so is @-taut [6, 3.1].

(b) A disk D in R, contains special vertices [6, 3.2].

(c) A component of R, adjacent to a disk also contains a special
vertex [6, 3.3].
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(d) A disk D in R, contains at most two special vertices [6, 3.4].

(e) A component T of OM,, has at most three disks components
of R(v) [6, 3.5].

(f) Let D be a disk in R;. Suppose that the area adjacent to D
is an annulus E. Suppose ay (d_) is the only special vertex in D.
Then D contains simple vertices and F contains either ¢ or d_ (b or
ay) [6, 3.6].

(g) A component T of OM,, has at most two innermost sutures
6, 3.8].

(h) Let D be a disk in Ry. Suppose that the area adjacent to
D is an annulus E. Suppose a_ (d) isin E, and b (¢) is the only
special vertex in D. Then either c or d_ (b or a,) are in F [6, 3.9].

Note however that the proofs of [6, 3.7; 3.11] do not follow from
3.6, 3.7. Suppose 0M,, has only one component, then claims (a)-(h)
almost imply which are all the configurations of the special vertices.
Doing an argument similar to [6, 3.12-3.15] we get that Cases 1-11
are all the possible configurations of the special vertices. Cases 10
and 11 do not appear in [6, 3.16], but appear here for we are not
using [6, 3.7; 3.11].

Suppose T is a component of dM,,. Then doing an argument as
in [6, 3.17], T cannot meet only a; and a_, or only d, and d_. This
implies that OM,, has at most two components. If M, has two
components, say 17 and T3, is not difficult to see that Cases 12, 13,
14 are all the possible configurations of the special vertices. Case
14 appears here and not in [6, 3.17] because [6, 3.7; 3.11] are not
being used. O

PROPOSITION 4.2. (M,,,) is 0-taut.

Proof. We will show that any of the Cases of 4.1 yields a contra-
diction.

Case 1. In this Case a, is the only special vertex in D,. Doing
an argument as in [6, 3.6], we see that there are simple vertices in
D, and no edge incident to a, crosses 0D, . Then there are exactly
4 edges (or 3, depending if A = 2 or A = 3) crossing 0D, which
come from simple vertices. These edges have to meet d_. It is not
difficult to see that there is a disk D which cuts a4+ and d4, as in
3.11, where the labels of d_ and ay correspond to the labels of D.
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Note also that no edge crosses dD. An application of 3.13 and 3.14
yields a contradiction.

Case 2. Asin Case 1, a, is the only special vertex in D, , there
are simple vertices in D, and no edge incident to a crosses 0D.,.
Then there are exactly 4 edges (or 3, depending if A =2 or A =
3) crossing 0D, which come from simple vertices. These edges
have to meet the negative side of c. Let kq, ks, k3, k4 be the labels
corresponding to the negative side of ¢, ordered according to their
cyclical occurrence in c. Let v; (74) = (edge incident at ¢ at label
ki1 (k4))NE_, and let o be the arc in ¢ which goes through the
negative side of ¢, and which joins the labels k; and k4. There is an
arc f C @D, joining the endpoints of ; and 74, and so that there
is a disk F' C E_, whose boundary is 0F = y; U4 U a U . There
are two possibilities:

(1) a_ lies in F. In this Case we have a situation as in 3.11, with
a_ and the positive side of ¢ as the vertices on the boundary of a
disk D which contains F'. An application of 3.13 and 3.14 yields a
contradiction.

(2) a— does not meet F'. In this Case there is a disk D as in 3.11,
with a; and the negative side of ¢ corresponding to the vertices on
0D. An application of 3.13 and 3.14 yields a contradiction.

Case 3. It is similar to Case 1, with the roles of d_ and ay
interchanged.

Case 4. In this case 8 (or 6) edges cross dD,, at most 4 (3)
of them can reach the negative side of ¢, so there are 4 (3) edges
incident to the negative side of b which cross D, and 4 (3) coming
from a simple vertex or the positive side of b which have to meet the
negative side of c. Let ki, ko, k3, k4 be the labels corresponding to
the negative side of ¢, ordered according to their cyclical ocurrence
in ¢. Let v, (74) = (edge incident at ¢ at label k; (k4))N E_, and
let a be the arc in ¢ which goes through the negative side of ¢, and
which joins the labels k; and k4. There is an arc 8 C 0D joining
the endpoints of y; and <4, and so that there is a disk F' C E_,
whose boundary is OF = y; Uy, UaU . There are two possibilities:

(1) The edges incident to the negative side of b meet F'. We have
a situation as in 3.11, with the negative side of b and the positive
side of ¢ as the vertices on the boundary of a disk D which contains
F. An application of 3.13 and 3.14 yields a contradiction.
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(2) The edges incident to the negative side of b do not meet F.
Then there is a disk D as in 3.11, with the positive side of b and
the negative side of ¢ corresponding to the vertices on 0D. An
application of 3.13 and 3.14 yields a contradiction.

Case 5. It is similar to Case 4, in fact simpler, with d_ instead
of c.

Case 7. It is similar to Case 4, just changing the roles of b and
c.

Case 8. It is similar to Case 5, changing b by ¢, and d_ by a,.

Case 6. In this case doing an argument identical to [6, 4.8] for
the same case, we conclude that the 4 (3) edges incident to the
positive side of b cross 0D, and meet a_, the 4 (3) edges incident
to the negative side of b do not cross 9D, and there are 4 (3) edges
incident to simple vertices which cross D, and meet d_. Then
there is a disk which cuts b and d_, with the negative side of b and
d_ as the vertices on dD, and no edge crosses 0D. An application
of 3.13 and 3.14 yields a contradiction.

Case 9. In this case doing an argument as in [6, 4.8], we conclude
that there are 4 (3) edges crossing D, all coming from the negative
side of b. Then we can find a disk as in 3.11, where d, and the
positive side of b correspond to the vertices on dD. 3.13 and 3.14
show that this is not possible.

Case 10. Doing an argument as in [6, 3.11 subclaims 2-4], we
get that no edge joins the positive side of b and a_, no edge incident
to a simple vertex, or to the positive side of b, or to a crosses 0D, .
Then the 4 (3) edges incident to the negative side of b are the only
edges which cross dD,. So there is a disk D which cuts b and a,,
as in 3.11, a, and the positive side of b correspond to the vertices
on 0D, and no edge crosses 0D. An application of 3.15 yields a
contradiction.

Case 11. Doing an argument as in [6, 3.6 claims 1, 2] we get
that there are simple vertices in D_, and no edge incident to a_
crosses 0D_. So there are 4 (3) edges crossing 0D_, all coming
from simple vertices and which have to meet a, or the negative side
of b. An argument as in [6, 3.7 claim] shows that none of the edges
which cross 0D_ meet a, so all have to meet the negative side of b.
Here as in Cases 2 and 4 there are two possibilities, in one we find
a disk as in 3.11 with a_ and the negative side of b as the vertices
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on 0D, and in the other a, and the positive side of b correspond
to the vertices on dD. In both cases an application of 3.15 yields a
contradiction.

For Cases 12, 13 and 14 do an argument similar to Cases 9, 4 and
10 respectively. O

We have proved that (M,,~,) is @-taut, then by 2.11 the Seifert
surface S is (-taut, so x(S) = x(k), S® — k is irreducible and 3
always crosses S in the same direction. This implies Cases (c) and
(d) of 1.3. This completes the proof of Theorem 1.3. '

5. Proof of Corollary 1.5. In this section we prove Corollary
1.5. Let k be the trivial knot, and assume the hypothesis of Theorem
1.3. We want to prove that conclusions (b), (c) and (d) are not
possible. Suppose there is a (-taut disk S with 0S = k. The
decomposition (M, , B) N (M, y1, 1) is B-taut, and M, is a 3-
ball with only one suture on its boundary, i.e. the sutured manifold
hierarchy as constructed in 2.5 consist of only one step. OM; is
divided into two disks denoted by D, and D_.

LEMMA 5.1. Case (b) of Theorem 1.3 does not happen.

Proof. 1f it happens then (3, does not intersect S, so the only
vertices in D, are a4, d+. Then there is a loop at a, or d,, or there
is an edge € other than ¢, incident to a,, say, which crosses 0D, . If
the former happens then @), is J-compressible, a contradiction. If
the latter happens then ¢, and the edge € divides D, in two regions;
one of them, call it D, does not contain d,. Take an outermost edge
incident to ay which crosses 0D, ; this determines a region, call it
D again, which does not contain edges in its interior. It is not
difficult to see that, using D, the planar surface P can be isotoped
to intersect W fewer times. O

5.2. Suppose in what follows that either A = 2 and p = 2, or
A = 3 and p = 1. Keep notation as in §3 and 4.

Note that there are four points of intersection between P and k;
this produces four edges, other than €,, €4, which cross the suture
0D, (= k). These edges are different, for otherwise there is an
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edge €, say in D, joining two points on 0D, . € divides D, in two
parts; one of them, call it D, contains at most one of a;, or d,.
If there are vertices in D then ' D has P(z), for some label z,
which contradict 3.4, 3.5. If there is no vertex in D, this gives a
0-compression disk for (),, which is a contradiction.

LEMMA 5.3. No edge incident to ay., di crosses the suture 0D, .
(other than €,, €4).

Proof. Let € be an edge incident to a, which crosses 0D,. ¢
divides D, in two regions, one of them, call it D, does not contain
d,. If there are vertices in the interior of D then I' D has P(z)
for some label z, which contradicts 3.4, 3.5. If there is no vertex
inside D, do an argument as in 5.1. Il

LEMMA 5.4. Any edge that crosses 0D, 1is incident to the negative
side of b or c.

Proof. This is for index restrictions. Let € be an edge crossing
0D, . e is part of the boundary of a disk ¢ C @, with I(¢) = 0, and
€ contributes one to the index. If € does not meet the negative side
of a vertex, then it reaches either a simple vertex or the positive
side of a special vertex, and the arc of 0¢ next to € contributes one
to the index, so either ¢ is a cancelling disk, which contradicts 2.7,
or € is incident to a_ or d,, which contradicts 5.1. l

LEMMA 5.5. Let € be an edge that crosses 0D, . Then the ends
of € are equally labeled.

Proof. This is because D, and D_ form the boundary of a regular
neighborhood of the disk S used in the sutured manifold decompo-
sition, and then they look identical. O

LEMMA 5.6. There are simple vertices in Dy and D_.

Proof. If there is no simple vertex then there are four edges joining
b and ¢, and because there is no loop in T', 2 edges (or 1, depending
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if A = 2 or 3) connect each of a; and d to b, so two edges with
consecutive labels connect a, and d..

Suppose first that A = 2. a, is labeled 1, 2,2,1 and d, is labeled
2,1,1,2. There are two edges connecting a, and d, with labels 1,2
in ay and labels 2,1 in d;. These edges form a cycle with label
sequence 1, 2, 1, 2, which contradicts 3.5.

Suppose that A = 3. a, haslabels 3,2, 1, and d, has labels 1,6,5
or 4,3,2 or 5,4,3, or 2,1,6, for a; and d, are antiparallel. Then
there is an edge €; connecting a; and d,, with label 2 at a, and
label 6, 3, 4, or 1 at d; note however that if the end of €, at d
is 1 or 3, we contradict the parity rule. Let ¢; be the other edge
connecting a4 and d,. If the ends of ¢; and €, at a, are labeled 3,
2 respectively, and their ends at d, are labeled 5, 4 or 1, 6, then
there is an innermost cycle with label sequence 2, 3, 5, 4 or 2, 3, 1,
6; note that both cases are in contradiction with 3.5. If the ends of
€; and €, at a, are labeled 1, 2, and their ends at d are labeled 5,
6, then there is an innermost cycle with label sequence 1, 2, 6, 5,
which contradicts 3.5. Note however that if the ends of ¢; and ¢, at
a4 are labeled 1, 2, and their ends at d, are labeled 3, 4, then the
innermost cycle with label sequence 1, 2, 4, 3 does not contradict
3.5. In this case there is no edge joining b and ¢ with labels 4, or
5, for none of these labels is in the negative side of b or ¢, so there
are four edges joining b and c¢ with labels 6, 1, 2, 3. This shows
that there are two edges connecting a_ and d_, with labels 6, 5 and
2, 1 respectively; these edges form an innermost cycle with label
sequence 6,5,1,2, which does contradict 3.5. O

LEMMA 5.7. No edge joins b and c.

Proof. If there is an edge then the argument of 5.5 shows that
b and ¢ come from the same point of intersection between (3, and
S, i.e. B, meets D only once. This implies that there is no simple
vertex in D, , contradicting 5.6. O

LEMMA 5.8. If to a label x in the negative side of c is incident
an edge €; that crosses 0D_, then the edge €5 incident to d_ at label
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x 18 level or is incident to the negative side of c.

Proof. The edge ¢; is part of the boundary of a disk ¢ C @)1, with
I(q) = 0. €, is part of the same disk g. By 5.7, ¢ is incident to a
simple vertex, and then by index restrictions €, has to meet a simple
vertex or the negative side of c. In the first case €5 has to be level
because ¢; is. N

LEMMA 5.9. Let A = 2. There is an z-cycle in Dy or D_, for
some label x.

Proof. Because each edge crossing 0D _ is incident to the negative
side of b or ¢, we can assume w.l.o.g. that there are at least 2 edges
incident to the negative side of ¢ which cross dD_. Suppose the
negative (positive) side of ¢ has labels 23,13, 13,23 (21, 11, 13, 27), as
in Figure 8. Note that no edge in D_ with an end labeled 13 or 2}
can cross dD_, for none of these labels is in the negative side of b
or ¢. If 3 or 4 edges incident to the negative side of ¢ cross 0D_,
then 3 or 4 edges incident to d_ are level or are also incident to the
negative side of c. Then for at least one of the labels 15 or 2] there
is no edge connecting d_ and a vertex v, whose label at v is 15 or 27.
This shows that the graph A = (N D_) — d_ has P(1%) or P(2}).
So suppose exactly two edges incident to the negative side of ¢ cross
oD_.

Suppose the edges incident to the negative side of ¢ which cross
0D _ have labels 23, 13 in ¢. The edges incident to d_ at labels 23, 15
are level or are incident to the negative side of ¢, so none of them
has its other end labeled 15 or 2]. Let €, be the edge incident to
d_ at label 13; it is also incident to a vertex v. Let €; be the edge
incident to d_ at label 17; if the other endpoint of €, is not labeled
with 13, then A has P(1}), so suppose €, has that label. Start a
13-path  at the vertex v. This path will finish with the edge €, for
otherwise there is a 15-cycle in D_. Note that €;, €2 and y enclose
a region which has P(1;).

There are other possibilities for the labels of the edges incident
to the negative side of ¢ which cross the suture 0D_, but a similar
argument can be done. If the negative and positive side of ¢ have
the other possible labeling, a similar argument is done. O
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FIGURE 8.

LEMMA 5.10. Let A = 3. There is an z-cycle in Dy or D_, for
some label x.

Proof. Because each edge crossing 0D _ is incident to the negative
side of b or ¢, we can assume w.l.o.g. that there are at least 2 edges
incident to the negative side of ¢ which cross 0D_. Note that no
edge in D_ with an end labeled 4, 5, 6 can cross D_, unless it is
incident to the negative side of c, for none of these labels is in the
negative side of b. Let A be as in 5.9.

There are several possibilities for the labeling of the negative side
of c and d_, namely 1,6, 5or 2, 1, 6 or 4, 3, 2, or 5, 4, 3. Consider
the first two cases; in these cases no edge with a label 4 in D_
crosses 0D_, so we look for a 4-cycle in A. If 3 edges incident to
the negative side of ¢ cross 0D_, then all the edges incident to d_
are level, by 5.8, and it follows that A has P(4). Suppose exactly
two edges incident to the negative side of ¢ cross dD_; note that
these edges have consecutive labels in ¢, for otherwise they enclose a
region which has P(4) or P(5). If A does not have P(4), then there
is an edge € joining d_ and a vertex v, whose label at v is 4, and its
label at d_ is an even number for d_ is antiparallel to all vertices in
D_. If d_ is labelled 1, 6, 5, then by the previous observations there
is no such edge €. So suppose d_ is labeled 2, 1, 6; the endpoint of €
at d_ is 2 or 6, but note that in any case A has P(5), see Figure 9.
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FIGURE 9.

When the negative side of ¢ has the third or fourth possible labeling,
do the same argument for the label 6. O

Clearly 5.9 and 5.10 are in contradiction with 3.4 and 3.5. This
completes the proof of Corollary 1.5.

6. Surgery on strongly invertible knots.

6.1. Equivariant torus theorem. Let M be an orientable, irre-
ducible 3-manifold with an involution 7. Suppose M contains an
incompressible torus. Then one of the following holds:

(1) There is an incompressible torus or Klein bottle T in int(M)
transversal to Fizt with TNT™T =0 or T =T.

(2) M =V_,UVWUU-1UUi, where V; and U; are solid tori,
Vi =V; and TU_1 = U;. There are annuli A;, 1 = £1, with

AlmA—l =A,~ﬂ7'A,—=8Ai:BTAi-—-VlﬂV_1 ———'UlmU_l,

and V;NU; = A;, ViNU-; = T7A;, 8V; = A;UTA;, OU; = A;UTA.
A1 UA_, is an incompressible torus transversal to Fizt. 7|V, is
orientation preserving.

This Theorem follows from [11, 4.5]. See Figure 4 in [11] for
an illustration of Case 2. Let N = M/7. If Case (2) of Theorem
6.1 happens then it is not difficult to see that M is a Seifert fiber
space over the 2-sphere with 4 exceptional fibers, and that N is a
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lens space, N # S! x S%, S3. If Case (1) happens with T being
an equivariant Klein bottle, then an Euler characteristic argument
shows that N contains either a Klein bottle or a proyective plane.
These observations imply the following

COROLLARY 6.2. Let M be a 8-manifold which is a double cover
of S3 branched along a link k, with deck translation 7. Suppose M
contains an incompressible torus. Then there is an incompressible
torus T in M which is equivariant, i.e. 7T =T or 7T NT = 0.

THEOREM 6.3. Let k be strongly invertible knot in S3, which is
not a satellite knot. If My(r) contains an incompressible torus then

(a) A(r,p) < 2.

(b) If A(r, u) = 2 then there is an incompressible torus in My(r)
which intersects the surgery torus in two disks.

Proof. As k is strongly invertible, there is an involution 7 in S3,
with 7(k) = k, and kN FixT = {2 points}, Fix is an unknotted
simple closed curve. A regular neighborhood 7(k) of k can be chosen
so that it is invariant under 7. Then 7 resticts to an involution on
My, = S® —intn(k). It is not difficult to see that 7 can be extended
to an involution 7, on M(r) for all r.

It follows from [15] that M (r)/7, = S3, and that the projection
p : Mi(r) — S®is a double cover branched along a link k, = p(Fiz7)
of at most two components. The couple (S3, k) can be decomposed
as the sum of two tangles (By,t2), (Bi,t,), where (Ba,t2) is the
projection of the exterior of k, and (Bj, t,) is the projection of the
torus of surgery attached to the exterior of k. (Bs,ts) is a prime
tangle, (By,t,) is a trivial tangle. (By,t10) can be identified with
the rational tangle (By,1/0) (cf. 1.1). (S®, k1) is the trivial knot;
therefore (S®, k,) can be seen as obtained from k, o by replacing the
tangle (By,1/0) by the rational tangle (By,r) = (By,t,), as in 1.2.

Assume in what follows that M(r) is irreducible. There is no
loss of generality in doing so, because it is known that only integral
surgeries can yield a reducible manifold [9]; further, by the solution
of the cabling conjecture for strongly invertible knots [6], if this
happened k& would be a cable knot, i.e. a satellite knot or a torus
knot.



ESSENTIAL TORI OBTAINED BY SURGERY 115

We are assuming that M;(r) contains an incompressible torus;
then by 6.1 there is an incompressible torus 7', with 77" = T or
T NT = (. Suppose first that 777NT = @. In this case P = p(T)
is a torus disjoint from k.. P is incompressible in S® — k,, and is
not parallel to the boundary of a neighborhood of k.., for otherwise
T would be compressible. So P is a satellite torus. By Corollary
1.6, if A(1/0,7) > 1 the torus P can be isotoped to be disjoint from
(Bi,7), and then T can be isotoped to be disjoint from 7(k), i.e. k
is a satellite knot, contrary to the hypothesis.

Suppose now that 77" = 7. By an Euler characteristic argument
TN Fixr = { 4 points }. Then P = p(T) is a sphere intersecting
k, in 4 points, i.e. P decomposes k, as the sum of two tangles,
which are nontrivial, for otherwise 7" would be compressible. Both
tangles are prime for My(r) is irreducible and T is incompressible
(see [13, Theorem 5]). By Corollary 1.5, if A(1/0,7) > 2 the sphere
P can be isotoped to be disjoint from (Bj,r), and then 7' can be
isotoped to be disjoint from £, so it is a satellite knot. If A(1/0,7) =
2, then P can be isotoped so that P B; consists of an essential disk
in By —t,. This implies that p~*(PN B) = T'Nn(k) consists of two
disks; that is, T'— int (k) is a genus one surface with two boundary
components of slope r on 9n(k), where A(r, u) = 2. 0J

Added in proof: C. McA. Gordon and J. Luecke have recently
announced a proof of Theorem 6.3 for all hyperbolic knots.
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