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MULTIPLICATIVE FUNCTIONS ON FREE GROUPS
AND IRREDUCIBLE REPRESENTATIONS

M. GABRIELLA KUHN AND TIM STEGER

Let Γ be a free group on infinitely many generators. Fix
a basis for Γ and for any group element x, denote by |x| its
length with respect to this basis. Let e denote the group
identity. A multiplicative function φ on Γ is a function
satisfying the conditions φ(e) = 1 and φ(xy) = φ{x)φ(y)
whenever \xy\ = \x\ -f \y\. We characterize those positive
definite multiplicative functions for which the associated
representation of Γ is irreducible.

0. Introduct ion. Fix an infinite set A+ and let Γ be the free
group on generators A+. Let A" consist of the the inverse generators
and let A = A + UA" . Any x in Γ admits a unique shortest expression
as a product of elements of A. The length of #, |x|, is the number
of letters in this expression. A multiplicative function φ on Γ is a
function satisfying the conditions

φ(xy) = φ{x)φ(y) when \xy\ = \x\ + \y\

φ(e) = 1 .

A multiplicative function is determined by its values on A.
Choose complex numbers {φ(a)}aeA such that φ(a 1 ) = φ(a) and

satisfying the condition supα € j4 \φ(a)\ < 1, and extend φ to a multi-
plicative function on Γ. For example, if 0 < r < 1 one can choose
φ(a) = r for every α. In that case φ(x) = r'*' is a radial function
which Haagerup [9] showed to be positive definite. DeMichele and
Figa-Talamanca [4] extended Haagerup's result, showing that all φ
constructed as above are positive definite.

To each multiplicative positive definite function φ one associates
a unitary representation πψ of Γ, specified by the property that πφ
has a cyclic vector for which φ is the matrix coefficient. When is πφ
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irreducible? For radial φ Pytlik and Szwarc [12] demonstrated ir-
reducibility and constructed an explicit realization of πφ. Following
some of their ideas we prove that the condition

implies irreducibility.
We show conversely that if the sum (0.1) is finite, then πφ is

reducible. If

(0.2) £ \φ(a)\2/(l + \φ(a)\2)
a£A

is less than one, then φ is square integrable and so πψ is a subrep-
resentation of the regular representation. According to [3] (for all
infinite discrete groups) or [10, Section 1] (for the free group), such
representations are never irreducible. When (0.2) is equal to one φ is
no longer square integrable, but the associated representation is still
expressible as a subrepresentation of the regular representation, and
so is still reducible.

Finally, when (0.2) is greater than one, we decompose φ as the
sum of two nonproportional positive definite functions, thereby show-
ing that πφ is reducible. Of the two positive definite summands
one is square integrable, and may therefore be further decomposed,
while we believe the other to be associated to an irreducible repre-
sentation. Note that the arguments used in the case J2aeA \Φ{a)\2

finite may be applied, virtually unchanged, to a free group on only
finitely many generators.

1. Construction of πφ. From this point on we shall assume
that complex numbers {φ(a)}aeA+ have been chosen so that

(1.1) Φ = sup \φ(a)\ < 1 .
a£A+

Let φ be the corresponding positive definite function as described
in the introduction.

Following the ideas of [12] we proceed to construct a uniformly
bounded representation having φ as a matrix coefficent. For any
given x let x = a\... an-\an (a,j £ A) be the reduced expression for
x. Let δx denote the Kronecker δ at the point x. Let 7Γreg denote
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the left regular representation of Γ on £2(Γ) so that 7ττeg(x)(δy) =
δxy. Let H C £2(T) consist of all finitely supported functions. If
x £ Γ has reduced expression a\... αn, and supposing x / e , define
Έ = a\.. .αn_i Extend this bar operation to a linear operator on
if, defining δe — 0 and δx = fe for x as above. Let Hx consist of the
functions supported on the set {#,£,Έ...e} . If the reader thinks
of Γ as acting on a homogeneous (locally infinite!) tree, than Hx

consists of those functions supported on the geodesic from e t o x .
Define a linear operator P on H by

P(δx) = φ(an)δx for x φ e

P(δe) = 0 .

Define a representation π of Γ on H by

π(x) = (I-P)-1πτeg(x)(I-P).

Let ( , •) denote the usual inner product in P(Γ).

LEMMA 1. The representation π extends uniquely to a uniformly
bounded representation ofT on 12(T) and φ(x) = (π(x)δe,δe).

Proof. Fix x = a\a2 . . . an in Γ. Write

(1.2) TφKe^"1) = (/ - /T1 W *
oo

Σ Pn(P -
n=0

One may verify that P — /7Γreg(^)P7Γreg(^ X) acts as zero on
Therefore π(x~ι) and 7Γreg(x~1) coincide on if̂ ~.

Choose £ e , . . . , fe, ίa as a basis for i/T. With respect to this ba-
sis P acts on Hx, preserving it, by the following nilpotent upper
triangular matrix

.. 0 \
0 0 . . . 0

: : ' - . φ ( a n )
0 0 . . . 0 ,

and likewise 7rreg(^)P7rreg(x~1) is given by the conjugate transpose
of P. So the operator norm of P restricted to Hx is less than or
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equal to Φ, while the operator norm of (P — τττeg(x)Pπres(x~1)) will
be less than or equal to 2Φ. Therefore, for every / G H we have

2Φ
π=0

1 - Φ

since we have assumed Φ < 1. Hence π can be extended to a
uniformly bounded representation of Γ. An elementary calculation
shows that φ(x) = (π(x)δe,δe). D

From the proof follows

COROLLARY, T Γ ^ " 1 ) and πτeg(x~x) coincide on H^.

Although the representation π constructed above is not unitary,
it still has some nice properties.

THEOREM 1. Let π be as above. Suppose that

\φ(a)\2 =

Then £2{T) does not admit any closed linear subspace invariant un-
der 7Γ.

Proof. Choose any increasing sequence of subsets Aa such that

Aa is finite for every a and supα ΣaζAa \Φ(a)\2 ~ +° ° Define

ua = ( Σ \Φ(a)\2) Σ W)A") •

The proof of irreducibility goes as follows:
i) show that δe is a cyclic vector for π.

ii) show that (Uaf,g) converges to (f(e)δe,g) for any / and g in

H.

iii) show that Ua are uniformly bounded as operators from £2(Γ)
into£2(Γ).

Suppose now that B is any closed invariant linear subspace and
let / G B be a nonzero function. Then by ii) and iii) Ua(f) will
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approach f(e)δe weakly, showing that δe belongs to B provided that
/(e) φ 0. If /(e) = 0 let x be any shortest word in the support of /,
let c be the last letter of x, and use the corollary to Lemma 1 as an
aid in calculating

Then replace / by π(x~1)f.
Proof of i). Choose any x φ e in Γ. Let c be the last letter of x.

Then
δx = π(x)δe — φ(c)π(x)δe .

Proof of ii). First observe that

Ua(δe) = δe+(Σ \φ(a)\A

and hence (Ua(δe),g) converges to (δe,g) for any g G H. Suppose
now x φ e. Then

- 1

uQ(δx)=( Σ \Φ{«)\2) Σ ΦW

unless x~r 6 Aα, in which case, for x = 6, we have

Ua(δb)

= ( Σ \Φ(*)ή
I

φ(a)δ
ab

\|α6|=2

showing that for every / and g in H (Uaf,g) converges to (f(e)δe,g)

Proof of iii). Haagerup's inequality is central for this step. Write

π(α) - τrreg(α) = (7r(a)7rreg(a"1) - /)τrreg(α) .

By (1.2)

+00

(7r(α)7Γreg(α-1) - /) = Σ pn(P - ^reg(α)^7Γreg(α"1))
n=0
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Remember that the right hand side annihilates H^. On the other

hand, on ϋfα, P and P — 7rΓeg(^)-P^"reg(^~1) are given respectively by

and
0

-φ(a) 0

M«) - W«)lk* <

giving us

and hence

(1.3)

Define now

By Haagerup's inequality (see [9])

telling us that the Sa are uniformly bounded. Finally, by (1.3)

\\ua-sa\\2,2

2,2

D
We want to exibit now a unitary irreducible representation hav-

ing φ as a matrix coefficent. Let (πφ,7ίφ) be the representation con-
structed from φ by the Gelfand-Raikov construction. Then Hφ con-
tains a cyclic vector t;0 with (πφ(x)voiVo)nφ = Φ(χ)> O n e m a y °b-
tain Ήφ as the completion of the space of finite linear combinations
of translates of VQ where the square norm of Σx cxπφ(x)vo is

x,yer
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We shall prove that πφ is irreducible. Recall that every finitely
supported function can be written as a finite linear combination of
{π(x)(δe)}xeΓ Define first T : H C P{T) -* Hφ by letting

T(π(x)δe) = πφ(x)v0

and try to extend T to a (nonunitary) linear equivalence from £2(T)
to Hφ. If one can do that then T will intertwine π to πφ and πφ will
also be irreducible.

Observe that at this point, T is not even well defined] nor does
one know that the square norm from above, || J2xcxπφ(x)v0\\ji =
( Σ X C X ^ ? Σ X C A ) H Ψ ? is comparable with the £2-square norm of
Y^x^xπ{x)δe. However, we have

LEMMA 2. For every finite linear combination Σxcxπ(x)δe we
have

nφ

s^cxπ(x)δeΣ
X

1
I_φ2

]cxπφ(x)v0

where Φ is the constant defined in (1.1).

Proof. Let T(y) be the set of all words having y as their first piece
and T(z) be the set of all words having z as their last piece. So

T(y) = { x 6 Γ : ly"1*! = |χ| - \y\}

Observe that

so that

and

(1.4)

(π(x)δe)(y) =
x i T(y)

φ(y~xx) xeT(y)

π(x)δe\ (y)= Σ cxφ{y~ιx)

= Σ cxφ(y ιx)

Σ
y χ,
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For y 6 Γ let Γ2(y) = {(x-,z) : x, z G Γ(y) and x and z have
exactly \y\ initial letters in common}. Then Γ x Γ is the disjoint
union of the sets Γ2(y). Observe that φ{z~λx) = φ(y~λx)φ(y~λz)
for (x,z) G Γ2(y). Hence

(1.5)

Σ
y (χ,z)er2(y)

1 χ)Φ(y~1z)

Subtracting (1.5) from (1.4) we get

£>(Γ)

= Σ Σ

Σ Σ Σ
V | o | = l a7

cφ(y 1
x)φ(y-1z)

Σ

that is

0 <

cxφ(a ιy λx
xeΓ(ya)

and letting y' =

(«)i2 y
y'eΓ(a)

; r)

< Φ 2 Σ Σ <Φ 2
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D

As a corollary of Lemma 2 we can state

THEOREM 2. Suppose that ΣaeA\Φ(a)\2 = +° ° and ^ πΦ be
as above. Then πψ is irreducible. Moreover there exists an inner
product ( , )τ on £2(T) so that ( , )τ is equivalent to the usual I2

inner product and the original π is unitary with respect to ( , )y.

Proof. Lemma 2 ensures that T extends uniquely to a linear equiv-
alence between £2(T) and 7iφ. Since T intertwines π to TΓ̂ , any
nontrivial closed invariant subspace of Tίφ comes from a nontriv-
ial closed invariant subspace of 12(T) and the first assertion is a
consequence of Theorem 1.

To construct ( , )τ s e t

(f,9)τ = (T*Tf,g)

where T* is the adjoint of T and ( ? •) is the i2 inner product.

(*(x)fM*)9)τ = ( r Γ φ ) / , *(*)*) - (Tπ(x)f,Tπ(x)g)Hφ

= (πφ(x)Tf,πφ(x)Tg)Hφ = (Tf,Tg)Hφ

Π

2 The case ΣaeA \Φ(a)\2 < +oo. Throughout this section we

shall assume that ΣaeA \Φ(a)\2 ls finite. We observe that all the

constructions of the previous section are still valid, but in this case

the representation TΓ will not be irreducible. Using the arguments of

[8, Lemma II. 1.5] and the monotonic convergence theorem it is easy

to show that φ will be in P(T) if and only if ΣaeA i+\φ([)\2 < L S i n c e

no £2 function can be the coefficent of an irreducible representation

we are really interested in the case

Although the case ΣaeA i+|«Γ(i)l2 = ^ r e ( l u ί r e s m o r e work, we shall
see that in that case too φ is a coefficent of the regular representa-
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tion. First let us consider the opposite case:

(2.1)

Given (2.1) it is possible to choose a large finite subset An of A and
a positive e so that

exp(-2e)\φ(a)\>

)P

telling us that the function exp(—e\x\)φ(x) does not belong to £2(Tn)
where Γn is the subgroup generated by An. According to Haagerup's
result φ is not a coefϊicent of a representation weakly contained in
the regular. We shall prove the following

THEOREM 3. Suppose that (2.1) holds. Then there exists a mul-

tiplicative positive definite function φ and a real number K > 1 so

that φ — & is positive definite and φ is in £2(Γ).

We were led to this idea by the following facts: when φ is ra-
dial and the set A is finite the representation π (to be precise we
need to conjugate π with a bounded operator to make it unitary)
breaks up into two pieces as proved in [14]. One piece is just a
subrepresentation of the regular representation and the other gives
a representation which is equivalent to one of the complementary
spherical series representations of Figa-Talamanca-Picardello [5] as
shown in [11]. It is natural to think that the present case will be
analogous to the radial case: the spherical series will be replaced by
the anisotropic series of Figa-Talamanca-Steger [8]. Since φ is not
weakly contained in the regular representation we expect to see a
complementary anisotropic series representation. Both the comple-
mentary and the principal anisotropic series can be realized on some
suitable space of functions defined on Ω, the boundary of the tree
associated with Γ. Let 1 be the function identically one on Ω. For
any TΓ in either of the anisotropic series there exists a probability
measure μ on A and a real number λ0 so that

τr(μ)l = λ o l .
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The matrix coefficent (τr(x)l,l) is proportional to the difference of
two functions gπ and gπ which are each Green functions for μ and
λo That is, gπ and gπ both satisfy

g * (λ 0 δe - μ) = δe .

Each of the Green functions is a constant times a multiplicative
function.

Keeping this in mind let us return to our case. First we shall look
for a measure μ supported on A and for a real λo so that φ will
satisfy the resolvent condition with respect to μ and λo Second,
we shall look for another function φ satisfying the same condition.
(2.1) will imply that φ exists and is in £2(Γ).

Any complex multiplicative φ can be written as the product of
a unitary character χ with \φ\. If φ is never zero, then χ is deter-
mined by χ(x) = φ(x)/\φ(x)\, and is a character because we assume
φ(x~1) = φ(x). If φ(a) = 0 for some a £ A, then χ(α) can be chosen
arbitrarily. From this point on we will assume φ is nonnegative.

First of all we need μ. We want μ and φ to satisfy

(2.2) φ * μ(x) = λoφ(x) for x φ e

φ*μ{e) = λo^(e) -1

for some positive constant λo . Letting x = b (b £ A) in (2.2) we
get

μ(b)(φ(by* - φib-1)) +

Consequently we set

(2.3) „(» )-
ΦΨ)-1 - Φ(b-χ) 1 - φ(b)2

(2.4) λ0 = 1 + £ ^ ( α ) 2

 2 .

Since <̂> is nonnegative, μ is a positive measure. If μ were in f
one might wish to normalize it to be a probability measure,
general, however, μ $. ̂ (Γ) . On the other hand
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As μ is supported on A, Haagerup's inequality says that μ is a
bounded convolver of £2(T). A similar calculation shows that the
convolution φ * μ exists pointwise.

Look now for another real multiplicative function φ satisfying
<̂ (α) = φ(a^) and

(2.2') φ * μ(x) = Xoφ(x) for x φ e

φ* μ(e) = λoφ(e) — K

with μ and λ0 given by (2.3) and (2.4) and for a suitable constant
K to be found. We must solve

μ{b){φ{b)-χ - φib-1)) + £ Mαjftβ-1) = λo

( α ) ^ " 1 ) = λ0- K

giving

for all b £ A. If such a solution exists, it must be given by

~ -/c(flα)-1 - φ(a)) + y/K^φja)-1 - φ{a))' + 4
(2.5) φκ{a) =

and it must be that

(2.6)

μ(a)Φ*(a)
a£A

\ a)-ι-φ{a))\
φ{a) v

If we think of the right hand side of (2.6) as a function λ = λ(/c),
we recognize λ(/c) as the convex function used by Akemann and
Ostrand [2] who obtained the convolver norm of μ as the minimum
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of λ(κ) (K > 0). One may verify that λ(/c) and λ'(/c) exist for K > 0.
We must now guarantee that (2.6) has a solution for λ0 = 1 +

i ψ ( α )

Since this value is attained for K = 1, since λ(κ) is continuous,
and since λ(/c) approaches +oo as K approaches +oo, we only need
to check the derivative of λ at the point K = 1. A direct calculation
using the identity

gives the following formula for \'(κ):

λ'(/c) = ]

At K = 1, φκ — φ, so

Hence φ is the solution of (2.6) which corresponds to a point with
negative derivative. Therefore we may be sure that there exists
κ0 > 1 so that λ(/co) is equal to the value λ0 given in (2.4).

Define /Co to be the unique solution bigger than 1 of (2.6). Let
φ z= φKQ be the multiplicative function defined by (2.5) and see that
φ satisfies (2.27). By convexity of λ(/c)

= λ'(κ0) > 0

and so φ
Proof of Theorem 3. Let

KQΦ — φ
.A η = — .

/Co - 1

We will show that η is positive definite. For α £ A , φ{a) = 0 if and
only if μ(a) = 0 if and only if φ(a) = 0. Therefore η is supported on
the subgroup generated by those a such that φ{a) φ 0. It is enough
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to prove η positive definite on that subgroup. Therefore, passing
to the subgroup, we may assume that φ(a) is never 0. The proof
proceeds in three steps.

Step 1: Construct an algebraic (untopologized) representation a
of Γ which has η as a matrix coefficient.

Step 2: Construct an inner product on the representation space
which is preserved by the α-action of Γ.

Step 3: Demonstrate that the inner product is positive semidefinite.

Our algebraic representation will act on a certain subspace Ή°° C
C(Ω) where Ω is the boundary of Γ. Although μ is not necessarily a
finite measure on A and although Ω is not even locally compact, the
main steps of the construction of the complementary series given in
[8] are still valid.

Step 1. To construct Ω think of Γ as acting on a homogeneous
(locally infinite) tree T. Identify Γ, as a set, with the set of vertices
of T, the action being given by left multiplication. Let Ω consist of
all equivalence classes of half infinite geodesies (two geodesies are
said to be equivalent if, up to a shift, they coincide). Any equiv-
alence class has exactly one representative starting at the identity
e. Denote by [e,ω) such a geodesic. Choosing [e,ω)ω£Q a s a s e t °f
representatives, we may also identify Ω with the set of all infinite
reduced words. Refer to [7] for unexplained details. Fix x 6 Γ. Let

Vt(x) = {α;6ί] : [e,ω) contains x} .

ίl(x) can also be thought of as the set of all infinite reduced words
starting with x. Let {Ω(x)}:c€r constitute a basis for the topology
of Ω. Define a probability measure v on the sets Ϋί{x) by letting

\\ Φ(a)Φ(a)
)) = va - 1 + φ(a)φ(a)

and

(2.7) u(ίl(xa)) = φ{x)φ{x)va .

Since Ω(x) is the disjoint union of the sets (Ω(a:α))| : rα |= |a7 |+1 we need

(2.8) *(Ω(*))= Σ
\xa\=\x\+l
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To verify this we only need to show that

(2.9)

Now

(2.10)

Φ(a)Φ(a) _ y^ Φ(a) ~ Φ(a)Σ Φ(a)Φ(a) £A (φ(a)-* - φ(a)) - (^(α)"1 - φ{a))

μ(a)(φ(a) * — φ(a)) = 1 and μ(a)(φ(a)~1 — φ(a)) = κ0 .

Applying (2.11) to the right hand side of (2.10) we get

(a) - Φ(a)) = (Ap - 1) - (Λo -

since φ and φ satisfy respectively (2.2) and (2.27). That v is a
probability measure also follows from (2.9).

If f(ω) is a bounded complex valued function depending only on
the first n letters of ω, define

L f{ω)dv{ω)= £ f(n(x))u(Sl(x)) .
|a?|=n

This is a proper definition in the sense that two values of n lead
always to the same value for the integral of /. Indeed, one may
use (2.8) to verify that n and n + 1 give the same integral. It is
possible, although not necessary in what follows, to extend v to the
σ-algebra generated by the sets {Ω(x)}xer-

Let 1 denote the function identically one on Ω and let lx denote
the characteristic function of the set Ω,(x). Let Ή,00 consist of the
linear span of the 1^. For F and G G 7i°°, define

(F,G) = / F(ω)G(ω)du(ω) .

For a E A let

ω
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Observe that P(a~1,ω)P(a,aω) = 1. Since the free group is gener-
ated by the a £ A with no relations except a~ιa = e, it is possible to
extend P(a,ω) to a function P(x^ω) on Γ x Ω satisfying the cocycle
identity:

(2.13) P(xy,ω) = P(x,ω)P(y,x~1ω) .

The outcome is that if x = a\... an £ Γ and ω £ Ω have & and only
fc first letters in common, then

(2.14) P(x, ω) = ^ ( α ! . . . α f c )~VK+i - • <*n)

Observe that P(x,ω) depends only on the first |x| letters of ω.
For F £ n°° define

(α(x)F)(ω) = P(x,ω)F(x~1ω)

and verify that it gives a representation of Γ on H°°. We claim that

(2.15) η(x) = (α(s)l,l) = / P(x,ω)dv .

(2.15) is obviously true when x — e. Suppose now that it holds for
\x\ < n and let y = xa with a £ A and |j/| = \x\ + 1. By (2.12), the
definition of P(a,ω), and (2.13), the cocycle identity,

iφ{a)-ιP(x,ω) ifω£Ω(:rα)

So

/ P{xa,ώ)dv
JΩ

= φίa)"1 / P(x,ω)dv + φ(a) / P(x,ω)dv
JΩ(xa) JΩ\Ω(xa)

φ(a) ί P(x,ω)dv - φίa) I P(x,ω)dv
JΩ(xa) JΩ(xa)

+ { φ ( a r φ ( a ) )

— 1 JΩ(xa)

a) ι -φ(a))φ(x) ιφ(x)φ(x)

KQ — L

φ(a)φ(a)

yφyd) — φyClj^φyX
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where for the last equality we wrote ^ffit^L as in (2.10) and

used (2.11). Therefore

/CO — 1 fto"~ 1

— φ(xa)

as desired.

Step 2. If a(x) preserved the inner product on Ή°°, then (2.15)
would imply immediately that η was positive definite. Our actual
next step is to construct another representation ά so that

(2.16) {a(x)F,ά(x)G) = (F,G) .

Set

(if w2βί
φ(a) if ω £ Ω(α) .

Extend this to a definition of P(x, ω) using the cocycle identity (2.13).
Define

(ά(x)F)(ω) = P(α:,α;)F(^-1α;).
We compute the Radon-Nikodym derivative dv(x~ιω)/dv(ω):

For x = a £ A, this follows from (2.7). To extend to all x, use the
cocycle identity, which applies to the Radon-Nikodym derivative as
well as to P and P. Verify (2.16) by

/ F(ω)G{ω)dι/(ω) = I F(χ-1ω)G(χ-1ω)P(x, ω)P(x, ω) du{ω)
Jn JΩ

= ί (a(x)F)(ω)(ά(x)G)(ω)dv(ω) .
JΩ

From (2.15) follows

(2.15')

<ά(aθl,l> = (l,ά(x))- = (α(Ol,lΓ = Φ ) = Φ)
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Comparison of (2.15) and (2.15') suggests the construction of an
intertwining map / from 7ί°° to 7i°° satisfying

(2.17) 7(1) = 1

(2.18) Ia(x) = ά{x)I.

For \xa\ — \x\ + 1 a direct computation using (2.11) shows that

(2.19) lxa = μ(a)φ(x){P(xa, •) - φ(a)P(x, •))

= μ(a)φ(x)(a(xa)l — φ(a)a(x)l)

lxa = —μ(a)φ(x) (P(xa, •) - φ(a)P(x, •))

1
= —μ(a)φ(x)(ά(xa)l — φ(a)ά(x)l) .

Therefore 1 is (algebraically) cyclic for a and for ά. Since we wish / :
^co _> ̂ oo t o satisfy (2.17) and (2.18), let us try to define it by

(2.20)
/(α(/)l) = ά(/)l for any finitely supported function / on Γ.

If α(/)l = 0, then for any x 6 Γ

using the fact that (a(x)l,l) = η(x) = (ά(^)l,l). Since 1 is cyclic
for α, it follows that ά(/)l = 0. Therefore (2.20) is a meaningful
definition on its domain. It is also clear that that domain is all of Ή°°
and that conditions (2.17) and (2.18) follow from definition (2.20).

Let / and g be two finitely supported functions on Γ. The fol-
lowing calculation establishes that / is self-adjoint.

Define

(2.21)
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From (2.16) and (2.18) it follows that a(x) preserves this new inner
product. From (2.15) and (2.17) follows (α(z)l, l) j = (α(s) l , l ) =
η{x).

Step 3. It remains to show that ( , )/ is positive semidefinite.
We proceed to diagonalize /. Set

(2.22)

Fe = l

p — 1 1 f o r \xa\ — \x\ _i_ i

v(iL(xa)) v(ίl(x))

We shall see that each Fy is an eigenfunction for /.
Consider Fxa with \x\ = n. The integral of Fxa over Ω(w) is zero

for any w of length n. For any z with |J2Γ| < n the value of P(z,ω)
depends only on the first n letters of ω. Therefore

0 = / Fxa(ω)P(z,ω)dv(ω) = (Fxa,a(z)l)
JΩ

= (FxaJa(z)l) = (IFxa,a(z)l) .

Using (2.19), this implies in turn that

(2.23) 0 = {IFxa, lw) = / IFxa(ω) du(ω)
JΩ(w)

for any w of length n.
Suppose that n = \x\ > 0 and let x — yb where b is the final letter

of x. According to (2.19) Fxa is a linear combination of α(j/)l, α(#)l,
and α(#α)l. Consequently 7F x α is a linear combination of ά(j/)l,
ά(xjl, and ά(xα)l, that is P(y, ), P(#, •), and P(xa, ). The form
of P(z,ω) is analogous to that given by (2.14) for P(z^ω). It follows
that 7i^ a is constant on Ω(ιu) for any w φ x of length n, constant
on ίΐ(x) \ Ω(xα), and constant on Ω(xα). Together with (2.23), this
implies that IFxa equals some multiple of Fxa. If n = 0, x = e, an
almost identical argument leads to the same conclusion.

For what eigenvalue is Fxa an eigenvector?
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= i/(Ω(xα)) ί-7-4--r - -τ4-rr I Φ(x)'lφ{aYι

a direct calculation using (2.14) and (2.22). Similarly

(IFxa,a(xa)l) = (Fxa,Ja(xa)l) = (Fxa,a(xa)l)

It follows, making use of (2.11), that IFxa — cxFxa with

a)-1-φ(a)) = φ(x)
a)-' - φ(a)) K°φ(x)

The positivity of the cx gives us what we want. Fix any G 6 Ή°°.
We can write

G = Go + £ Gx

where Go is a constant and each Gx is a linear combination of the
Fxa for a G A such that \xa\ = |x| + 1. Indeed, for G = lz this
decomposition is easily accomplished by induction on \z\. These
terms are orthogonal to one another, and are, moreover, eigenvectors
of /. Therefore

(G, G), = (G, IG) = (Go, Go) + Σ*er cx(Gx, Gx) > 0 . D

In [1] Alesina and De Michele showed that under our hypotheses φ
does not belong to the orthogonal complement AX(Γ) of the Fourier
algebra A(T) in the Fourier-Stieltjes algebra B(Γ). Theorem 3 gives
more, namely that the representation πφ canonically associated with
φ has a subrepresentation contained in the regular.

THEOREM 4. Suppose that
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Then there exists a positive definite φ in £2(Γ) so that φ = φ * φ.

Proof of Theorem 3. We may, as in the proof of Theorem 2, mul-

tiply φ by a unitary character and so make it nonnegative. Let,

as in (2.4), λ0 = 1 + ΣaeA iίffio\g ^or a n y κ > ^' construct φκ

according to (2.5). Let

λ(/c) = κ

\ a)'1 - φ{a))\

the right hand side of (2.6). Then, by its construction, φκ satisfies
the following version of (2.2').

(2.24) φκ * μ(x) = λ(κ)φ(x) for x φ e

ΦK * μ(e) = λ(κ)φκ(e) - K .

As in the proof of Theorem 2 the function λ(κ) is defined, differ-
entiable, and strictly convex for K > 0 with derivative

This derivative is zero by hypothesis for K = 1, and so by con-
vexity it is positive for K > 1. According to Lemmas II. 1.5-6 of [8],

which extend easily to the case of infinite A, ΣaeA τ fi ) \2 < 1

implies that ^ is a bounded convolver of ^2(Γ). Equations (2.24)
establish then that

φκ = κ(\(κ) - μ)"1

in the algebra of bounded convolvers of £2(Γ).
Denote by spec(μ) the spectrum of μ as a left convolution op-

erator. By the above spec(μ) C (—oo,λo]. (It is easy to see but
irrelevant to the proof that λ0 6 spec(//).) Let E be the resolution
of the identity for μ on spec(μ). Let dσ = dE$e,8e. By the spectral
theorem (see Chapter 12 of [13])

Lspec(μ) A(/C) — ί ^ /C y /C /C
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for Ac > 1. By the monotone convergence theorem

(2.25) / -J—dσ(t)<l.

Jspec(μ) ΛQ I

Since μ acts as a left convolution operator, so does any polynomial

in μ and so does any element of the C*-algebra generated by μ. It

follows that
dEδx,δx = dEδe,δe = dσ

for any x G Γ. By the Cauchy-Schwarz inequality and the spectral

theorem

/
spec(μ)

(7 )[ \f(t)\dESe,ee(t)) ( 7 t
Jspec(μ) ) \Jspec(μ)

/ , \ f ( t ) \ d σ ( t )
spec(μ)

for any continuous f(t). It follows that \dEseisx\ < dσ. Therefore,

using (2.25) and the dominated convergence theorem we may take

the limit in

I w ! , dEδe,δχ(t) = (^ * δe, δx) -
Λpec(μ) λ(/C) - t \K J

and obtain / dEδejx(t) — φ(x) .
Jspec(μ) ΛQ — Z

*(*)

/
Jspec(μ) ΛQ — Z

Let

W (0 if λ0 - ί < 1/iV.

The spectral theorem establishes that φ = lim hjsf{μ)δe exists as
JV-+00

a limit in P(T). Moreover

φ * φ(x) = lim (h2

N(x)δe, δx)
N-+00

— l im
-^°° Jspec(μ)n{λo-t>l/TV} AQ — ί
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