KLEINIAN GROUPS WITH AN INVARIANT JORDAN CURVE: J-GROUPS

Rubén A. Hidalgo

> We study some topological and analytical properties of a Kleinian group G for which there is an invariant Jordan curve by the action of G. These groups may be infinitely generated.

1. Preliminaries. A Kleinian group G is a group of Möbius transformations acting discontinuously on some region of the Riemann sphere $\hat{\mathbb{C}}$. The (open) set of points at which G acts discontinuously is called the region of discontinuity of G and it is denoted by $\Omega(G)$. The complement (on the Riemann sphere) of $\Omega(G)$ is called the limit set of G and it is denoted by $\Lambda(G)$. We will denote the upper and lower half-planes by $U=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ and $L=\{z \in \mathbb{C}: \operatorname{Im}(z)<0\}$, respectively. If G is a group of Möbius transformations and D is a subset of the Riemann sphere, then the stabilizer of D is defined by $G_{D}=\{g \in G: g(D)=D\}$.

J-Groups. A Kleinian group G is called a J-group if there exists a Jordan curve γ so that $G_{\gamma}=G$. We say that γ is a G-invariant Jordan curve. In this case, we have necessarily that $\Lambda(G) \subset \gamma$. If $\Lambda(G)=\gamma$, then we say that G is a J-group of the first kind; otherwise, we say that it is of the second kind.

If G is a J-group and γ is a G-invariant Jordan curve, then we can associate to G a 3 -tuple (γ, D_{1}, D_{2}), where D_{1} and D_{2} are the two topological discs bounded by γ. If the J-group G is of the first kind, then such a 3 -tuple is unique (modulo permutation of the two topological discs). In any case, the stabilizers $G_{D_{1}}$ and $G_{D_{2}}$ coincide. We have that $G_{D_{1}}$ is either G or it is a subgroup of index two in G. Classical examples of J-groups are given by Fuchsian groups, \mathbb{Z}_{2}-extension of Fuchsian groups, Schottky groups and QuasiFuchsian groups.

Let G be a Kleinian group and let D be a simply connected component of $\Omega(G)$. A parabolic transformation $k \in G_{D}$ is accidental if there is a Riemann map $w: U \rightarrow D$ so that $w^{-1} \circ k \circ w$ is hyperbolic. This definition is independent of the Riemann map $w: U \rightarrow D$.

We need the following extension theorem for Riemann maps due to Carathéodory. A proof can be found in the book of C. Pommerenke [10].

Theorem 1.1 (Carathéodory Extension Theorem [3]). Let D be a simply connected plane domain, conformally equivalent to the upper half plane U, and so that the euclidean boundary of D is a Jordan curve. If $w: U \rightarrow D$ is a Riemann map, then it has an extension to the closure of U as a homeomorphism onto the closure of D.

Proposition 1.2. A J-group G of the first kind contains no accidental parabolic transformations.

Proof. Let (γ, D_{1}, D_{2}) be the 3-tuple associated to the J-group of the first kind G. Let $w: U \rightarrow D_{1}$ be a Riemann map. The group $F=w^{-1} \circ G_{D_{1}} \circ w$ is a Fuchsian group keeping U invariant. As a consequence of Theorem 1.1., we can extend w to a homeomorphism from the closure of U onto the closure of D_{1}, that is, $D_{1} \cup \gamma$. Denote by $\bar{w}: \bar{U} \rightarrow D_{1} \cup \gamma$ such an extension. Let $f \in F$ be a hyperbolic transformation with fixed points x and y (necessarily, $x \neq y$). We must show that $w \circ f \circ w^{-1}$ is not parabolic. The injectivity of \bar{w} implies that $\bar{w}(x) \neq \bar{w}(y)$. Since the points $\bar{w}(x)$ and $\bar{w}(y)$ are fixed points of $w \circ f \circ w^{-1}$, the transformation $w \circ f \circ w^{-1}$ is necessarily loxodromic (it cannot be an elliptic transformation since G is a discrete group).

Let G be a J-group of the first kind with associated 3 -tuple $\left(\gamma, D_{1}, D_{2}\right)$. Each component $D_{i}(i=1,2)$ has a "natural" hyperbolic metric as follows. Set $U_{1}=U$ and $U_{2}=L$. For each $i \in\{1,2\}$, let $w_{i}: U_{i} \rightarrow D_{i}$ be a Riemann map. We transfer, under the map w_{i}, the hyperbolic metric on U_{i} onto the disc D_{i}. Since, any Riemann map $\tilde{w}_{i}: U_{i} \rightarrow D_{i}$ has the form $\tilde{w}_{i}=w_{i} \circ A$, where A
is a conformal automorphism of U_{i}, the hyperbolic metric induced on D_{i} is independent of the chosen Riemann map. We can define axes for loxodromic elements of G as follows. Let g be a loxodromic element in $G_{D_{1}}\left(=G_{D_{2}}\right)$. Let $A(g) \subset D_{1}$ and $B(g) \subset D_{2}$ be the images of the axes of $w_{1}^{-1} \circ g \circ w_{1}$ and $w_{2}^{-1} \circ g \circ w_{2}$ under w_{1} and w_{2}, respectively. We call the sets $A(g)$ and $B(g)$ the axes of g. These axes have common end points, these are the fixed points of g. If $g \in G-G_{D_{1}}$ is loxodromic, then we define the axes of $g, A(g)$ and $B(g)$, to be the axes $A\left(g^{2}\right)$ and $B\left(g^{2}\right)$, respectively. The simple loop $L(g)=A(g) \cup B(g) \cup\{$ fixed points of g \} is called the total axis of the transformation $g \in G$.

A sequence of simple loops $L_{n} \subset \hat{\mathbb{C}}$ is nested if the loop L_{n} separates L_{n-1} from L_{n+1}. We say that the above sequence nests about a point $x \in \hat{\mathbb{C}}$ if each L_{n} separates x from L_{n-1} and, for every point $z_{n} \in L_{n}$, the sequence z_{n} converges to x.

Let G be a J-group of the first kind with associated 3-tuple $\left(\gamma, D_{1}, D_{2}\right)$, and consider a sequence of loxodromic elements $g_{n} \in G$. We say that the sequence of axes $A\left(g_{n}\right)$ (resp., $B\left(g_{n}\right)$) is nested (respectively, nests about x) if the sequence of total axes $L\left(g_{n}\right)$ is nested (respectively, nests about x).

Proposition 1.3. Let G be a J-group of the first kind, and let $h_{n} \in G$ be a sequence of loxodromic elements such that $L\left(h_{n}\right)$ is nested. Then the sequence $L\left(h_{n}\right)$ nests about $x \in \Lambda(G)$ if and only if both fixed points of the transformations h_{n} converge to x.

Proof. Let $\left(\gamma, D_{1}, D_{2}\right)$ be the 3 -tuple associated to G. From our definition of the total axes $L\left(h_{n}\right)$, we may assume $h_{n} \in G_{D_{1}}$. Let $w: U \rightarrow D_{1}$ be a Riemann map. Extend it as a homeomorphism from the closure of U onto the closure of D_{1} (Theorem 1.1). Clearly the sequence of total axes of the transformations $w^{-1} \circ h_{n} \circ w$ is also a nested sequence. The sequence $L\left(h_{n}\right)$ nests about x if and only if the sequence of total axes of $w^{-1} \circ h_{n} \circ w$ nests about the point $w^{-1}(x)$ (consequence of the continuity of the extension of w). The last sequence nests about $w^{-1}(x)$ if and only if the fixed points of $w^{-1} \circ h_{n} \circ w$ converge to $w^{-1}(x)$. This is equivalent to the con-
vergence of the fixed points of h_{n} to x (the extension of w is a homeomorphism).

Proposition 1.4. Let G_{1} and G_{2} be J-groups of the first kind, and let $h_{n} \in G_{1}$ be a sequence of loxodromic elements so that the total axes $L\left(h_{n}\right)$ nest about some point $x \in \Lambda\left(G_{1}\right)$. Let $f: \Omega\left(G_{1}\right) \rightarrow$ $\Omega\left(G_{2}\right)$ be a homeomorphism defining an isomorphism $\phi: G_{1} \rightarrow G_{2}$, where $\phi(g)=f \circ g \circ f^{-1}$. Then the total axes $L\left(f \circ h_{n} \circ f^{-1}\right)$ nest about some point $y \in \Lambda\left(G_{2}\right)$.

Remark. If the above homeomorphism $f: \Omega\left(G_{1}\right) \rightarrow \Omega\left(G_{2}\right)$ is the restriction of a homeomorphism $F: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$, then the continuity of the map F implies $y=F(x)$.

Proof. Let $\left(\gamma_{i}, D_{1}^{i}, D_{2}^{i}\right)$ be the 3-tuple associated to G_{i}, for $i=1,2$. The isomorphism $\phi: G_{1} \rightarrow G_{2}$ is type preserving, that is, $\phi(h) \in G_{2}$ is loxodromic if and only if $h \in G_{1}$ is loxodromic. In fact, assume there is a loxodromic element $h \in G_{1}$ so that $\phi(h) \in G_{2}$ is parabolic with fixed point $q \in \gamma_{2}$. The set $f(A(h)) \cup\{q\}$ is a simple loop which is invariant under $\phi(h)$. Denote by a and r the attracting and repelling fixed points of h. Then $\gamma_{1}-\{a, r\}$ consists of two arcs, say l_{1} and l_{2}. We can find loxodromic elements k and t in G_{1} so that both fixed points of k are in l_{1} and both fixed points of t are in l_{2} (see Proposition E. 5 of Chapter V in $[8]$). In particular, k and t cannot commute with h (see Chapter I in [8]). The image $f(A(k))$ (resp., $f(A(t))$) is a simple path which is invariant under the action of $\phi(k)$ (resp., $\phi(t)$). It follows that the end points of $f(A(k))$ (resp., $f(A(t))$) are the fixed points of $\phi(k)$ (resp., $\phi(t)$). Now, either $\phi(k)$ or $\phi(t)$ must be a parabolic element with fixed point q. Without lost of generality, let us assume $\phi(t)$ is parabolic. In particular, $\phi(h)$ and $\phi(t)$ commute. This is a contradiction to the facts that t and h do not commute and ϕ is an isomorphism.

As a consequence, we can extend f to the set of fixed points as follows. If q is the fixed point of a parabolic element $h \in G_{1}$, then define $f(q)$ as the fixed point of the parabolic element $\phi(h) \in G_{2}$. If a and r are the attracting and repelling fixed points, respectively, of a loxodromic element $k \in G_{1}$, then we define $f(a)$ and $f(r)$ to be
the attracting and repelling fixed points, respectively, of $\phi(k) \in G_{2}$. This extension is one-to-one. In fact, if there are two non-elliptic transformations k_{1} and k_{2} in G_{1} so that the images of the fixed points intersect, then the discreteness of G_{2} implies that $\phi\left(k_{1}\right)$ and $\phi\left(k_{2}\right)$ have the same fixed points (see Chapter II in [8]). It follows that $\phi\left(k_{1}\right)$ and $\phi\left(k_{2}\right)$ commute. Since ϕ is an isomorphism, we must have that k_{1} and k_{2} commute and, in particular, they have the same fixed points.

We denote by \tilde{f} the above one-to-one extension of f. Let us now consider a sequence of loxodromic elements $h_{n} \in G_{1}$ so that the sequence $L\left(h_{n}\right)$ nests about some $x \in \gamma_{1}$. Proposition 1.3 asserts that the sequence $L\left(h_{n}\right)$ nests about x if and only if the sequence of fixed points of h_{n} converges to x. The image under f of the axes $A\left(h_{n}\right)$ and $B\left(h_{n}\right)$ are invariant under the transformation $f \circ h_{n} \circ f^{-1}$. It follows that the end points of these axes are exactly the fixed points of $f \circ h_{n} \circ f^{-1}$. The sequence of images $\tilde{f}\left(L\left(h_{n}\right)\right)$ is again nested. The fact that the end points of the axis $A\left(f \circ h_{n} \circ f^{-1}\right)$ are exactly the end points of the image under \tilde{f} of the axis $A\left(h_{n}\right)$ implies that the sequence of total axes $L\left(f \circ h_{n} \circ f^{-1}\right)$ is also nested. We must show that this sequence in fact nests about some point. Let us assume this is not the case. In this situation, there exists a geodesic L in D_{1}^{2}, with different end points u and v, to which the axes $A\left(f \circ h_{n} \circ f^{-1}\right)$ converge (see Proposition 1.3). Let (u, v) be the arc of γ_{2} determined by the points u and v and not containing the fixed points of $f \circ h_{n} \circ f^{-1}$. It is possible to find two different loxodromic elements s and t in G_{2} both of them with fixed points in (u, v) and not commuting. Let k be either s or t. In this case the fixed points of $f^{-1} \circ k \circ f$ are contained in the arc of γ_{1} containing x and bounded by the fixed points of h_{n}, for all n. In particular, $f^{-1} \circ k \circ f$ must be a parabolic element in G_{1} with x as its fixed point. The discreteness of the group G_{1} implies that $f^{-1} \circ s \circ f$ and $f^{-1} \circ t \circ f$ commute, obtaining a contradiction with the fact that ϕ is an isomorphism.

It is known (see [8] and [9]) that a finitely generated Kleinian group G with exactly two components is an extended quasi-Fuchsian group, that is, there is a finitely generated extended Fuchsian group
F (either Fuchsian or \mathbb{Z}_{2}-extension of a Fuchsian group) and a quasiconformal homeomorphism $w: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ such that $w F w^{-1}=G$. In particular, G is a J-group. In general, an infinitely generated Kleinian group with exactly two components is not necessarily a J-group as it is shown by an example in [6]. In the same paper can be found necessary and sufficient conditions for a Kleinian group with exactly two components to be a J-group. We prove that certain infinitely generated J-groups (for example, of the first kind with invariant components) are topological deformations of Fuchsian groups (see Theorem 2.4.).

Conjecture 1. If G is a J-group, then there exist a possible extended Fuchsian group F and a homeomorphism $W: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ so that $G=W \circ F \circ W^{-1}$.
2. Main Results. In this section we present some topological and analytical properties satisfied by J-groups. These are extensions of some properties satisfied by finitely generated Kleinian groups. Theorems 2.1 and 2.3 are generalizations of the main result of Maskit in [7]. Using a result of Tukia (see Theorem 3.3), we prove that certain infinitely generated J-groups are topological deformations of Fuchsian groups (see Theorem 2.4). Theorems 2.5 and 2.6 are extensions of two theorems in [4].

Theorem 2.1. Let G be a J-group of the first kind and let $f: \Omega(G) \rightarrow \Omega(G)$ be a (conformal, anticonformal) homeomorphism such that $f \circ g \circ f^{-1}=g$, for all $g \in G$. Then there exists a (conformal, anticonformal) homeomorphism $F: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$, such that $F /_{\Omega(G)}=f$ and $F(x)=x$, for all $x \in \Lambda(G)$. Moreover, if f is anticonformal, then $F^{2}=I$ and G is either a Fuchsian group or a \mathbb{Z}_{2}-extension of a Fuchsian group.

Corollary 2.2. Let G be a J-group of the first kind and let $f: \Omega(G) \rightarrow \Omega(G)$ be an anticonformal homeomorphism such that $f \circ g \circ f^{-1}=g$, for all $g \in G$. Then f is the restriction of an anticonformal involutory fractional linear transformation F (that is, $\left.F(z)=(a \bar{z}+b) /(c \bar{z}+d), F^{2}=I\right)$, and G is either a Fuchsian group or a $\mathbb{Z}_{2}-$ extension of a Fuchsian group. Further, the mapping F with the above properties is unique.

The following result is a natural extension of Theorem 2.1.
Theorem 2.3. Let G_{1} and G_{2} be J-groups of the first kind and let $f: \Omega\left(G_{1}\right) \rightarrow \Omega\left(G_{2}\right)$ be a homeomorphism inducing an isomorphism $f_{*}: G_{1} \rightarrow G_{2}$, defined by $f_{*}(g)=f \circ g \circ f^{-1}$. Then there exists a homeomorphism $F: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ such that $F / \Omega\left(G_{1}\right)=f$.

Theorem 2.4. Let G be a J-group with a 3-tuple (γ, D_{1}, D_{2}) so that $G_{D_{1}}=G$. Then there exist a Fuchsian group F and a homeomorphism $W: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ such that $W \circ F \circ W^{-1}=G$.

Examples 36 and 37 in [$\mathbf{5}$] show that we cannot expect to have a quasiconformal conjugation of a J-group G with a Fuchsian group (as in the situation of finitely generated J-groups [9]). It is possible to construct two Fuchsian groups either of the first or second kind (necessarily infinitely generated) which are topologically conjugated but not quasiconformally conjugated (see [1] and [2]).

Theorem 2.5. Let F be a Fuchsian group operating on $U_{1}=U$ and $U_{2}=L$. For each $i \in\{1,2\}$, let $f_{i}: U_{i} \rightarrow \hat{\mathbb{C}}$ be a one-toone analytic map defining an isomorphism $\left(f_{i}\right)_{*}: F \rightarrow G$ onto a Kleinian group G, where $\left(f_{i}\right)_{*}(k)=f_{i} \circ k \circ f_{i}^{-1}$, for k in F. If f_{1} and f_{2} can be extended continuously to $\mathbb{R} \cup\{\infty\}$ so that $f_{1}=f_{2}$ on $\Omega(F) \cap(\mathbb{R} \cup\{\infty\})$ and $\left(f_{1}\right)_{*}=\left(f_{2}\right)_{*}$, then f_{1} and f_{2} are restrictions of the same fractional linear transformation. In particular, G is a Fuchsian group of the same kind as F.

Theorem 2.6. Let F be a Fuchsian group of the first kind acting on $U_{1}=U$ and $U_{2}=L$. For each $i \in\{1,2\}$, let $f_{i}: U_{i} \rightarrow f_{i}\left(U_{i}\right)$ be a holomorphic cover mapping defining a surjective homomorphism $\left(f_{i}\right)_{*}: F \rightarrow G$ onto a Kleinian group G, defined by $f_{i} \circ k=\left(f_{i}\right)_{*}(k) \circ$ f_{i}, for $k \in F$. If we can extend f_{1} and f_{2} continuously to $\mathbb{R} \cup\{\infty\}$ and $\left(f_{1}\right)_{*}=\left(f_{2}\right)_{*}$, then G is a Fuchsian group.

Remark. We observe that Theorem 2.5, for Fuchsian groups of the first kind, is a special case of Theorem 2.6.
3. Proof of Theorems. We proceed to prove the theorems of the last section. First, we need some lemmas.

Lemma 3.1. Let G be a J-group of the first kind with associated 3 -tuple (γ, D_{1}, D_{2}). If x belongs to γ, then there exists a sequence of loxodromic elements g_{i} in $G_{D_{1}}$ such that the total axes $L\left(g_{i}\right)$ nest about x.

Proof. Choose an orientation for the loop γ. Let z_{-1} and z_{+1} be limit points of G, so that z_{-1} and z_{+1} are on the left and right sides of x, respectively. Since the limit set of G and $G_{D_{1}}$ are the same, we can find a loxodromic element g_{1} in $G_{D_{1}}$ with attracting fixed point x_{-1} lying between x and z_{-1}, and repelling fixed point x_{+1} lying between x and z_{+1} (see Chapter V, Proposition E.5. in [8]). In a similar way, we can find a loxodromic element g_{2} in $G_{D_{1}}$ with attracting fixed point x_{-2} between x and x_{-1}, and repelling fixed point x_{+2} between x and x_{+1}. We proceed inductively to obtain a sequence of loxodromic elements $g_{i} \in G_{D_{1}}$, with attracting and repelling fixed points x_{-i} and x_{+i}, respectively, both of them converging to the point x, such that x_{-i} lies between x and $x_{-(i-1)}$, and x_{+i} lies between x and $x_{+(i-1)}$. As a consequence of Proposition 1.3., the sequence of axes $L\left(g_{i}\right)$ nests about x.

Lemma 3.2. Assume the hypotheses of Theorem 2.3. Let $\left\{g_{i}\right\}$ and $\left\{h_{j}\right\}$ be two sequences of loxodromic elements in G_{1}, with total axes $L\left(g_{i}\right)$ and $L\left(h_{j}\right)$, respectively. If both sequences nest about a point $z \in \gamma_{1}$, then the sequences $L\left(f_{*}\left(g_{i}\right)\right)$ and $L\left(f_{*}\left(h_{j}\right)\right)$ nest about the same point in γ_{2}.

Proof. We denote by g^{*} the transformation $f_{*}(g)$, for all $g \in G_{1}$. As a consequence of Proposition 1.4, the sequences of total axes $L\left(g_{i}^{*}\right)$ and $L\left(h_{j}^{*}\right)$ each nests about some some point. Assume that $L\left(g_{i}^{*}\right)$ and $L\left(h_{j}^{*}\right)$ nest about different points, say z_{1} and z_{2}, respectively $\left(z_{1} \neq z_{2}\right)$. Denote by $D\left(g_{i}^{*}\right)$ and $D\left(h_{j}^{*}\right)$ the closed topological discs bounded by the total axes $L\left(g_{i}^{*}\right)$ and $L\left(h_{j}^{*}\right)$, respectively, so that z_{1} is contained in $D\left(g_{i}^{*}\right)$ and z_{2} is contained in $D\left(h_{j}^{*}\right)$. For sufficiently large value of i, the sets $M\left(g_{i}^{*}\right)$ and $M\left(h_{i}^{*}\right)$ are disjoint. We may assume that this holds for all values of i. The (only) four possibilities for the configuration of the total axes of g_{i} and h_{i}, denoted by cases (1), (2), (3) and (4), are shown in Figure 1. In cases 3 and $4, L\left(g_{i}\right)$ and $L\left(h_{i}\right)$ have common points. In this case, since the end
points of $A\left(g_{i}^{*}\right)$ (respectively, $\left.A\left(h_{i}^{*}\right)\right)$ are the same as for $f\left(A\left(g_{i}\right)\right)$ (respectively, $f\left(A\left(h_{i}\right)\right)$), we must have that $L\left(g_{i}^{*}\right)$ and $L\left(h_{i}^{*}\right)$ have also common points, a contradiction to our assumption. Let us now assume we are in case 2 (similar to case 1). There are only two possibilities (see Figure 2):
(1) Given i, there exists n_{i} such that $L\left(g_{i}\right)$ separates $L\left(h_{n_{i}}\right)$ from $L\left(h_{n_{i}+1}\right)$; or
(2) Given j, there exists m_{j} such that $L\left(h_{j}\right)$ separates $L\left(g_{m_{j}}\right)$ from $L\left(g_{m_{j}+1}\right)$.

The sequence of simple loops

$$
f\left(A\left(g_{i}\right)\right) \cup f\left(B\left(g_{i}\right)\right) \cup\left\{\text { the fixed points of } g_{i}^{*}\right\}
$$

is necessarily nested. We claim that it nests about z_{1}. If this is not the case, then there exists a sequence of points $w_{i} \in f\left(A\left(g_{i}\right)\right)$ converging to some point $w \in \Omega\left(G_{1}\right)$. Let $t_{n} \in A\left(g_{i}\right)$ be such that $f\left(t_{i}\right)=w_{i}$ and let $t \in \Omega\left(G_{1}\right)$ be such that $f(t)=w$. The fact that $f: \Omega\left(G_{1}\right) \rightarrow \Omega\left(G_{2}\right)$ is a homeomorphism implies that there exists a subsequence of t_{i} converging to t. This is a contradiction to the fact that t_{i} converges to $z \in \gamma_{1}=\Lambda\left(G_{1}\right)$. Since the end points of $f\left(A\left(g_{i}\right)\right)$ are the same as for $A\left(g_{i}^{*}\right)$, we must have that the sequence $L\left(g_{i}^{*}\right)$ nests about z_{1} (Proposition 1.3). Now, the above possibilities ensure that the sequence $L\left(h_{i}^{*}\right)$ also nests about z_{1}. This is a contradiction to the facts that $L\left(h_{i}^{*}\right)$ nests about z_{2} and $z_{1} \neq z_{2}$.

To prove theorem 2.4, we need a result due to Tukia (see [12]). Suppose that K and H are Kleinian groups, each one preserving a domain A and B, respectively. Suppose also there is an isomorphism $\phi: K \rightarrow H$. We say that ϕ is geometric, if there exists a homeomorphism $f: A \rightarrow B$ such that

$$
\phi(k)(z)=f \circ k \circ f^{-1}(z), \text { for all } k \in K \text { and } z \in B
$$

In the case $A=B=U, U$ the upper half-plane, we say that the isomorphism ϕ preserves the relation of being crossed if the following holds:
(1) k in K is hyperbolic if and only if $\phi(k)$ is hyperbolic; and
(2) the axes of hyperbolic elements k and t in K intersect if and only if the axes of $\phi(k)$ and $\phi(t)$ intersect.

Theorem 3.3 [12]. Let K and H be Fuchsian groups with infinitely many limit points. Then an isomorphism $\phi: K \rightarrow H$ is geometric if and only if it preserves the relation of being crossed.

Lemma 3.4. Assume the hypotheses of Theorem 2.5. Then f_{1} and f_{2} coincide on the limit set of F.

Proof. We consider two cases.
Case 1. Assume $\Omega(F) \cap \mathbb{R} \cup\{\infty\} \neq \phi$. We have by hypotheses that $f_{1}=f_{2}$ on a dense subset of $\mathbb{R} \cup\{\infty\}$. Since f_{1} and f_{2} are continuous on $\mathbb{R} \cup\{\infty\}$, both agree on all of $\mathbb{R} \cup\{\infty\}$.
Case 2. Assume $\Omega(F) \cap \mathbb{R} \cup\{\infty\}=\phi$. The group F is a Fuchsian group of the first kind. Since $\Lambda(F)$ is the closure of the fixed points of the hyperbolic elements of F, we only need to check the equality of both functions at these points. Let k be a hyperbolic element of F. Denote by p its repelling fixed point and by q its attracting fixed point. Let g be the transformation in G given by $f_{1} \circ k \circ f_{1}^{-1}=g=f_{2} \circ k \circ f_{2}^{-1}$. In this way, the points $f_{1}(p), f_{1}(q), f_{2}(p)$ and $f_{2}(q)$ are fixed points of the transformation g. Since the map $k \rightarrow f_{i} \circ k \circ f_{i}^{-1}$ is an isomorphism, for $i=1,2$, the transformation g is different from the identity. In particular, g has at most two fixed points.

Subcase 2.1. Let us assume $f_{1}(p)=f_{1}(q)$. Since $f_{1}\left(U_{1}\right)$ is necessarily G-invariant, its boundary must contain all of the limit set of G. If g has another fixed point, say x, different from $f_{1}(p)$, then x is in the boundary of $f_{1}\left(U_{1}\right)$. Let $\left\{z_{n}\right\}$ be a sequence of different points in $f_{1}\left(U_{1}\right)$ converging to x. The property that f_{1} is a one-to-one map on U_{1} implies that there are unique points $w_{n} \in U_{1}$ such that $z_{n}=f_{1}\left(w_{n}\right)$. The sequence w_{n} has a subsequence converging to some point w in the closure of U_{1}. We denote such a subsequence again by w_{n}. The continuity of f_{1} implies $f_{1}(w)=x$, and w must be a fixed point of k. Since x is different from the image of p and q under f_{1}, we have that x is different from p and $q\left(f_{1}\right.$ is one-to-one on the closure of U_{1}). Hence k has three fixed points and
it must be the identity transformation, a contradiction. We have shown that in this case g must be a parabolic transformation with $f_{1}(p)$ as fixed point. In particular, f_{1} and f_{2} have the same value at p and q.

Subcase 2.2. Assume $f_{1}(p) \neq f_{1}(q)$. Using the same kind of arguments as in the previous case, we obtain the following two possibilities.
(1) $f_{1}(p)=f_{2}(p)$ and $f_{1}(q)=f_{2}(q)$; or
(2) $f_{1}(p)=f_{2}(q)$ and $f_{1}(q)=f_{2}(p)$.

Since $f_{1}(p)$ and $f_{2}(p)$ are the attracting fixed points of g, the second case cannot happen.

Proof. (Theorem 2.1.) First, we proceed to show the topological part of the theorem. Let G be a J-group of the first kind with associated 3 -tuple (γ, D_{1}, D_{2}). Define the transformation $F: \hat{\mathbb{C}} \rightarrow$ $\widehat{\mathbb{C}}$ by

$$
F(z)= \begin{cases}f(z), & \text { if } z \in \Omega(G)=D_{1} \cup D_{2} ; \\ z, & \text { if } z \in \Lambda(G)=\gamma\end{cases}
$$

The function $F: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is a bijection and it is continuous on $\Omega(G)=D_{1} \cup D_{2}$. If we prove the continuity of F on γ, then we obtain that F is a continuous bijection and, since $\hat{\mathbb{C}}$ is compact, the desired homeomorphism. Now we proceed to check the continuity of F at a point $x \in \gamma$. Consider a sequence of different points x_{n} converging to x. If we show the existence of a subsequence $x_{n_{2}}$ such that $F\left(x_{n_{i}}\right)$ converges to x, then we obtain the continuity of F at x.

We consider three cases:
(1) x_{n} belongs to γ, for all n.
(2) x_{n} belongs to $D_{1} \cup D_{2}$, for all n.
(3) x_{n} may belong to any of the above sets for different values of n.

Case (1) is trivial by definition of F. Case (3) can be reduced to one of the cases (1) or (2) by choosing a suitable subsequence. From now on, we assume that x_{n} belongs to $D_{1} \cup D_{2}$, for all n.

As a consequence of Lemma 3.1., we have the existence of a sequence of loxodromic elements $g_{i} \in G_{D_{1}}$ so that their total axes $L\left(g_{i}\right)$ nest about x. Denote by L_{i} the axis $L\left(g_{i}\right)$. We claim that the sequence of simple loops $F\left(L_{i}\right)$ nests about x. In fact, denote by x_{-i} and x_{+i} the attracting and repelling fixed points of g_{i}. Set $A_{i}=A\left(g_{i}\right)$ and $B_{i}=B\left(g_{i}\right)$. Since $f \circ g_{i}=g_{i} \circ f$ and f is one-to-one, we must have that $f\left(A_{i}\right)$ and $f\left(B_{i}\right)$ are g_{i} invariant and, in particular, the end points of $f\left(A_{i}\right)$ and $f\left(B_{i}\right)$ are the fixed points of g_{i}. The fact that the sequence of axes L_{i} is a nested sequence implies that the sequence of simple loops $F\left(L_{i}\right)$ is again nested. Let us assume the sequence $F\left(L_{i}\right)$ does not nest about x. Denote by K_{i} the compact topological disc bounded by $F\left(L_{i}\right)$ containing x. If we have $T=\cap K_{i} \neq\{x\}$, then the convergence of x_{-i} and x_{+i} to x implies the existence of some point y in $D_{1} \cap T$. It follows that we can find a sequence of points $z_{i} \in L_{i}$ (in particular, z_{i} converges to x) such that $f\left(z_{i}\right)$ converges to y. Let us consider $z=f^{-1}(y)$, which belongs either to D_{1} or D_{2}. Denote by D the disc D_{1} or D_{2} containing z. Choose a compact disc X_{1} in D with center z and a compact disc X_{2} in D_{1} with center y, so that $f\left(X_{1}\right)$ is contained in X_{2} (continuity of f on $\Omega(G)$). Since f is one-to-one, we must have that $z_{i}=f^{-1}\left(f\left(z_{i}\right)\right)$ belongs to X_{1}, for large i. It follows that x must also belongs to X_{1}. This is a contradiction to the fact that x belongs to γ.

We choose a subsequence $x_{n_{i}}$ from the sequence x_{n} such that $x_{n_{i}}$ belongs to the disc bounded by L_{i} and containing the point x in its interior. The image $f\left(x_{n_{i}}\right)$ also belongs to the interior of the topological disc bounded by $f\left(L_{i}\right)$ containing x. The fact that the sequence $F\left(L_{i}\right)$ nests about x implies that $f\left(x_{n_{i}}\right)$ necessarily
converges to x. At this point, we have proved the topological part of our theorem.

Now we proceed to prove the conformal part. We must prove that our topological extension is conformal provided its restriction to $D_{1} \cup D_{2}$ is. We have two situations, either $F\left(D_{1}\right)=D_{1}$ or $F\left(D_{1}\right)=D_{2}$. Let us recall that the map F restricted to the Jordan curve γ is the identity. In particular, basic topological arguments (and the fact that F preserves orientation on $D_{1} \cup D_{2}$) imply that the last situation cannot occur and we must have that $F\left(D_{i}\right)=D_{i}$, for $i=1,2$. Consider a Riemann map $w: U \rightarrow D_{1}$. By Theorem 1.1., we can extend this Riemann map to a homeomorphism \bar{w} : $\bar{U} \rightarrow D_{1} \cup \gamma$. Denote by F_{1} the restriction of F to $D_{1} \cup \gamma$. Then $h=\bar{w}^{-1} \circ F_{1} \circ \bar{w}$ is a homeomorphism of \bar{U} which is a conformal automorphism on U and acts as the identity on the boundary of U. That can only happen if h is the identity. In particular, F_{1} is the identity. In the same way one shows that F restricted to D_{2} is the identity. Now, $F=I$ and it is trivially a conformal automorphism of the Riemann sphere.

Let us assume now that the homeomorphism f is anticonformal. We have again two possibilities; either $F\left(D_{1}\right)=D_{1}$ or $F\left(D_{1}\right)=D_{2}$. If we have $F\left(D_{1}\right)=D_{1}$, then we can use a Riemann map and argue similarly as in the conformal case to show that in this case $F=I$ on D_{1} which is a contradiction. In particular, we must have $F\left(D_{3-i}\right)=D_{i}$, for $i=1,2$. Observe that F^{2} is conformal and keeps invariant both discs. It follows from the conformal part above that $F^{2}=I$, that is, F is an involution. Choose a Riemann map $w: U_{1} \rightarrow D_{1}$, where $U_{1}=U$. Set $U_{2}=L$ and $j(z)=\bar{z}$. Define a $\operatorname{map} L: \hat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ as follows:

$$
L(z)= \begin{cases}w(z), & \text { if } z \in \bar{U}_{1} ; \\ F \circ w \circ j(z), & \text { if } z \in \bar{U}_{2}\end{cases}
$$

Observe that L is a conformal automorphism of the Riemann sphere and it satisfies $F=L \circ j \circ L^{-1}$. In particular, F is an anticonformal involution. Since the set of fixed points of an anticonformal involution of the Riemann sphere is a round circle, we have that γ is a circle and G is either a Fuchsian group or a \mathbb{Z}_{2}-extension of a Fuchsian group of the first kind.

Observe that in the above proof, in the anticonformal part, we have obtained Corollary 2.2.

Proof. (Theorem 2.3) Let ($\gamma_{j}, D_{1}^{j}, D_{2}^{j}$) be the 3 -tuple associated to G_{j}, for $j=1,2$. Define $F: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ as follows.
(1) $F(z)=f(z)$, if z belongs to $\Omega\left(G_{1}\right)$.
(2) If z belongs to γ_{1}, then we consider a sequence of axes L_{i} of loxodromics elements $g_{i} \in G_{1}$, nesting about z (the existence of such a sequence is given by Lemma 3.1.). Let w be the point in γ_{2} to where the sequence of axes $L\left(f \circ g_{i} \circ f^{-1}\right)=L\left(f_{*}\left(g_{i}\right)\right)=L\left(g_{i}^{*}\right)$ nests about (see Proposition 1.4.), and define $F(z)=w$.

Lemma 3.2 asserts that F is well defined. The above function satisfies the following properties:
(1) $F\left(\Omega\left(G_{1}\right)\right)=\Omega\left(G_{2}\right)$.
(2) $F\left(\Lambda\left(G_{1}\right)\right)=\Lambda\left(G_{2}\right)$.
(3) $F / \Omega\left(G_{1}\right)=f$.
(4) F is a bijection.

Properties (1), (2) and (3) are direct consequence of the definition of F. We only need to check (4). Lemmas 3.1 and 3.2 applied to the function $f^{-1}: \Omega\left(G_{2}\right) \rightarrow \Omega\left(G_{1}\right)$ permit the construction of an inverse function for $F: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$.

The continuity of F on $\Omega\left(G_{1}\right)$ is trivial by hypotheses. We proceed to check the continuity of F on γ_{1}. Let $x \in \gamma_{1}$, and choose a sequence of loxodromic elements g_{i} in G_{1} with axes $L\left(g_{i}\right)$ nesting about x (Lemma 3.1). The axes $L\left(g_{i}^{*}\right)$ of the transformations $g_{i}^{*} \in G_{2}$ nest about $F(x)$ as a consequence of Lemma 3.2. and the definition of F. Since the end points of $A\left(g_{i}^{*}\right)$ are the same as for $f\left(A\left(g_{i}\right)\right)$, it follows that the sequence of simple loops $F\left(L\left(g_{i}\right)\right)$ also nests about $F(x)$. Now we can proceed, in a similar way as in the proof of Theorem 2.1, to show the continuity of F at x and, by compactness of the Riemann sphere, that F is the desired homeomorphism.

Proof. (Theorem 2.4) Case 1. Let G be a J-group of the first kind with associated 3-tuple (γ, D_{1}, D_{2}), so that $G_{D_{1}}=G$. Let w : $U \rightarrow D_{1}$ and $v: L \rightarrow D_{2}$ be Riemann maps. Denote by $w: \bar{U} \rightarrow \bar{U}$
the homeomorphic extension of w given by Theorem 1.1., and by F and H the Fuchsian groups, necessarily of the first kind, given by $w^{-1} \circ G \circ w$ and $v^{-1} \circ G \circ v$, respectively. Denote by $\psi_{w}: F \rightarrow G$ and $\phi_{v}: H \rightarrow G$ the isomorphisms defined by $\phi_{w}(k)=w \circ k \circ w^{-1}$ and $\phi_{v}(t)=v \circ t \circ v^{-1}$, respectively. Consider the isomorphism Φ : $F \rightarrow H$ given by $\Phi(k)=\phi_{v}^{-1}\left(\phi_{w}(k)\right)$. This isomorphism preserves the relation of being crossed and, by Theorem 3.3., there exists a homeomorphism $T: U \rightarrow U$ such that $T \circ k \circ T^{-1}=\Phi(k)$, for all k in F. The map $W: \Omega(F)=U \cup L \rightarrow \Omega(G)=D_{1} \cup D_{2}$ defined by:
(1) $W(x)=w(x)$, for $x \in U$,
(2) $W(x)=v \circ j \circ T \circ j(x)$, for $x \in L$,
is a homeomorphism inducing the isomorphism $\psi: F \rightarrow G$. Now the result, in this case, follows from Theorem 2.3.

Case 2. Let G be a J-group of the second kind with a 3 -tuple $\left(\gamma, D_{1}, D_{2}\right)$ so that $g\left(D_{1}\right)=D_{1}$, for all $g \in G$. If we can construct a J-group K of the first kind with invariant components, so that G is a subgroup of K, then the result will follow from the above case. The existence of such a J-group K is as follows. Let $\gamma_{1}, \gamma_{2}, \ldots$. , be a maximal set of non-equivalent (under G) maximal arcs in $\gamma \cap \Omega(G)$. Denote by u_{i} and v_{i} the ends of the arc γ_{i}. We consider on D_{i} the complete hyperbolic metric induced from U via a Riemann map. Let $\alpha_{i} \subset D_{1}$ and $\beta_{i} \subset D_{2}$ be the unique geodesics with end points u_{i} and v_{i}. Denote by Q_{i} the interior of the topological disc bounded by $\alpha_{i} \cup \beta_{i}$ and contained in $\Omega(G)$. In the disc Q_{i} we can construct an infinite sequence of circles $C_{j}^{i}, j \in \mathbb{Z}$, satisfying the following properties (see Figure 3):
(a) C_{j}^{i} is tangent to C_{j-1}^{i} and C_{j+1}^{i}.
(b) $C_{n}^{i} \cap C_{m}^{i}=\emptyset$, for $n \notin\{m-1, m, m+1\}$.
(c) The euclidean centers of C_{j}^{i} approach u_{i} and v_{i} as j approach ∞ and $-\infty$, respectively.
Now we consider a sequence of parabolic elements P_{j}^{i} such that $P_{j}^{i}\left(C_{2 j-1}^{i}\right)=P_{2 j}^{i}$ and sends tangencies to tangencies, that is, $P_{j}^{i}\left(C_{2 j-2}^{i} \cap C_{2 j-1}^{i}\right)=C_{2 j} \cap C_{2 j+1}^{i}$. The circles may have different radii, but necessarily converging to zero as j approaches either $+\infty$ or $-\infty$.

Let K be the group generated by G and all the parabolic transformations P_{j}^{i}. By construction, there is a Jordan curve invariant
under the group K. Each of the topological discs bounded for such a curve is also invariant under the group K.

Proof. (Theorem 2.5.) Let us denote by $\phi: F \rightarrow G$ the isomorphism $\left(f_{i}\right)_{*}$. Lemma 3.4 and the fact that $f_{1} / \Omega(F) \cap \mathbb{R}=f_{2} / \Omega(F) \cap \mathbb{R}$ imply that f_{1} and f_{2} coincide in $\mathbb{R} \cup\{\infty\}$. Define a map as follows:

$$
L(z)=\left\{\begin{array}{l}
f_{1}(z), \text { if } z \in \bar{U}_{1} \\
f_{2}(z), \text { if } z \in \bar{U}_{2},
\end{array}\right.
$$

where the bar represents the Euclidean closure of sets.
The map L is clearly analytic on the Riemann sphere minus the extended real line and continuous on all the Riemann sphere. It follows that L is analytic on all of the Riemann sphere. One can also observe that necessarily the image of a limit point of F is again a limit point of G. In fact, if $x \in \Lambda(F)$, then we can find a point $u \in U_{1}$ and a sequence of different elements γ_{n} in F so that $\gamma_{n}(u)$ converges to x. Since $\phi\left(\gamma_{n}\right)\left(f_{1}(u)\right)=f_{1}\left(\gamma_{n}(u)\right), \phi$ is isomorphism and, by hypothesis, f_{1} extends continuously to the extended real line, we have that $f_{1}(x)$ is a limit point of G. The group G is nonelementary as can be seen from the following argument. Since the group F is non-elementary, we can find three different hyperbolic elements in F, say γ_{1}, γ_{2} and γ_{3}, no two of them commuting. The fact that $\phi: F \rightarrow G$ is an isomorphism, asserts that $g_{1}=\phi\left(\gamma_{1}\right), g_{2}=$ $\phi\left(\gamma_{2}\right)$ and $g_{3}=\phi\left(\gamma_{3}\right)$ are three different non-elliptic transformations no two of them commuting. The set of fixed points of these thre transformations are disjoint and they are contained in the limit set of G.

If we have $f_{1}\left(U_{1}\right) \cap f_{2}\left(U_{2}\right)=\emptyset$, then the map L must be one-to-one on the extended real line. In fact, if there are two different points on $\hat{\mathbb{R}}$, say x and y, so that $L(x)=L(y)$, then the same holds for f_{1} and f_{2}. The image of both arcs determined by x and y are common boundary points of both $f_{1}\left(U_{1}\right)$ and $f_{2}\left(U_{2}\right)$. It follows that one of these arcs must project onto the point $L(x)$. This is impossible for a non-constant analytic map as it is the case of L. As a consequence, the map L is one-to-one on all the Riemann
sphere and, in particular, is a fractional linear transformation and G is a Fuchsian group.

Let us assume $f_{1}\left(U_{1}\right) \cap f_{2}\left(U_{2}\right) \neq \emptyset$. Denote by Δ the connected (invariant) component of the region of discontinuity of G containing $f_{i}\left(U_{i}\right)$. First, we proceed to show that $f_{1}\left(U_{1}\right)=f_{2}\left(U_{2}\right)$. If F is of the first kind, then the boundary points of $f_{i}\left(U_{i}\right)$ are necessary limit points (the boundary points are images of boundary points of U_{i} and, as shown above, the image of limit points are again limit points). As a consequence, $f_{i}\left(U_{i}\right)=\Delta$ and the desired equality follows. If F is a Fuchsian group of the second kind and $f_{1}\left(U_{1}\right) \neq$ $f_{2}\left(U_{2}\right)$, then the path-connectivity of $f_{i}\left(U_{i}\right)$, for $i=1,2$, implies the existence of a point x either in both $f_{1}\left(U_{1}\right)$ and the boundary of $f_{2}\left(U_{2}\right)$ or in both $f_{2}\left(U_{2}\right)$ and the boundary of $f_{1}\left(U_{1}\right)$. Without lost of generality, we may assume the existence of a point x in both $f_{1}\left(U_{1}\right)$ and the boundary of $f_{2}\left(U_{2}\right)$. It follows that there is a point y in the extended real line so that $f_{2}(y)=x$. Since x is a regular point for G, the point y is also a regular point for F. Let $z \in U_{1}$ be so that $f_{1}(z)=x$. We can find open neighborhoods R of z and T of x with $f_{1}(R)=T$ and such that there is a neighborhood N of y which does not intersect R. The continuity property of the extension of f_{1} to the extended real line implies the existence of a point $w \in N$ so that $f_{1}(w) \in T$. This gives a contradiction to the injectivity of f_{1} on U_{1}.

Since we have the equality $f_{1}\left(U_{1}\right)=f_{2}\left(U_{2}\right)$, we are able to define a transformation $K: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ as follows:

$$
K(z)=\left\{\begin{array}{l}
f_{1}^{-1} \circ f_{2}(z), \text { if } z \in \bar{U}_{2} \\
f_{2}^{-1} \circ f_{1}(z), \text { if } z \in \bar{U}_{1}
\end{array}\right.
$$

The transformation K is a conformal map acting as the identity on the real line and, as a consequence, the identity map. We obtain a contradiction to the fact that K must permute both U_{1} and U_{2}.

Proof. (Theorem 2.6.) The images $f_{1}\left(U_{1}\right)$ and $f_{2}\left(U_{2}\right)$ are invariant sets for the Kleinian group G. Since f_{i} is continuous at the boundary of U_{i}, the boundary of $f_{i}\left(U_{i}\right)$ is contained in the image under f_{i} of
$\mathbb{R} \cup\{\infty\}=\hat{\mathbb{R}}$. On the other side, if we denote by N the kernel of the homomorphism induced by f_{i}, then we have either N is trivial or N is a non-trivial normal subgroup of F. Assume that N is nontrivial. In this case N is a Fuchsian group of the first kind. Now, for each point y in the boundary of U_{i} we can find a point $u \in U_{i}$ and a sequence of different elements of N, say g_{n}, so that $g_{n}(u)$ converges to y. The equation $f_{i}=\left(f_{i}\right)_{*}\left(g_{n}\right) \circ f_{i}=f_{i} \circ g_{n}$ implies that $f_{i}(u)=f_{i}\left(g_{n}(u)\right)$. Now the continuous extension property of f_{i} to the boundary of U_{i} implies that $f_{i}(u)=f_{i}(y)$. In particular, the image of the boundary points of U_{i} are interior points of $f_{i}\left(U_{i}\right)$. The above implies that $f_{i}\left(U_{i}\right)$ is a hyperbolic surface on the Riemann sphere without boundary points, a contradiction. As a consequence, the group N must be trivial and the maps f_{i} are necessarily injective. Now we are in the hypothesis of Theorem 2.5.

Remark. The continuity extension hypothesis of Theorems 2.5 and 2.6 can be removed for the class of Fuchsian group of divergence type (see [11]).

References

[1] A. Basmajian, Hyperbolic invariants for infinitely generated fuchsian groups, Thesis Ph.D. in Mathematic, S.U.N.Y. at Stony Brook
[2] , Hyperbolic structures for surfaces of infinite type, Trans. Amer. Math. Soc., 336 (1993), 421-444.
[3] C. Carathéodory, Über die gegenseitige Beziehung der Ränder bei der Abbildung des Innern einer Jordanschen Kurve auf einen Kreis, Math. Ann., 73 (1913) 305-320.
[4] I. Kra and B. Maskit, Involutions on Kleinian groups, Bull. Amer. Math. Soc., 78 (1972), 801-805.
[5] S.L. Krushkal', B.N. Apanasov and N.A. Gusevskii, Kleinian Groups and Uniformization in Examples and Problems, Translations of Mathematical monographs, Amer. Math. Soc., vol. 62 (1981).
[6] L. Kurittu, Jordan curves as the limit point set of Kleinian groups, Ann. Acad. Sci. Fenn. Ser. A I, Mathematica Dissertations 78.
[7] B. Maskit, Self-maps on Kleinian groups, Amer. J. of Math., XCIII (1971), 840-856.
[8] , Kleinian Groups, Springer-Verlag, Berlin-Heidelberg (1988).
[9] , On extended quasifuchsian groups, Ann. Acad. Sci. Fenn. Ser. A I Math., 15 (1990), 53-64.
[10] C. Pommerenke, Boundary Behavior of Conformak Maps, Grundlehren der mathematischen Wissenschaften 299, Springer-Verlag (1991).
[11] C. Pommerenke and R. Hidalgo, On simultaneous homomorphisms onto Kleinian groups, Preprint.
[12] P. Tukia, On discrete groups of the unit disc and their isomorphisms, Ann. Acad. Sci. Fenn. Ser. A I Math., 504 (1972).

Received June 12, 1992 and in revised form September 13, 1993. Partially Supported by Project Fondecyt \#0760-92 and Project UTFSM \#94.12.08

Departamento de Matemáticas

UTFSM, Valparaiso, CHILE
E-mail address: rhidalgo@trantor.mat.utfsm.cl

Figure 2.

Figure 3.

