ON DEDEKIND’S FUNCTION 7(7)

WiLHELM FISCHER

1. Introduction. A transformation of the form

_a7'+b
cT +d

(1.1)

where a, b, ¢, d are rational integers satisfying

ab

cd

(1.2)

=ad —cb=1,

is called a modular transformation. Without loss of generality we may assume
¢ > 0. A function f(7), analytic in the upper halfplane d(7) > 0, and satisfying

the functional equation

T+b
1) 50) = (er+ af (20),
cT +d
is called a modular form of dimension k. An example of a modular form is the
discriminant
(1.4) N(T) = exp{2miT} H (1 — exp{2mimnT})?*,

which is of dimension —12; that is, it satisfies the equation*
(1.5) A(T') = (eT+ d)2A(T)

An important role in the theory of modular functions is played by the function

7”7—] H (1 — exp{2minmT}) ,

(1.6) 7(T) = exp [

Received June 12, 1950.
*Cf. Hurwitz [6] ; however, he gives this formula only in homogeneous coordinates.
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which is the 24th root of A (7). The transformation formula for this function may

be obtained from (1.5) and is conveniently written as:

aT + b
cT+d

.7 (') =n( )= ev=i(cT +d) (1) .

Since we have assumed ¢ > 0 and J(7) > 0, the radicand has a nonnegative real
part. By the square root we always mean the principal branch; that is, R (v~) > 0.
The € appearing in (1.7) is a 24th root of unity. The purpose of the present paper
is to determine this € completely.

Investigations concerning this root of unity were carried out first by Dedekind
[2] and later by Tannery and Molk [10] and Rademacher [8; 9]. However, they
use the theory of log 7(7), which requires much more than is needed for this

1712 and remarks that the transformation

purpose. Hurwitz discusses only [A(7)]
formula of 7(7) can be obtained by means of O-functions. The investigations of
Hermite [5] are likewise not sufficient for our purpose, because he discusses
only 73(7), and therefore a third root of unity remains still undetermined.

In the following, we shall approach the determination of € directly by investi-
gations of the function 7)(7), which, by a well-known formula due to Euler, can

be written as the following sum:

(1.8) 7(T) = exp [771;7] ;f (D™ expfmi TA(B N — 1)}

= éw G exp{3’ﬂi T()\ ——;—)2| .

Our starting point is formula (1.8); our principal tools are a Poisson transfor-

mation formula and Gaussian sums.

2. Application of a Poisson formula. We introduce a new variable z with
K (z) > 0 by the substitution*

(2.1) ==+, c>0; (g,¢)=1,

* This requires ¢ 7Z 0, but the case ¢ = 0 is trivial.
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and obtain, from (1.8)

(2.2) ,,](_‘i +i—z> - % exp{ 37: (a + iz)()\ ~%>2]

= X expWilj+§cg<j—‘;‘>2l

te 37z 1\2
X Z exp[—‘ - (2cq+j“g>].

qz—m

To the inner sum,

Foi)= 3 expl—mwcz(q + Y _1)21,

12¢

. q:-—(x)

we apply Poisson’s formula (cf. [11]),

t@ 1 t® 77m2
E exp{*‘w(m +C/~)2t3=? Z exp 277im0('-'—t— , R () >0,

m==0 i m==

and obtain

1 o 6 =1 m?
F.(z) = 97 - 21,
o (2) = 7= q:‘:‘m e"p[ T T 9e T 12¢z

Putting this in (2.2), we get:

3 +00 '—77(12
(2.3) (3+—l—z-)= — T (),
7 c c N q=z_w P 12¢z q( )
where
i 1 1 3af 1\ 6j — 1
7q(c)=‘2“ > eXPmJ+-(J -g) ta
Jj mod 2¢ ¢ ¢

1 a—2
dexpﬂi[ q}[l +exp77i{3ac +c—a+q}]
c
< T
X ) exp[— Baj? +j(c—a +q)]].
j=1 ¢

But, a and ¢ being coprime, and thus
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3ac +c—a=1 (mod 2),

only the T, with odd subscripts actually appear so that we have
< M

> exp[“"‘ Baj? +j(c—a+l +2r)]] .
. c

—4r —2 .
(2.4) Tyr+1(c) =expmi [a—f——]
J=1

12¢

In order to have a complete square in the exponent we multiply each term of

the sum by

ad — 1

exp7i [j (c =1 +2r)] = expmi {jb(c + 1)} .

As we do not wish to change T,,4+, by this multiplication, we have to assume

that, for ¢ even, b also is even. Using the abbreviation

(2.5) B=cd+d—1,

we obtain from (2.4):

=== ] » eXp[—ig [36j 2+ 12 (cd +d —1 +2rd)]]
12¢ j=1 12¢

a—af3?-2 r ]

(2.6) Tor+1(c) = exp m‘[

= j = — (ad?r +adB+1
eXpm{ 17 30 lwd'r tadf1)

v

[
> exp[
= U

2 (65 +,3+2rd)2] i
2c

In the sum appearing here, j can be taken as running over any full residue
system mod ¢, because 8 = ¢ (mod 2) and therefore the sum remains unchanged
if j is replaced by j + c¢. Consequently, 3 can be chosen arbitrarily, mod 6, and
T:+1(c) can be simplified by the substitution r =3 + v. We note that

expﬂilg—r (ad?*r +adfB + 1)]
c

=exp7Ti[_—'u (3ud +3ubed +2dv + bef + cd + d)
C

v
e (dv + bedv + be B + cd +d)];
C
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and considering

exp{—mip 0B+d +3ubd)} = expi—mip (bed—b+d)} = expimini,

we obtain

ezaeff-2 v [bdv +d+bﬁ+d (z/+1)]

T = T —
6#+2v+1(0 exp ll 19¢ 3 .

—i—L Bud +d(1 +2v) + c}l Ha,c (B +2vd)

with the abbreviation

i
@.7) Hao (B) = % eXp[ 2 (65 + ,@)2] , 6=cmd).
J mod ¢ 12¢
Looking back to (2.3), we see that the result we have obtained so far may be
written as:
1 —a 322
(2.8) 77(24-5): expTrLIa ab ]
c c 3CZ ].2C
2 =TV d
x ¥ exp[ [bdv+d +b B+ — (v+1)”UV(z)Ha,c(5+2dv),
v=0 ¢
with
pd A 3 , d 37 2v +1\?
U(z)= 3 explmi|u—"2p2 =2 u@ur1)| =L n+2 .
e c c cz 6

These expressions are easy to sum, since, according to (1.8), we have

et S b

o] 4 )
P 12¢ 7 c ¢zl

+00

Uo(z): E exp

p=o

and, replacing u by —p—1, we see that
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Up(z) ==Uy(z), or Ui(z) =0,
Uy(2) =—exp[77i %d] Uo(z) .
Now, by the meaning of z in (2.1), we get

d i —d7' +b

_t—=—=T7 ,
c cz cT' —a
and have therefore:
1 a(1—=3*)—2 +d
(2.9 ") =— i
) n(t") i exp ll 120

-2t

%t (9 = exp[ 22 (@ 4200409

Xl e (8 +4)| V=TT F ) ().

Comparing this with (1.7), we see that we have obtained so far:

[a(l—/ﬁ2)—2+d]

1
(2.91) e =— exp7i

3¢ 12¢
X[Ha,c(ﬁ) - exp[_zﬂi (d +2bd +b,8)] Ha,c(,8+4d)]
1 ‘ bd(1—c2)—cd+(1—d)(b+ad)
—\/?; exp 71 o p

=27

X [Ha,c(ﬁ) - exp[ (d+2bd +bﬁ)]t1a,c(ﬁ+4d)]

and it remains to be shown that this is a root of unity.

3. Reduction to Gaussian sums. ‘T'he sums H, . (58) which appear in (2.91) are
defined in (2.7) only for 8 = ¢ (mod 2). In this section, however, it will be more

convenient to consider the more general sums*

*We have used the letters h and k& instead of a and ¢ in order to indicate that the
investigations of this section are independent from our previous results.
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1 Tih A
6.0 i) =5 T ewTl 65497
j mod 2k 12k

with no restriction on 7. These sums can be expressed in terms of Gaussian sums

27 1ih
(3.2) Ghk)= 3 eXp[ - ]‘2].
j mod k k

Comparing the definitions (3.1) and (3.2) one finds immediately that:

1
Hpk (0) + Hp,k (1) +Hp,k (2) +Hpp (3) +Hp g (4) +Hyp (5) = G(h, 24k) ,
1
Hpk (0) +Hpp (2) +Hop (4) = 3 G(h,6k) ,
1
Hy p (0) +Hpp (3) =3 G(3h,8k) .
If we consider that
Huk (=) =Hhp (v) =Hpp Oy +6n),
we get the following relations:
1
(3.31) Hpp (0) = 5 G(3h, 2k) ,
1 1
(3.32) Hpe (3) = " G(3h, 8k) — 2 G(3h, 2k) ,
1 1
(3.33) Hyp (2) = n G(h, 6k) — n G(3h, 2k) ,
) 1 1 1 1
(3.34) gk (1) = . G(h, 24k) — o G(3h, 8k) — n G(h, 6k) +Z G(3h, 2k) .

In order to obtain the sums /i i (7) explicitly, the following rules concerning
Gaussian sums may be useful.*

* For the formulas (3.41)—(3.47) see [1] or [3]; (3.46) may also be found in [71.
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As elementary consequences of the definition (3.2) we have:

(8.41)  G(mh,mk) =mG(h, k) n >0
(3.42)  G(h, kiky) = G(hky, k2 ) G(hky, ky) (ky,ka) =1
(3.43)  G(m2h,k) = G(h,k) (m k) =1
(.44)  G(h,m2k) = nmG(h, k) (mh)=1; m>0 and odd.

The following results, due to Gauss [4], are a little deeper:

h
(3.45)  G(hyhy, k) = (k—‘) Glha, k) (hiha, k) =1, k odd

(3.46) G(L k) = vk $L(k-0/2) k odd

hodd, a=1

0
. . o) — ot 1
347 G(h,2%) lz‘aﬂ)ﬂ (g) Jmih/a hodd a5 2.
h ’ -

The symbol (%) is the Jacobi symbol.

The following discussion may be restricted to the case ¥ = k (mod 2), which
will be sufficient for our purpose., Furthermore, we put* throughout £ = 2}‘k1
(% | being odd), and have then to distinguish whether 3 does or does not divide
ky.

Assume first 3 lkl. Then we find, using (3.41) and (3.44), that
(3.51) Hpi (1) =0, Hpk (2) =0 ;

and, applying (3.41), (3.42), (3.44), (3.45), and (3.47), we obtain:

2\* 3

(3.52) Hy 1 (0) = 222 (;) exp [Z ﬂith]G(zh, 3ky) ,
3

(3.53) Hpp (3) = eXp[thkJ G(2h,3k) .

*We do this in order to avoid the reciprocity law for Gaussian sums which would
require additional distinctions concerning the sign of A.
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As a consequence of (3.46) we have:

—T ik

G(1, 3k) =3k exp[w—; (3k — 1)2] =—V3 exp[ ] G(Lk),

and therefore, according to (3.45),

2h 2h ik
G(2h,3k) = (—) G(1,3k) =——(——) V3 exp[—] G(2h, k) .
3k 3 2
This formula enables us to express (3.52) and (3.53) in the single formula:

h ki(h—1) hk h%*-1
(3.6) Hn,k (k) = V3 9M/2 (5) exp77i{—l—(—2-——)—-i**:,;l + AT] G(2h, ky) .

In case 3/k,, by useof (3.42) and (3.43) we can express the more complicated
sums Hp (1) and Hp (2) by Hp, 1(3) and Hy 4 (0), respectively:

(3.71) Hpp (1) = exp[f;— mhk] Hpk (3),

4
(3.72) Hpp (2) = exp[g mhk] Hpe (0).
More generally, the following recursion formula holds:

(3.73) Hp p (y +2n) = exp[7’73—i (y +n) nhk] Hp,k ) .

In order to compute Hp ;(0) and Hp (3), we apply (3.42), (3.43), (3.45), and
(3.47) to obtain:

) k fk—1 3hk] |
Hp i (3)= g)expTrl 5 +T G(Zh,k),

k 2\* k; —1 3hk;
Hhp (0) = = 2”/2(-> 77‘[ L~ 4 ]Gzh,k )
e (0) (3) nl CFTH 4 | 6@k

Applying this on (3.71) and (3.72), and considering

77'[— hk *3 hk] = W‘[—k -i——3 h(k —k)]
+ ,
exp7i 3 1 exp 71 22 1
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we can combine (3.71) and (3.72) into:

k
(3.8) Hpp (k) = 2}\/2(5)

hk 3 ki—1 _h?2-1
X il— += h(ki—k) + +A G@h, ky) .
emelu 3 k=) + = 8 ] @h, k1)

4. Determination of the root of unity. Now we go back to our result (2.9) and

consider the following expression:

@41 p= —\/;: exp[%i- 1-d)(b + ad)]

X [Ha,c (B) - exp[_23—7Ti (d + 2bd +b/3)] Ha,c(,8+4d)] .

According to the results of the preceding section, we have to distinguish whetherc
is divisible by 3 or not and to keep in mind that ¢ = 2™eq, ¢ odd.
Let us assume first 3 | c; according to (3.51) we know that:

1

Ha,c (/8) :Ha,c (dc +d — l) =0 if d
Hee (B+4d) =Hge(de +5d—1) =0 if d

-1 (mod 3),
+1 (mod 3).

]

Therefore we have:

WD) = (g) Jle expm{% (1=d) (b +ad) +§ (d—1)(1+b)] Ha,e (c)

- () é |5 (@=1)6 +ad)] Hae ().

Considering that

expr;—i [(d—1)(b +ad +¢) + (a — 1)(c; — c)]} =1,

and therefore that
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[ L
expTrl[E (d—1)(b+ad) +2 (a—1) cl]

= exp

[77—; [(d=1)(b+ad+c) + (a=1)(cs—c) — C(d_a)]}

= exp[w—gi c(d~a)] ,

we get from (4.2) and (3.6):

1 cd a* —1
(4.3) p:\/—: expﬂil% (c1—=c) +—6—+%+ 3 ]G(Za,cl).
¢1

In case 3fc,we can apply (3.73), which gives us

Hase (64 ad) = exp |22 (44 24) aca] b (8

[27ri

3 (bl[j +2bd +d — C)] Hq e (/6) )

= exp

and obtain from (4.1):

ol 000 ) - a2
2¢c

(%) expm[é (1—d) (b +ad)———;~+?J Ha,c (B) -

Sl=

Now we apply (3.37) once more, putting

Hoe () = Hoo (e + = c) = p[% o+ :

= exp [ (8 = ) ae] Hoe (e)
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Using (3.8) and considering

exp[% (B2=c?) ac]

= exp [T—; lac(c®* —1)(d* —1) +2ac(d—1) (cd +d)]]

exp [7% (d=1)(bc+c +b +c2)}

= eXpm[% (d—1)(b +ad) —g (d—1)(c?-1) +—;— (d—l)],

T
ooy LaDer—e) = (@-1)(2-D]} =1,
we see that the expression for p becomes again (4.3). Therefore, we have in all

cases:

c1—c¢ a?—-1

+ A
8

(4.4) € =expmi [%2— [bd(1—c?) +c(a+d)]+a

X = G(2a, ¢y )
e a,c ),
Vey

with the only restriction that, for even ¢, b also has to be even.
In order to show that our formula (4.4) holds even if this condition is not
satisfied, we put

+b
7! =aT+d , ¢ even, b odd,
cT
7_*z__(a +c)’r+(b +d)=’r’ +1.

cT +d

Then, for 7*, formula (4.4) holds; considering

( + 1) |—7Ti
T = ex
m exp 12

] (),

which is an immediate consequence of (1.6), we find:
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() = enlr) = e ] 7() = e ) entr)
(4.5) € = exp [717—;} €*,

Now, if we compute €* by means of (4.4), and then €, using (4.5), the result will
be exactly the same as we get computing € directly by means of (4.4).

Finally, we can omit the Gaussian sums in (4.3) and, using (3.45) and (3.46),
obtain:

a
4.6) 7 (:)
1—c; c—cy a’—1

1
X expmi{— [bd(1—c?) +c(a +d)] + + + A .
exp 1 12 [ ( C ) c(a )] 4 a 4 8

This formula agrees with the one given by Tannery and Molk[10, p. 112] .

REFERENCES

1. P. Bachmann, Zahlentheorie II. Die analytische Zahlentheorie, Leipzig, 1894;
see pp.145-187.

2. R. Dedekind, Erlauterungen zu zwei Fragmenten von Riemann (1892); Dedekind,
Ges. Werke [, Braunschweig, 1930; see pp.159-172.

3. L. Dirichlet, Vorlesungen uber Zahlentheorie, edited by R. Dedekind. Fourth
Edition, Braunschweig, 1894; see pp. 287-303.

4. C. F. Gauss, Summatio quarundam serium singularium (1811); Ges. Werke II,
Gottingen, 1863); see pp. 9-45.

5. Ch. Hermite, Quelques formules relatives a la transformation des fonctions ellipti-

ques, J. Math. Pures Appl. (2) 3 (1858), 26-36.

6. A. Hurwitz, Grundlagen einer indepenten Theorie der elliptischen Modulfunktionen,
Math. Ann. 18 (1881), 528-592.

7. E. Landau, Vorlesungen uber Zahlentheorie I, Leipzig, 1927; see pp. 153-156.

8. H. Rademacher, Zur Theorie der Modulfunktionen, J. Reine Angew. Math. 167
(1932), 312-336.

9. — —, Bestimmung einer gewissen Einheitswurzel in der Theorie der Modul-
funktionen, J. London Math. Soc. 7 (1932), 14-19.

10. J. Tannery and J. Molk, Elements de la the'orie des fonctions elliptiques, vol.2,
Paris, 1896; see pp. 89-114.

11. E. T. Whittaker and G. N. Watson, A4 course of modern analysis, Fourth Edition,
Cambridge, 1927; see p.124.

UNIVERSITY OF PENNSYLVANIA








