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The discriminant of an involution of the first kind on
a finite-dimensional division algebra over a field with a
Henselian valuation of residue characteristic different from
2 is computed in terms of residue information. We also
describe the set of discriminants of involutions on such
division algebras. In the case where the residue involu-
tion is the identity, a stable decomposition of the division
algebra into the tensor product of a semi-ramified and a
totally ramified subalgebra is obtained.

Knus, Parimala and Sridharan have recently defined the discrim-
inant of an involution of the first kind on a central simple algebra
[10] (see also [11]), and they have shown how the discriminant can
be used to determine whether an involution on a central simple al-
gebra of degree 4 is decomposable, i.e. whether the central simple
algebra decomposes into a tensor product of two quaternion alge-
bras stable under the involution. Although the discriminant of an
involution is in principle easy to calculate (the definition is recalled
in section 2.), it may prove difficult to determine explicitly for a
given central simple algebra. Our purpose in this paper is to show
how the discriminant can be computed explicitly for involutions on
division algebras over Henselian fields of residual characteristic dif-
ferent from 2, in terms of residue information.

Our results depend on the kind of the residue involution and on
whether the division algebra is inertially split or not; they are col-
lected in Theorem 4. In particular, they show that every involution
on a division algebra of degree at least 4 which is not inertially split
has discriminant 1. As an application of the main Theorem, we also
compute the discriminant of the involution considered by Amitsur,

*) author deceased
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Rowen and Tignol in [2, Theorem 5.2]; the result thus obtained
yields an alternative proof that the involution is not decomposable.

It is also worth pointing out that in the case where the residue
involution is the identity, we obtain a stable decomposition of the
division algebra into a semi-ramified and a totally ramified subalge-
bra; moreover, the totally ramified part has a stable decomposition
into a tensor product of quaternion algebras (see Theorem 5). In
particular, it follows that every involution on a totally ramified di-
vision algebra over a Henselian field of residual characteristic not 2
decomposes as a tensor product of involutions on quaternion alge-
bras. Stable decompositions of semi-ramified division algebras over
Henselian fields are further investigated in [4].

In the final section, we investigate the set of discriminants of or-
thogonal involutions on division algebras over Henselian fields. We
show that in a large number of cases this set is the group of square
classes of reduced norms. ι In view of the fact that decomposable
involutions have trivial discriminants, this result yields an efficient
way of constructing division algebras with indecomposable involu-
tions.

Notations and Terminology. All the division algebras con-
sidered in this paper are finite-dimensional over their center and of
characteristic not 2. The degree deg D of a division algebra is the
square root of its dimension over the center. An involution σ over
a division algebra D with center F is of the first kind if it leaves F
elementwise invariant; otherwise it is of the second kind. We denote:

(D, σ)+ = {x e D \ σ(x) = x} and (JD, σ)_ = {x e D | σ(x) = -x}.

If deg D = n and σ is of the first kind, then it can be proved that
dhnp(D, σ)+ = (n(n + l))/2 or n(n — l)/2. The involution is called
of orthogonal type or type +1 in the former case, of symplectic type
or type —1 in the latter (see [21, Ch. 8; (7.6)]). If σ is an involution
of the first kind, then every other involution r of the first kind is the
composite of σ with an inner automorphism Int(w) : x ^ uxvΓ1:

T = Int(u) o σ

1This fact has now been proved for arbitrary central simple algebras of degree
at least 4 by Parimala, Sridharan and Suresh [14].
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for some u φ 0 such that σ(u) = ±u. The involutions σ and r are
of the same type if σ(u) = u\ they are of opposite type if σ(u) = — u
(see [21, Ch. 8; (7.7)]).

The following observation, made independently by several au-
thors [23, Proposition 3], [16, Proposition 5], [18, Proposition 5.3],
characterizes the involutions of orthogonal type:

LEMMA 1. If an involution σ on a division algebra D leaves a
maximal subfield K elementwise invariant, then it is of orthogonal
type.

Proof. We include a proof for the reader's convenience: Let L be a
splitting field of D such that K®pL is a field. (One can for instance
choose for L a generic splitting field of D.) Fix an isomorphism:
D®FL ~ End£,(V) for some L-vector space V of dimension deg D.
The elements in K®F L are then identified to endomorphisms of V,
hence V is endowed with a K ®p L-vector space structure. Com-
paring dimensions over L, we must have d i m ^ L V = 1. It is known
(see for instance [21, p.302]) that every involution on End/,(V) is the
adjoint involution with respect to some bilinear form on V, which
is symmetric if the involution is of orthogonal type and alternating
if the involution is of symplectic type. Let B be a bilinear form on
V for which the extension of σ to D ®p L is the adjoint involution
and let v e V, υ Φ 0. Since K is elementwise invariant under σ, we
have for α, β G K ®p L:

B(aυ, βv) = B(βav, v) = B(aβυ, v) = B(βυ, aυ).

Therefore, B is symmetric and σ is of orthogonal type. D

We now review the basic notions of valuation theory on division
algebras in the special case of interest for the present paper.

Let D be a central division algebra over a field F. Every Henselian
valuation v on F extends to a valuation on D (see [22, p. 53]). We
denote also by v the extension of the valuation to D. The value
group v(Dx) is denoted by Γ#; the valuation ring is Op = {x G D \
v{x) > 0} and its maximal ideal is MD = {x E D \ v(x) > 0}. The
residue division ring OD/-MD is denoted by D.

The division algebras D considered in this paper are endowed with
an involution of the first kind; it then follows that their exponent
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is 2 (see [21, p. 305]), and hence their degree is a power of 2. We
further assume that char F Φ 2; hence the division algebras we
consider are tame in the sense of [9, §6]. The "Ostrowski Theorem"
[7] then yields:

(1) [D:F] = [D:F].^D' rF)

and it follows from [17, Theorem 3.18], [9, Corollary 6.10] that
Γ^/ΓV is an elementary abelian group of exponent 2.

The algebra D is called totally ramified if D = F, inertial if
ΓJΓ) = Γjf? and semi-ramified if [JD : JF] = (Γχ> : IV) (= deg(D)) and
D is commutative.

We recall also that the center Z(D) of D is an abelian Galois
extension of F and that there is a fundamental homomorphism:

(2) ΘD: rD-

defined by: θD(a)(d) = xdx~ι where x G i? is an arbitrary element
of value υ(x) — a. This homomorphism is surjective
[9, Proposition 1.7]; its kernel, which obviously contains IV, is de-
noted by Λ#. The division algebra D is called inertially split if it is
split by an inertial extension of F or, equivalently by [9, Lemma 5.1],
ifΛD = ΓF .

Finally, we note for further reference that if F is a Henselian
valued field such that the residue field F has characteristic not 2,
every element in 1 + Aip is a square, hence the canonical map
Op /Op2 —> F jF is an isomorphism. Therefore, there is a canon-
ical exact sequence

(3) 1 -> Fx/Fx2 Λ Fx/Fx2 Λ Γ F /2Γ F -> 0

where ϊ; is induced by the valuation and i is the composite of the

isomorphism ~FX/ψx2 - Op/Op2 and the inclusion Op/Op2 ^

Fx/F x2

1. Involutions on Henselian division algebras. Let flbea
finite-dimensional central division algebra over a field F. Assume F
is endowed with a Henselian valuation v such that the characteristic
of the residue field F is not 2, and let σ be an involution of the first
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kind on D. Since v is Henselian, it extends to D in a unique way;
in particular, for all x G D,

v(σ(x)) = υ(x),

and hence σ induces an involution σ on the residue division algebra
A by

σ(u) = σ(u) for all ue Ox.

Since the center Z(D) of D may be strictly larger than F, it is
not difficult to find examples where σ is of the second kind (see
Proposition 4 below). Moreover, even when σ is of the first kind,
there is in general no relation between the type of σ and the type
of σ. If for instance D ~ I ®F T where / is an inertial division
algebra and T is a totally ramified division algebra, and if σ/, στ

(resp. 77, ττ) are involutions of orthogonal (resp. symplectic) type
on / and T respectively, then σ/ ® &τ and T/ ® TT are of orthogonal
type, σj (2) TT and 77 (g) oτ are of symplectic type, but

σj ® CT = oj= OΊ ® TT is orthogonal

while

T/ ® TT = T/ = T/ <g> σ^ is symplectic.

Nevertheless, there is a relation in the case where D is inertially

split, which we proceed to establish.

LEMMA 1. Let ξ e D. Ifcr(ξ) = ε£ m/ιere ε = ± 1 , ί/ien ί/iere is
an element x G Op such that x — ξ, σ(x) = ex and [F(x) : F] =

Proof. Let x0 ^ ^r> be an arbitrary lift of ξ. If σ(ξ) = εξ, then

cr(x0) = ε^o + m for some m G λΛr>-

The element Xi = (x0 + εσ(xo))/2 = ^o + (εm/2) then satisfies
x7 = To = ξ and σ(xχ) = εxi; hence the field F{xχ) is stable under

_ _ _
Since ξ is separable over F (because [D : F] is a power of 2 and

^ 2) and since F is Henselian, it follows that F{x\) contains
a unique inertial lift K of F(ξ), i.e. a unique subfield K such that
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Έ = F(ξ) and [K : F] = [Έ : F], Since σ(K) is an inertial lift of
F{σ(ξ)) = F(f), we must have σ(K) = K.

Let ^2 £ K be such that X2 = ζ- Again, we have

cr(x2) = εx2 + m! for some m! G

Then let x = (x2 + εσ(x2))/2 = ^2 + (εra'/2). We have x = x^ = ξ"
and σ(x) = εx. Moreover x G K, and hence

(aO : F] < [K : F] = [F(ξ) : ^]

On the other hand,

[F(x) : F] > [F(x) : F] = [F(ξ) : F],

hence [F(x) : F] = [F(0 : F]. D

There is a corresponding result for representatives of values, which
will be needed in section 4.:

LEMMA 2. For every 7 G Γ D SUC/Ϊ ί/iαί θD(η) φ ~σ\Z(p)i there

exists x G Dx such that υ(x) = 7 and σ(x) —x.

Proof. Let XQ G D X be an arbitrary element of value 7. Since
{^('γ) ^ σ\Zφγ one can find an element ζ G ̂ (-D) such that

(Take ζ = 1 if the right-hand side is not 1; otherwise, take any ζ

which is not invariant under θD(j) °σ\Z(D) ) Then let z G OD be
such that ~z = ζ" and let

It is clear that σ(x) = x; moreover, since

we have xxQ

 ι = z + σ(xo)σ(z)xo

 x φ 0, and hence t>(:r)
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PROPOSITION 3. If D is inertially split and σ is of the first kind,
then σ and σ are of the same type.

Proof. Since [D : F] is a power of 2 and char Fφ 2, the maximal
subfields of D are separable over F. Let a E D be such that F(a)
is a maximal subfield of D, and let a G OD be a lift of a. We have

(4) [F{a) : F) > [F(a) : F] = deg(D).[Z(D) : F].

Since D is inertially split, we have Λ# = ΓV; hence (Γ^ IV) =
[Z(D) : F]; hence Ostrowski's Theorem (see equation (1)) yields

deg(D)=deg(D).[Z(D):F].

Therefore, (4) shows that F(a) is a maximal subfield of D.
By the Skolem-Noether Theorem, the restriction of σ to F(a)

extends to an inner automorphism of D. Let β G D be such that

(5) σ(a) = βaβ - 1

Replacing β by β + σ(β) or by β — σ(β) (whichever is non-zero), we
may assume ~σ(β) = εβ with ε = ± 1 . Lemma 1 shows that there
is a lift b G OD of β such that σ(b) = ε&. Let r = Int(&~1) o σ be
the composite of σ with the inner automorphism Int(6 - 1) : x *-»
b~ιxb. Since σ(δ) = εδ, the map r is an involution of D. Clearly,
Ψ = I n t ^ " 1 ) o σ, and (5) shows that τ(ά) = a. From Lemma 1, it
then follows that Ψ is of type +1; hence the type of σ is ε.

We proceed to determine the type of r, hence of σ. By the Skolem-
Noether Theorem, there exists an element d G Dx such that

τ(a) — dad~ι.

Replacing d by d + τ(d) or by d — τ(d), we may assume τ(d) — ε'd
where ε' = ± 1 . The map lnt(d~1) o r is then an involution of D
which leaves F(a) elementwise invariant; hence its type is + 1 , by
Lemma 1. Thus, the type of r is εr and the type of σ = Int(δ) o r is
εε'. As the type of σ is ε, it only remains to prove ε' = 1. Since

(6) τ(a) = r(α) = a — α,

the automorphism of D which maps u to dud~ι, for n G 0£>, is
the identity on F(a), hence also on its subfield Z(D). This means
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that θD(v(d)) — /, i.e. that v(d) G AD. Since D is inertially split,
we have AD = IV; therefore, multiplying d by a factor in Fx if
necessary, we may assume υ(d) = 0. Equation (6) then yields

dad'1 — a,

and it follows that d € F(a) since F(a) is a maximal subfield of D.
Therefore, τ(d) = d. On the other hand, r(d) = ε'd since r(d) — ε'd,
and hence ε' — 1. D

REMARK. The inertial case of the preceding proposition is al-
ready contained in essence in a paper of Platonov and Yanchevskiϊ:
see the proof of Proposition 5.9 of [17]. (To avoid misunderstanding
the statement of this proposition, the reader should keep in mind
that Platonov and Yanchevskiϊ assume throughout §5 of [17] that
the given involution is of symplectic type.)

In the next proposition, we show that every involution on D can
be lifted to an involution on D:

PROPOSITION 4. For any involution t on D which leaves F ele-
mentwise invariant, there is an involution r of the first kind on D
such that t — τ. Iftis of the second kind, then the type of r can be
arbitrarily chosen. Moreover, every automorphism of Z(D) over F
can be extended to an involution on D.

Proof. Let p be an automorphism of Z(D) over F and let T C D
be an inertial lift of Z(D) in D] i.e. T is a subfield of D such that
T = Z(D) and [Γ : F] = [Z(D) : F}. The Galois group ofJΓ over
F is then canonically isomorphic to the Galois group of Z(D) over
F; hence p lifts to some automorphism of T over F which we again
denote by p. By Proposition 3.1.67 of [19], there is an involution
τp on D whose restriction to T is p; hence T~P is an involution on D
which extends p. The last part of the proposition is thus proved.

Suppose now that t is a given involution on D. The arguments
above, taking for p the restriction of t to Z{Ό\ yield an involution
τp on D such that T~p and t have the same action on Z(D). Therefore,
t = Int(£) o Tp for some ξ G D such that τ^(ξ) = εξ with ε — ± 1 .
Lemma 1 then yields an element x G Op such that rp(x) = εx and
x = ξ. The involution r = Int(x) o rp then satisfies r — t.
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If t (hence also f^) is of the second kind, then multiplying ξ by
an element ζ G Z(D)X such that τp(ζ) = —C, we may change the
sign of ε hence also the type of r. D

2. Discriminants of involutions. Let D be a finite-dimensional
central division algebra over a field F of characteristic not 2 and let
σ be an involution of the first kind on D. Following [10], we define

Alt(σ) = {x G D I σ(x) + εx = 0}

where ε is the type of σ. Thus, Alt(σ) = (JD, σ)_ if σ is of orthog-
onal type and Alt(σ) = (D,σ) + if σ is of symplectic type. Knus,
Parimala and Sridharan [10, p. 94] then define the discriminant of
σ as the image of the reduced norm of any element in Alt(σ) Π Dx

in the group of square classes of F:

disc(σ) = N r d D ( α ) . F x 2 G F x / F x 2 ,

for any a G Alt(σ) ΓΊ Dx. In particular, one can take a = 1 if σ
is of symplectic type, hence the discriminant of every involution of
symplectic type is 1.

We denote by Ί)(D) the set of discriminants of involutions of
orthogonal type on D:

) C F X ,

where σ runs over the set of orthogonal involutions on D and where
disc(σ) is viewed as a coset of Fx2 in Fx. If 7 is an involution
of symplectic type, then every involution σ of orthogonal type has
the form σ — Int(w) o 7 for some u G ( A ? ) - Π Dx] then u G
(D,σ)_ Π D x , and hence disc(σ) = N r d D ( u ) . F x 2 . Therefore,

V(D) = NrdD{(D, 7 ) _ ΠDX).F x2

Alternatively, if σ is any given involution of orthogonal type, then
every other orthogonal involution has the form r = Int(n) o σ for
some u G (D,σ) + Π Dx. For A; G (D,σ)_ Π D x , we have uk G
(D,r)_ Π D x , and hence disc(r) = NrdD(ufc).F x 2. Since disc(σ) =
NidD(k).Fx2, we thus get

V(D) = NrdD((D, σ)+ ΓΊ jDx).disc(σ)
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For example, when D is a quaternion algebra, the conjugation
7 is an involution of symplectic type. Therefore, disc(7) = 1 and
V(D) = NrdD((D, J)-ΠDX) is the set of represented values of the
3-dimensional quadratic form x H-> — χ2 on the space of pure quater-
nions. This shows that the set V(D) is not necessarily a group. The
subgroup of Fx generated by V(D) is easy to determine:2

PROPOSITION 1. For every division algebra D with involution,

V{D) C NrdD(Dx).Fx2

and every element in Nrdi)(Dx).Fx2 is the product of two elements
ofV(D).

Proof. Since the discriminant of every involution is the square
class of a reduced norm, the inclusion V(D) C Nrd£>(Z}x).Fx2 is
clear. Let σ be an arbitrary involution of orthogonal type on D.
Dieudonne has shown [5, Theorem 3] that every element of D is the
product of two elements in (D, σ)+. If x G Dx, let s,ίG (Z},σ)+ be
such that x — st. Then Nrd^(x) = Nrd£>(s)Nrd2>(ί), and hence

NrdD(x).F x 2 = (NrdD(5).disc(σ)).(NrdD(ί).disc(σ)),

which shows that NrdJo(x).Fx2 is the product of two elements of

v(D). a
From here on, we assume that F is endowed with a Henselian

valuation v, such that char Fφ 2. Our aim is to compute the dis-
criminant of σ in terms of residue information. We first investigate
the case where σ is of the second kind:

PROPOSITION 2. Ifσ is of the second kind and deg(D) > 2;

then disc(σ) = 1.

Proof. Since the discriminant of every involution of symplectic
type is 1, we may assume σ of orthogonal type. By hypothesis, the
restriction of σ to Z(D) is a nontrivial element of G&l(Z(D)/F),

2The equality V{D) C NrdjD(£)x).Fx2 has now been proved for arbitrary
central simple algebras D of even degree deg D > 4 by Parimala, Sridharan and
Suresh [14].
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which is an elementary abelian group of exponent 2, as we observed
above. Therefore, there exists ξ G Z{D) such that σ(ξ) = — ξ
and ξ2 G F . Lemma 1 yields an element x G Dx such that
σ(x) = -x, x = ξ and [F(x) : F] = [F(ξ) : F] = 2. Then, by
[6, Corollary 4; p. 150] ,

NτdD(x) =

and since x G Alt(σ),

D

Henceforth, we shall assume that σ is of the first kind. We next
consider the case where σ / / :

PROPOSITION 3. Assume σ is an involution of the first kind,
σ φ I. If D is inertially split, then disc(σ) = z(iVZ/^w^(disc(σ)));

where i : F jF —> Fx /Fx2 is the canonical map described in (3).
If D is not inertially split, then disc(σ) = 1.

Proof. Again, we assume that σ is of orthogonal type; otherwise
disc(σ) = 1 and, when D is inertially split, disc(σ) = 1 by Proposi-
tion 3, so the proposition is obvious.

Since σ φ /, one can find ξ e D* such that σ(ξ) — —ξ. Lemma 1
then yields x G Op such that x = ξ and σ(x) = — x\ hence x G
Alt(σ) Π O%. Then υ(NτdD(x)) = 0, and hence NidD(x).Fx2 is in
the image of the map i, and

(7) disc(σ) = NτdD(x).Fx2 = i (NτdD(x).Fx2) .

By [8, Corollary 2] ,

(8) NvdD(x) = Nz(B)/ψ(NτdΈ

where λ = y(^D '- IV). If D is not inertially split, then λ is even;
hence disc(σ) = 1. If D is inertially split, then λ = 1 and "σ is an
involution of orthogonal type on D; hence x = ξ G Alt(σ). The
proposition then readily follows from relations (7) and (8). D

The case where σ = I is more difficult to treat. It will be inves-
tigated in the next two sections.
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3. Residually commutative division algebras. In this sec-
tion, D denotes a finite-dimensional central division algebra with
involution over a field F endowed with a Henselian valuation v. We
assume char Fφ 2 and D is commutative. For x,y G D x , denote

C(x,y) = xyx~ιyι G D .

Since x(yz)x~ι(yz)~1 = xyx~ιy~ι.y(xzx~ιz~ι)y~ι, we have

(9) C(x,yz) = C(x,y).θD(v(y))(C(x,z)).

By skew-symmetry of C (i.e. C{x,y) = C(y,x)~ι), the preceding
relation also yields a formula for C(xy, z):

C(xy, z) = θD(v(x))(C(y, z)).C{x, z).

If υ(x) G AD and υ(y) G Γp, let y = /n for some / G F x and some
ue Op; then

C(x,y) = xux~ι.u~ι = θD(v{x)){u).u ι = 1,

and the preceding relation shows

C{x,yz) = C(x,z).

Therefore, there is a well-defined map ^x : ΓD/ΓV -> Dx defined

by
Ίx(v(y) + ΓF)=C(x,y) for all y G .Dx.

Equation (9) shows that this map is a crossed homomorphism (i.e.

a 1-cocycle) for the action of Γ^/IV on Dx through ΘD.

LEMMA 4. For every homomorphism ψ : Γ#/IV —» {±1} ; there
exists an element a G Dx such that v(a) G AD and ya = φ. The
element a is uniquely determined by ψ up to multiplication by a
factor in Fx .{\ +ΛΛD) Moreover, a G Fx.(1 + Λ4D) if and only if
the restriction of ψ to Λp/IV is trivial.

Proof Let K C D be an inertial lift of 25 = Z(D) (see [9, p. 135]).
By [9, Lemma 1.8] , the centralizer CDK of K in D is a tame totally
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ramified division algebra (over its center K) with value group AD.
By the non-degeneracy of the canonical pairing of a tame totally
ramified division algebra [24, Proposition 3.1] , one can find x G
CDK such that

C(x, y) = φ(v(y) + IV) for all y G (CDK)X .

It then follows that v(x) G Λ# and that the restrictions of ηx and

of φ to AD/YF axe the same. Consider then the product jxφ :

YD/YF —> D . Since this map is constant on cosets of YD modulo

Λ#, it induces a well-defined map δYp/AD —> D , by

δ(a + AD) = Ίx(a + YF)φ(a + Γ F ), for a G YD.

Moreover, since ηx and φ are 1-cocycles, δ also is a 1-cocycle of
YD/AD in Dx (for the action of YD/AD through ΘD). Now, ΘD in-
duces an isomorphism of YD/ AD with the Galois group of D/F;
hence Hubert's Theorem 90 shows that δ is a coboundary. There-
fore, there is an element u G O^ such that

jx(a + YF)φ(a + YF) — U.ΘD{®)(U)~1 for all a G YD-

This last equation can be rewritten as

C(x,y).φ{υ(y) + YF) = uyu~ιy-1 = C(u,y) for all ?/ G L>x.

Then let α = u~ιx. We have ι (α) = υ(x) G Λ/> and the preceding
relation yields

C(α, y) = φ{v{y) + ΓF) for all y G Dx,

as required.
Suppose now that a,b £ Dx are such that i>(α),i>(&) G Λ^ and

j a =z j b . It then readily follows from equation (9) that C(x, αδ"1) =
1 for all x G D x . By the non-degeneracy of the canonical pairing of
CDK (see [24, Proposition 3.1] ), it then follows that v(ab~1) G IV.
Let ab~ι — fu for some / G Fx and some u G Op. We have

θD{v{x)){u)ϊi-1 - C(z,ιz) = 1 for all x G L>x;

hence u e F*, and therefore u G F x . ( l + A ^ D ) . This shows a =
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If a e F x . ( l + MD), then clearly ηa = 1. Conversely, if ηa = 1,
then 7α = jι and from the part of the Lemma which has just been
proved it follows that a = l mod F x . ( l + MD) D

THEOREM 5. Let D be a finite-dimensional central division
algebra with an involution σ of the first kind over a Henselian field
F of residual characteristic different from 2. Assume σ = / (hence
D is commutative); then there exist subalgebras S, T of D with the
following properties:

1. S and T have center F and D = S ® F T.

2. S and T are stable under σ.

3. S is semi-ramified and S = D; in particular, deg(5) = [D :

4. T is totally ramified and YT = Λp; in particular, [T : F] =

(ΛD:ΓV).

5. Γ 5 Π Γ Γ = Γ F and ΓD = Γs + Γ r .

6. T is a tensor product of quaternion subalgebras stable under
σ.

Proof. We argue by induction on the degree of D. If Λjr> = IV,
then we let S = D and Γ = F. Suppose then AD φ ΓF. We
claim that it suffices to prove the existence of a central quaternion
subalgebra Q of D stable under σ, totally ramified over F, such that
ΓQ C A D and TQ Π ΓD> = ΓF, where D' = CDQ is the centralizer of
QinD.

Indeed, if these conditions hold, then D1 is also stable under σ
and moreover, since D' C D, the restriction σ1 of σ to D' also
satisfies σ' = /. By the induction hypothesis, D' = S'®pT' for some
subalgebras S", Γ ; of Z)' satisfying conditions 1-6 with respect to D'.
Then let S = 5" and T = V®FQ. Conditions 1, 2 and 6 are clearly
satisfied by S and T. Since TD< = Γ5, + ΓT/ and Γ Q Π ΓD/ = Γ F ,
we have ΓQ Π IV = ΓF . A theorem of Morandi [13, Theorem 1]
then shows that T is totally ramified and IV = IV + ΓQ. AS
Γ 5 ΓΊ ΓΓ/ = ΓF, it follows that Γ 5 Π Γ τ = ΓF . Since S is semi-
ramified and T is totally ramified, conditions 3, 4 and 5 then follow
from [9, Theorem 6.3] . This proves the claim.

In order to construct a quaternion subalgebra Q for which these
conditions hold, we consider an arbitrary homomorphism
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φ : TD/^F -> {±1} which is not trivial on KD/TF. (Recall from
[17, Theorem 3.18] or [9, Corollary 6.10] that TD/TF is an abelian
group of exponent 2; hence such homomorphisms exist.) By Lemma
4, there exists an element aι £ Dx such that v{aχ) G A& and
7αi — Ψ- Let φ : TD/TF —>• {±1} be a homomorphism such that
φ{v(μι) + Γp) — — 1, and let b\ G £>x be such that υ(bι) G A# and
7&i — ̂  We then have

(10) C ( α i > 60 = C(h, αO" 1 = ^ ( α j ) + ΓF) = - 1 .

Moreover, relation (9) shows that for all x G Dx,

C{x, a2) = C{x, aλ)
2 = φ{v(x) + ΓF)~2 = 1;

similarly, C(x,b\) = 1. Therefore, ja2 = jb2 = 1, and Lemma 4

shows that a\, 6? G F x . ( l + MD). ' '

From the latter relation, it follows that σ(αf)α^~2 = 1. Now, since

G

σ{a\)aι

 2 =

and hence σ ^ i ) ^ x = ± 1 . We denote ε = σ{aχ)aι

 ι G {±1}. Simi-

larly, let ε' = σίfei)^1 e {±1}-

We proceed to construct elements a, b £ Dx which are congru-
ent to αi, 61 respectively modulo 1 + A4p and which generate a
quaternion algebra Q with the required properties.

Let a<ι — \a\ + εσ(aι)]/2. Clearly, σfa) = εa2\ moreover, since
σ(αχ)αj"1 = ε, we have a2a{1 — 1, and hence α2 = αi mod 1 + MD
In particular, it follows that a\ G F x . ( l + Λ ^ D ) . Let f e Fx and
m G Λί/) be such that

a2

2 =

This equation shows that actually m G Λ4F(a2y Since F, hence
also ^(^2)5 ι s Henselian, the polynomial X2 — (1 + m) has a root
in 0p(α2) whose image in the residue field is 1. Let 1 + mi, with
mi G M>F(a2)i be this root. Since a(a2) = ± α 2 , it follows that the
field F(al) is elementwise invariant under σ; hence σ(mι) = mi.
Then let α = α 2(l + mi)" 1 . This element satisfies: a2 — f G F x ,
σ(α) = εα and α Ξ α 2 Ξ θ i mod 1 + MD-
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Now let b2 = [6i+εV(&i)-α&iα-1-εW(&i)α-1]/4. Since α2 e F x ,
we have a~ιbχa = ab\a~ι] since moreover σ(α) = ±α, a straightfor-
ward calculation shows that σ(b2) — ε'b2 and ab2a~ι — — b2. In
order to compute b2bγλ, observe that

~ιbι fe1

1a~ι.abιa~1b1

1

= θD(υ(a))(σ(b1)bl1).C(a,b1)

The first factor on the right-hand side equals εr. Moreover, since
a = a\ mod 1 + ΛΊD> we have C(α, 6χ) = C(αi,&i). In view of
equation (10), it then follows

and hence

Γ = [1 + ε'2 - C(a, bι) - ε'(-ε')]/4 = 1.

This equation shows b2 = 61 mod 1 + Λ Ί D . Since 62 G
we have

for some g £ Fx and some m' e MD Arguing as we did with α2

above, we find m[ e Mp^ such that (1 + m^)2 = 1 + mf. Since ft2

is invariant under σ and commutes with α, the same holds true for
m[] therefore, the element b = b2(l + m^)" 1 satisfies b2 = g £ F x ,
or(δ) = ε'fe, aba~ι = —δ and b = b2 = bι mod 1 + Λ4/).

It is now clear that α and b generate a quaternion subalgebra
Q of D which is stable under σ. The value group TQ contains
υ(a) = υ(aι) and υ(b) = υ(bι). Now, equation (10) shows that
v(aι) $• Γp and that v(bι) 0 Γ/? U (v(αi) + Γ/?), because C(αχ, 61) =
(p(n(6i) + Γ F ) = — 1; hence the subgroup of ΓD generated by v{a\)
and υ(bι) has order 4. Since [Q : F] = 4, it follows that this
subgroup is ΓQ and that Q is totally ramified (over F).

If x is a non-zero element in the centralizer D1 oίQ, then C(α, x) =
C(b,x) — 1; hence υ(x) + ΓF is in Keτ(φ) Π Ker(^). From the
description of ΓQ above, it readily follows that Γg Π Γ^ = Γi?, so
the quaternion algebra Q meets all the requirements. D
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REMARKS. 1. The algebras S and T are not uniquely determined
by conditions 1-6, as the following example illustrates: suppose
v(u) = 0, ΰ £ F and x, y, z G Fx have F2-independent values in
TF/2TF] let D be the tensor product of quaternion algebras

D = (u,x)F® {y,uz)F,

and let σ be the tensor product of the canonical involutions on each
factor.

We can take S = (ιx, x)p and Γ = (?/, uz)F. However, if (1, is,js,
ks) and ( l , iτ j j r ? &r) are the standard bases of 5 and T, the sub-
algebras S' of D generated by is and j^z^ and the subalgebra T"
generated by z^ and zsj/^ satisfy the same conditions 1-6 as S and
T.

2. The theorem shows, as a particular case, that every totally
ramified division algebra with involution of the first kind over a
Henselian field of residual characteristic different from 2 decom-
poses into a tensor product of quaternion algebras stable under
the involution. This result has also been proved by Chacron and
Wadsworth [3, Theorem 2.1] . (The hypotheses in [3] are some-
what different, since it is assumed that the valuation v on D is a
c-valuation, not necessarily totally ramified over F. However, this
hypothesis is used only once in the proof of [3, Theorem 2.1] , to
show that s2 G F x . ( l + λΛn) for all s G (D,σ)+. In the case where
D is totally ramified, this property readily follows from the fact that
Γ D / T F has exponent 2 and that D = F.)

3. There is an analogue of this theorem which holds for arbitrary
tame division algebras over a Henselian field [26]: such a division
algebra D decomposes as a tensor product D = S ® F T with S
inertially split and T totally ramified such that Γ5 (Ί ΓY = ΓV if and
only if Λ^/Γ^ is a direct summand of Γ^/Γp.

COROLLARY 6. If σ = I, deg(D) > 2 and D is not semi-
ramified, then disc(σ) = 1.

Proof. The preceding Theorem yields a non-trivial decomposition
of D into stable subalgebras:

D = S ® T.
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If are Alt(σ)ΓΊS x, then

disc(σ) = NτdD(x).Fx2 = N r d 5 ( z ) d e g ( τ ) . F x 2 ;

hence disc(σ) = 1 since the degree of T is even.

4. Semi-ramified division algebras. In this section, D de-
notes a finite-dimensional central division algebra with involution σ
of the first kind over a field F with a Henselian valuation v such
that char F φ 2. We suppose that D is semi-ramified and that σ
is the identity on D, which implies that σ is of orthogonal type, by
Proposition 3. From the hypotheses, it readily follows that D/F is
a Galois extension with elementary abelian Galois group of expo-
nent 2 and order deg(D). Since the discriminant of an involution
on a quaternion algebra is easily computed (see section 2.), we will
always assume deg(JD) > 2 in this section. This will allow us to use
the following easy observation:

LEMMA 1. Let K/k be an elementary abelian Galois extension
of exponent 2 of fields of characteristic different from 2 and let p G
Gal(ϋ£Γ/fc), p Φ I. Suppose [K : k] > 2. If x e Kx is such that
ρ{x) = ±x, then Nκ/k(x) e kx2.

Proof Let L be the subfield of K elementwise invariant under p.
Since p φ I and [K : k] > 2, the degrees [K : L] and [L : A;] are
both even. Now, if p(x) = x, then

Nκ/k(x) = NL/k{x^) e k*\

If ρ{x) = —x, then the minimal polynomial of x over L is X2 — x2,
hence NL^xyL{x) = — x2. Therefore,

Nκβ(x) = NL/k(NL{x)/L(x))^'L^ = NL/k(-xψ''LW.

Since [L : k] is even, NL/k(—l) — 1, and hence the preceding equa-

tion shows that Nκ/k{χ) is a square. D

The next proposition shows that the discriminant of σ can also
be determined from symmetric elements:
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PROPOSITION 2. Assume deg(D) > 2. For all x e Dx such that
σ{x)x~ι = 1 and v(x) $ Γp,

disc(σ) = NvdD(x).Fx2 G Fx/Fx2.

Proof. Let a G OD be such that σ(a) = a and ΘD(V(X))(ΊΪ) φ a.
(Such an element can be obtained by lifting an element a G D such
that θr)(v(x))(a) φ α, using Lemma 1.) Let also u = (σ(x)x~1 +
l)/2 and y = ux = (x + σ(x))/2. Then ΰ = 1; hence ^(y) = v(a ).
Since moreover σ(?/) = ?/, we have ay — ya G Alt(σ) ΓΊ D x ; hence

disc(σ) - NτdD(ay - y α ) . F x 2 G Fx/Fx2

Now,

= Nrd^(α — yay~ι)

= NrdD(α - yay~ι)

Since u = 1, we have Nrd#(?i) G F x 2 , by [8, Corollary 2] , so the
proof is complete if we show Nrd£>(α — yay~ι) G Fx2.

We have a — yay~ι = α — 0£>(υ(y))(α) ^ 0; hence v(a — yay~1) = 0
and, by [8, Corollary 2]

NrdD(α - 2

where i : F / F -> Fx jFx2 is the canonical map defined in (3).
Since θD(v(y)) maps a — θD(v(y))(a) to its opposite, Lemma 1 shows
that the norm of this element is a square; hence Nrd^(α — yay~ι) G
F x 2 and the proof is complete. D

Now let x, y G Dx be such that v(x), v(y) are F2-independent in
ΓD/ΓV, and such that σ(x) = x and σ(y) = y. (Such elements can
be obtained by Lemma 2.)

THEOREM 3.

xyx~ιy~ι = θ£>(v(xy))(a)a~ι forsomeα G D .

Moreover, for any a G D satisfying this relation,
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Proof. For the first part, it suffices, by Hubert's Theorem 90, to
show that

xyx~ιy~ι .θD(v(xy))(xyχ-1y-1) = 1.

We observe that

xyx~ιy~ι = σ(xyx~1y~1) = σ(xyx~~1y~1) = y~ιx~ιyx\

hence

θD(v(xy))(xyχ-1y-1) = xy{y-1x~ιyx)y-1χ-1

= yxy~~1x~1 = xyx~ιy~ι ,

as claimed.

For later use, we also observe that Proposition 2 yields

disc(σ) = NϊdD(x).Fx2 = NτdD{y).Fx2;

hence

(11) NτdD(xy) e Fx2.

Suppose now xyx~ιy~ι = θD(v(xy))(a)a ι. If xyx~ιy~ι — 1,
then α = Θj9(v(a;?/))(α). As v(xy) 0 IV since v(a ) and v(y) are
F2-independent in ΓD/ΓF, we have θi)(v(xy)) φ /; hence Lemma 1
shows that N-^^(a) € F . We thus have to show disc(σ) = 1. In

order to do that, observe that σ(yx)(yx)~1 = 1 since xyx~ιy~ι = 1;
hence by Proposition 2

disc(σ) = NτdD(yx).Fx2 = NrdD(xy).Fx2.

Relation (11) then shows disc(σ) = 1, completing the proof in the
case where xyx~ιy~ι = 1.

If xyx~ιy~ι φ 1, then xy — yx £ (£),σ)_ Π Dx\ hence

disc(σ) = NτdD(xy - yx).Fx2 G Fx/Fx2.

We have NrdD(xy — yx) = NτdD(xyx~1y~1 — l)NτdD(xy); hence,
in view of relation (11),

(12) disc(σ) = Nrcbfci/arV1 ~ l)-Fx2.
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Now, by [8, Corollary 2],

F x 2 )(13) NidDixyx-'y-1 - l ) .F x 2 = i(Nτ/φyx^y-^ - l).F x 2),

where
Now,
where i : F jF —» Fx/Fx2 is the canonical map defined in (3).

1 - 1) = N^piθniυixyM^a-1 - 1)

= NτιΨ{θD{υ{xy)){a) - a)NΈlp(oΓλ)

and since θjj{v{xy)){ά) — a is mapped to its opposite by θ£>(v(xy)),
its norm is a square, by Lemma 1. Therefore,

τ?x'2 AT (-1\ Z7»x2 A T r Λ JPX2

The theorem now follows from equations (12) and (13). D

Summing up the results in Proposition 2, Proposition 3, Corol-
lary 6 and Theorem 3, we get

THEOREM 4. Let σ be an involution of the first kind on a finite-
dimensional central division algebra D over a Henselian field F such
that charF φ 2. Assume deg(D) > 2.

If D is not inertially split, then disc(σ) = 1.
// D is inertially split, then
• ifσis of the second kind,

disc(σ) = 1;

• ifσ is of the first kind, σ φ I,

disc(σ) = ι(Nz(5)/ψ(disc(σ)));

• ifσ = I,

disc(σ) - i(NΈ/p(a))

for any a G D such that there exist x, y G Dx with σ(x) —
x, σ(y) = y, υ(x) and υ(y) F2 -independent in Γ^/Γj? and
xyx~ιy~ι = θD(
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We conclude this section with an example directly inspired by [2].
Let K/k be a Galois extension of fields (of characteristic not 2) with
elementary abelian Galois group of order 4:

Gal(K/k) = {1, αu α 2, α 3 } with α] = 1 for all z = 1,2, 3,

and let u E Kx. We define a division ring A by iterating the twisted
Laurent series construction:

where α 2 is the automorphism of K((t\\ α\)) which extends α2 on K
and maps ίi to utγ (see for instance [15, §19.7] ); thus, the elements
of A are formal power series of the form

oos = Σ

and multiplication is defined through the following relations:

ti<i = Qfi(α)ίi for z = 1,2 and α ζ K

There is a valuation on A with value group ΓA = Z 2 (with the
reverse lexicographic ordering), which maps the element s above to
( r i ( r 2 ) , r 2 ) G Z 2 i f α Γ l ( r 2 ) ) r 2 ^ 0 .

A straightforward computation shows that the center of K((t\\ OL\))
is Kι{{t\)), where Kx is the subfield of K elementwise invariant un-
der α 1 ? and that otγ{t\) — Nκ/k(u)t\. Therefore, if Nκ/k(u) = 1,
then α 2 has inner order 2 and the degree of A is 4 (see [15, §19.7] ).

The center of A, which we denote by F, is easy to determine
explicitly: if Nκ/k{u) = 1, Hubert's Theorem 90 yields elements
bι,b2 € Kx such that

i) = δi for z = 1, 2 and

uα2(u) = b2αι(b2)~1.

Then F = A ^ M ? ) ) ^ 1 ^ ) ) , and hence Γ F = 2Z x 2Z C ΓA.

PROPOSITION 5. Ifuα3(u) = 1, then there is an involution of the
first kind σ on A which leaves K, t\ and t2 elementwise invariant.
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The involution σ is uniquely determined by these conditions; it is of
orthogonal type and its discriminant is

disc(σ) = Nκ/k(s).Fx2

for any s G Kx such that u = a$(s)s~ι. In particular, σ is decom-

posable if and only if Nκ/k(s) G kx2.

Proof Using the relation t2tγ = utιt2, it is easy to determine, for
all integers zΊ, z2, coefficients c(i\,i2) G Kx such that

φί1 =c(iui2)t[%2.

Moreover, if ua${u) — 1, one can check that

c(iui2)a\1a22(c(iui2)) = 1 for all zχ,z 2 G Z

and it follows that the formula

defines an involution on A. From the description of the center F
above, it readily follows that σ is of the first kind. Uniqueness of σ
is clear and since σ leaves the maximal subfield K((bit\))((b2lt\))
invariant, Lemma 1 shows that σ is of orthogonal type.

The computation of the discriminant of σ is a direct application
of Theorem 3 with x — ί2 and y = t\, then θA(υ(xy)) — α 3 and if
s G Kx = Ax is such that

ι

then
disc(σ) = i(NΊ/p{s).F*2) = Nκ/k(s).F

By [10, Theorem 3.2] (see also [11, Theorem 3.1] ), σ is decompos-
able if and only if its discriminant is trivial. Since kx Π Fx2 = kx2,
the preceding equality shows that this condition is also equivalent
to: Nκ/k(s) G kx2. D

If k = Q(λ), where λ is an indeterminate, K — k(y/2, \f\) and

U =
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then one gets a Laurent series analogue of the example in
[2, Theorem 5.2]. The corresponding involution is indecomposable,
since

NK/k (Vλ + 1 - V2) = λ2 - 6λ + 1 & kx2.

Of course, simpler examples are easy to construct; the preceding
proposition shows that it suffices to find an extension K/k of de-
gree 4 with elementary abelian Galois group and an element s G Kx

such that Nκ/k(s) g kx2. One can take for instance k = <Q>,
K = k(y/2, \/3) and s = 1 + ypλ + \/3.

5. The set of discriminants. Recall from section 2 that for
an arbitrary division algebra D with involution, Ί)(D) denotes the
set of discriminants of orthogonal involutions on D. Our aim in this
final section is to investigate Ί)(D) and the group Nτdu(Dx).Fx2

in the case where F is Henselian.3

Throughout this section, we assume D is a finite-dimensional cen-
tral division algebra with involution over a Henselian field F of
residue characteristic different from 2. Since explicit computations
are easy when D is a quaternion algebra (see section 2), we will
often assume degD > 4. This restriction is not necessary however
for our first result:

PROPOSITION 1. If D is not inertially split, then

V(D) = NτdD(Dx).Fx2 = Fx2.

Proof. Theorem 4 readily yields V(D) — Fx2. The other equal-
ity follows, since Proposition 1 shows that Nrd/)( J D

x ).F x 2 is the
subgroup of Fx generated by V(D). D

We next investigate the square classes of reduced norms:

LEMMA 2. If degD > 4, then for every a E Γp there exists an
element da E Dx such that v(da) = a and Nrd^(dα) G F x 2 .

Proof In view of the preceding proposition, it suffices to consider
the case where D is inertially split. Let a G Γ^ and p = Op (a) G

3 See the footnote to Proposition 1.
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Gal(Z(Z))/F). If p = /, then a e TF since D is inertially split;
hence an appropriate da may be found in Fx.

If p φ /, we use Lemma 5.6 of [17] in the case where Z) is semi-
ramified and Lemma 5.4 of [17] in the case where D is not semi-
ramified to find an element gp G Dx which is symmetric for some
involution of symplectic type and such that θr>(υ(gp)) = p. Lemma 1
shows that F(gp) is not a maximal subfield of D, hence; if K is a
maximal subfield containing gp,

NvdD(gp) = Nκ/F{gp) = NFM/F(9P)
[K:F(9p)] € F x 2 .

On the other hand, we have v(gp) — a £ Ker(#£>) and Ker(#£>) = ΓF

since D is inertially split, hence there exists / G Fx such that
a = v(fgp). We may then set dQ = fgp. D

We thus get a description of the group Nrdjo(Dx).Fx2 for an
inertially split division algebra with involution:

PROPOSITION 3. If D is inertially split and degD > 4; then

where i is the canonical map described in (3).

Proof Let a G Dx and a = v(ά). The preceding lemma yields an
element da such that NvdD(da) G F x 2 and v(da) — υ(a). Then for
u = ad~λ G O^ we have

NτdD(a).Fx2 = NτdD{u).Fx2

and, by [8, Corollary 2] ,

D(?i) - Nz(B)/T(NτdΈ(ΰ)).

Therefore, NrdD(α).F x 2 - i (NZ(B)/T (Nrd^(ΰ)) . F x 2 ) . D

We now turn to a description of the set V(D):

PROPOSITION 4. If D is semi-ramified and degD > 4; then

V(D) =
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Proof. Since the second equality is a particular case of the preced-
ing proposition and since Ί)(D) is always included in Nrdz)(Dx).Fx2

(see Proposition 1), it suffices to show that the square class of ev-
ery reduced norm is the discriminant of an orthogonal involution.
Moreover, the same argument as in the preceding proposition shows
that it suffices to consider reduced norms of units u G Op.

Assume first that NrdD(u) 0 Fx2. Then Nτ/Ψ(u) 0 F , hence
F(ΰ) = D and F(u) is a maximal subfield of D, which is an inertial
lift of D. The extension F{u)/F is then Galois with an elementary
abelian Galois group of exponent 2. Let p G Gal(F(ύ)/F), p φ I.
By Lemma 5.3 of [17], there exists a symplectic involution τp on D
whose restriction to F(u) is p. Moreover, Lemma 5.6 of [17] yields
an element dp £ Dx such that

dpudp

ι = p(u), τp{dp) = -dp and NrdD(dp) G Fx2.

Then, Tp{dpu) = —p(u)dp = —dpu\ hence σ = lnt{dpu) o τp is an
involution of orthogonal type. We have dpu G (D, σ)_ Π Dx, and
hence

disc(σ) = NτdD(dpu).Fx2 = N r d D ( u ) . F x 2 ,

completing the proof when Nrdi>(tx) 0 Fx2.
It only remains to consider the case where Nrd^(^) G F x 2 , which

amounts to proving the existence of orthogonal involutions of triv-
ial discriminant. Let T be an inertial lift of D in D and let p G
Gal(Γ/F), p Φ I. Also let t G T be such that t2 G Fx and
p(ί) = - ί . By [19, Proposition 3.1.67] (or by Lemma 5.3 of [17]
again), there exists a symplectic involution rp on D whose restric-
tion to T is p. Then σ = Int(t) o τp is an orthogonal involution of
trivial discriminant. D

We finally investigate the case where D is inertially split but not

semi-ramified. For the statement of the next proposition, we extend

in a natural way the definition of the norm map NZφyψ to subsets

of Z(D)X which are unions of cosets of Z(D)x2. Thus,

Nz{nW(P{D)) = {Nz(δ)/J(d).f I d € V(D), feFx}.

PROPOSITION 5. Assume D is inertially split but not semi-
ramified and deg D > 4.

. / / Z(D) φ F, then V(D) = F*2Όi (Nzφ)/W (v(D))).
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. // Z(D) = F, then V{D) = i (Nz(mfW (v(D))).

Proof. The hypotheses on D ensure that D is not commuta-
tive, and hence σ φ I for every involution σ on D. Proposi-
tions 2 and 3 then readily show that V(D) is contained in Fx2 U
i{Nz(ϋ)/ψ{V{D)))L^xxά even in i{Nz(B)/ψ(V(D))) when Z(D) = F
since in this case σ cannot be of the second kind.

The reverse inclusion i (NZφ)/ψ (p(D))) C V(D) follows from
the fact that every orthogonal involution on D is of the form σ for
some orthogonal involution σ on D, by Proposition 4. Moreover, if
Z(D) φ F, then Proposition 4 yields an orthogonal involution σ on
D such that σ is of the second kind. For such an involution we have
disc(σ) = F x 2 , by Proposition 2, hence Fx2 C V(D). D

In [20], Rowen and Saltman ask whether there exists an orthog-
onal involution of trivial discriminant on every division algebra of
degree at least 4. Propositions 1, 4 and 5 answer this question in the
affirmative in the case where the center is Henselian with residue
characteristic different from 2, except when [D : F] = [D : F].
In the latter case, the existence of an orthogonal involution with
trivial discriminant on D is equivalent to the existence of such an
involution on D.

Propositions 1 and 4 actually prove more: they show that, with
the possible exception of inertially split but not semi-ramified alge-
bras D, one has:

= NτdD(Dx).Fx2

when deg D > 4. (This equality has also been proved for arbitrary
division algebras of degree 4: see [25].) From Propositions 3 and
5, it readily follows that this equality holds for D inertially split
and not semi-ramified if it holds for D. As a final result, we show
that this equality also holds for the inertially split division algebras
whose residue algebra is a quaternion algebra (where it is easy to
construct examples where the equality does not hold for D).

PROPOSITION 6. Suppose D is inertially split, degD > 4. If D
is a quaternion algebra, then

= NτdD(Dx).F x2
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Proof. Since d e g D > 4 and degl> = 2, we have [Z(D) :T]>2.
Propositions 3 and 5 yield the following descriptions of T>(D) and
NτdD(Dx).Fx2:

V(D) = i (Fx2 U NZ(5)/T(V(D))) .

Since i is injective and since V(D) C Nrd£>(D x).F x 2, it suffices to
show

NZ(D)/F (Nrd^(D x )) C F x 2 U Nz(ϋ)/Ψ

Let K be an intermediate field between Z(D) and F, of codimension
2 in Z(D). By Proposition 4, D has an involution of the second
kind which leaves K elementwise invariant. A theorem of Albert
[1, Theorem 10.21] then shows that

(14) D ~ Q ®κ Z(D)

for some quaternion algebra Q over K. Let φ be the reduced norm

form on Q, which is a 4-dimensional quadratic form over K. Also

let φZφ} denote the quadratic form on Z(D) obtained by extending

scalars; this is the reduced norm form on D. The reduced norms of

D are then the similarity factors of ψZφy

and it follows from Scharlau's norm principle (see [21, Theorem2.8.6])
that

(DX)) C G{φ) n Nzφ)lκ{Z{DY)

Let d e Kx be a non-square in Nz(pyK(Nid-jy(Dx)). Theorem 4.2

of [12] then proves the existence of a quadratic extension L of Z{D)

which splits Q and whose discriminant as a quartic extension of

K is dKx2. Let L = Z(D)(^/z) for some z G Z(D). A direct

computation yields dKx2 = Nz,-pyK(z)Kx2. Moreover, since L
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splits Q, we may view L as a subfield of Q <&κ Z(D) = D. If σ is
an orthogonal involution on D which induces on L the non-trivial
automorphism over Z(D), we then have

Nz(B)/κ(diSc(σ)) = NZ(B)/K (-zZ(Dy2) = Nz(B)/κ(zZ(Br2)-

Therefore, every non-square in ^ZCDΛIK V^X(^Ί5 \P)) *s *

)> a n d

(15) Nzφ)lκ (Nrdπ (p*)) C K^ U Nz(B)/κ(V{D)).

The proposition follows by taking the norm of both sides from K
down to F. D

Alternatively, after obtaining relation (14), one may consider the
Laurent series field K! = K((X)), the quaternion algebra Qf =
(Z(D)((X))/K',X)K* and D' = Q ®κ> Qf. The algebra D' is a
division algebra of degree 4; therefore, by [25],

V(Df)=NτdD,(DfX).K'x2.

On the other hand, the X-adic valuation on K' extends to a valu-
ation on D' for which Df = D. Propositions 3 and 5 then readily
yield inclusion (15).
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