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PROJECTIONS OF MEASURES ON NILPOTENT ORBITS
AND ASYMPTOTIC MULTIPLICITIES OF K-TYPES IN
RINGS OF REGULAR FUNCTIONS I

DoNALD R. KING

Let G be the adjoint group of a real semi-simple Lie algebra
g and let K be a maximal compact subgroup of G. K¢, the
complexification of K, acts on D¢, the complexified cotangent
space of G/K at eK. If O is a nilpotent K¢ orbit in p},, we study

the asymptotic behavior of the K-types in the module R[0],
the regular functions on the Zariski closure of 0. We show
that in many cases this asymptotic behavior is determined
precisely by the canonical Liouville measure on a nilpotent G
orbit in ¢* which is naturally associated to ©. We provide
evidence for a conjecture of Vogan stating that this relation-
ship is true in general. Vogan’s conjecture is consistent with
the philosophy of the orbit method for representations of real
reductive groups.

1. Introduction.

Let G be the adjoint group of a semi-simple Lie algebra g, and let G¢ be
the adjoint group of g, the complexification of g. If g = k @ p is Cartan
decomposition of g, then 9, = kc ® P, is the corresponding vector space
decomposition of g.- K is the connected subgroup of G with Lie algebra k.
K is the connected subgroup of G¢ with Lie algebra k,. K is a maximal
compact subgroup of G. T is a maximal torus in K with Lie algebra ¢.
g* = Homg(g, R). Define k™ and t* similarly. A* = Af is a positive system
of roots for the pair (kg, ;). K is the corresponding set of dominant integral
weights (i.e. the set of equivalence classes of finite dimensional irreducible
K modules) and p =half the sum of the roots in A*. Using the Killing form,
identify g and g* and define the projection map J : g* — k*.

Let 2 C g* be a nilpotent co-adjoint G orbit. €2 is a simplectic manifold
with canonical Liouville measure Sq which is G invariant. The distribution
J.(Bq), the pushforward of Bq to k*, is well defined by formula: J,(8q)(f) =
Ba(f o J) if f € C=(k*), because the set supp(f o J) NN is bounded. Let
O = ¢(?) be the K nilpotent orbit in p7, which is the Cayley transform
of . (See Section 2.3 for the definition of c¢.) O is the Zariski closure of
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O. R[0], the co-ordinate ring of O, is a completely reducible K module. If
pe K, V, is the irreducible K module with highest weight u, and m(u) =
the multiplicity of V,, in R[O]. B, is the canonical Liouville measure on
the orbit Q(u) = K- {—i(pu+p)} in k*. If f € C®(k*) and t > 0, let

ft(x) = f(t7'z), and Bu(f) = fn(u) f By

Theorem 1. For every f € CX(k*),limy 00t~ 4™ O 2 m(n) B.(fi)
exist and is finite. Let Mg be the distribution on k™ whose value at f €
C(k*) is given by the previous limit. Mg is not identically zero.

Mg is called the asymptotic multiplicity measure associated to R[O)].

Theorem 2. Suppose that g is complez, so that Ko may be identified with
G. If Q) is a Richardson nilpotent orbit, then there is a non-zero constant cq
such that

J.(Ba) = ca - M.

Thus when g is complex, for many nilpotent orbits (all of them in case G =
SL(n,C)), Mg, which measures the asymptotic behavior of m, is determined
by the canonical Liouville measure on (.

Let N [‘g;] denote the nilpotent cone in p7,, the complex dual of p . Now
suppose that O is a K¢ orbit in N [Q*C] which is the Cayley transform of the
G orbit Q in N[g*] (the nilpotent cone in g*). Then we have:

Theorem 3. (g is real) If O is K¢ nilpotent orbit in Np?] which is even,
then there is a non-zero constant cq such that J.(Bq) = cq - Mg.

(O = K¢ - e is said to be even if the semi-simple element in the normal
triple parametrizing O (see Section 2.3) has only even eigenvalues on g7..
For example, the K¢ nilpotent orbits of maximal dimension are even.)

Theorem 2 and 3 and many other examples suggest the vailidity of the
following conjecture:

Conjecture (Vogan). If O is a K¢ nilpotent orbit in N[p? ], which is the
Cayley transform of the nilpotent G orbit  in A[g*] then for some non-zero
constant cq, J.(fa) = cq - Mp.

The author wishes to thank Professor David Vogan for suggesting the
investigation of the problems considered here, and for several very useful
conversations. I would also like to thank my colleagues Tom Sherman, Tony
Tarrobino and David Massey for their insights and assistance.

2. Preliminaries.

2.1. Notation and basic conventions. g is a real semisimple lie algebra,
and let k, p, EC’BC’ G, K,Gc, and K¢ be as in section 1. Let 6 be the Cartan
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involution giving rise to the decomposition g = k® p. Let o be the conjuga-
tion of g, relative to g. If L is a Lie subgroup of G¢, then L, will denote the
connected component of the identity of L. § and o extend to automorphisms
of G¢. So L? and L° will denote fixed point sets of § and o in L. If L acts
on a vector space V, and v € V, then L? denotes the centralizer of v in L.

B denotes the killing form of g. We fix a maximal torus ¢ C k, the
corresponding connected subgroup in K will be denoted by 7. In general,
if V is a real vector space we write V* = Hompg(V,R). But, we write
V& = Homg (Vg, C), the complex dual of the complexification of V.

We identify g* with g by means of B. We will make use of the projection
map J : g* — k*. J is K equivariant. Since B is negative definite on k& and
allows us to identify k and k*, we define a positive definite bilinear form (,)
on k* by setting (y,v) = —B(y,v),Vy,v € k*.

Let A, = A(ke, tco) denote the roots of the pair (kq, o), AT = A (ke, i)
will denote a choice of a set of positive roots, and |A}| = the cardinality of
AYF. When there is no possibility of confusion, we will drop the subscript
on A}. For each a in A, h, is the corresponding element of ¢ under the
identification of ¢ and t* provided by the restriction of B to k. D, is the
differential operator defined on t* by the formula: D, (g)(z) = £(9(z —
iat))g=o- If v € t* — (0), and f € C.(t*), then H, = [ f(sv) ds. H, is the
Heaviside distribution corresponding to v.

2.2. Measures and integral formulae. We choose Lebesgue measures
dX on k and dH on t. We will use the same notation for the corresponding
Lebesgue measures on k* and ¢t*. Whenever a Lebesgue measure is defined
on a Lie subalgebra ¢ of g we will choose the left invariant Haar measure
on the corresponding group C so that the Lebesgue measure and the Haar
measure correspond under the exponential map. We denote by v(T) the
integral [, 1 dt where dt is the Haar measure on T chosen according to the
aforementioned convention.

If¢ € g%, and 2 = G-¢ is the corresponding co-adjoint orbit, we recall the
definition of the canonical Liouville measure G on Q. T¢((2), the tangent
space to 2 at {, may be identified with g/¢¢. g/¢° in turn may be identified
with its image g - £ = ad(g)({) in g* under the injection T — u - £, where
u € g represents the coset @ € g/¢* and u - { = —£ o ad(u) is the co-adjoint
representation.

Now define the bilinear form b; on g - £ by the formula: be(u - &, v -
&) = &([u,v]). Then b is well-defined, skew-symmetric and non-degenerate.
dimgg - £ = dimg(g/g°) = 2k. bf, the wedge product of be with itself k
times, is a non zero 2k form. Since g - ¢ = T(Q), bf : £ — b} defines a
volume form on 2 which is G-invariant. We normalize the corresponding
G-invariant measure by multiplication with ((27)*k!)~! to get the canonical
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measure Bo. We will often write d¢ = dg/g¢ in place of Bg.¢. Suppose that
f € C.(g*) and supp f N G - { and supp f NG - t£ are both compact. If we
set Li(f)(z) = f(tz), then Bs.¢ and Bg.4¢ are related as follows:

(2:2.) ¢ [ Dpoc= [ fhox

where we recall that k = 1(dimg Q).

Let £ = t+r where r is the orthogonal complement of £ in k. Let W denote
the Weyl group of the pair (k,t). The dimension of r = |A(ky,t-)| and so is
even. If n) € t*, let j, be the two form on r defined by j,(X,Y) = n([X,Y]).
If 7 is regular with respect to k, then the form j, is non-degenerate. Choose
a nonvanishing form p of degree |A(kq,to)| on r such that dX = |u| - dH.
Define a polynomial function 7 on £* by the formula:

Jn Mg Nev N gy = () (JAT ) p.
(JA*] factors )

w is a W skew-invariant polynomial function on ¢* depending on p and is
proportional to 7 = ] A+ ho. From now on assume that 4 is chosen so that
m(n) is a positive multiple of 7} (in) for n € t* and denote the corresponding
m by .

Normalize the K invariant measure dg/r so that if f € C.(K - ﬁeg)
have

/ F(X)dx = / / |7 (H)I? f (Ad(k)H)dgr (k)dH.

We define a map A" from C,(k") to C.(t*) by the prescription:

(22.2) AT = 1 vlol(T) ' (;:)(az)ﬂ J e .

Note that AT¢ is W skew-invariant. A1 gives an isomorphism between
Ce(k™)K-nv- and C ()W —skew-inv_ (A+)t the inverse of the transpose of
At gives an isomorphism between K invariant tempered distributions on
k* and W skew-invariant distributions on t* ([Sen2]).

We say that a K invariant measure v on k" corresponds to a W skew
measure Y on t* provided the following equation holds for all ¢ € C°(k"):

(223) [ 4 aw(© = [ 4t axe).

Ezample 2.2.4. Let A € t* beregular andset v = k., and By = ), iy €(w)w-
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bx- Bi.» is the Liouville measure on K - A as defined above. Then we have

[ A @©dBs©) = 3 ew)w- 5, 4*(9))

weW

= Y e(w)A*(¢)(w))

weW

1
> E(w)|W| vol(T) - 27r |A+'/ ok - wh)dk

nt(A
- 27r)(|A)+| / $(k - N)d

vol

because K - wA = K - X and 7t is W skew-invariant. It can be shown that

1 wt(A)
vol(T) ~ (2m)Ia*]

[ 8tk Nak = ccr [ 8B,

where ck 1 is a non-zero constant that does not depend on A. So B, corre-
sponds to ck r0k.» under map (A*)"
Remark 2.2.5. It is well known that if X is regular, [, , 1 dBk.n = C(iA)
B(i\
where C(i)) is the “dimension function”: B(id, o)
a€A+ B(ﬂ’ a)
VOI(K) at(\)
vol(T) Cx(maT

. Therefore, the con-

stant cx r (in Example 2.2.4) = (which is independent

of A € t]eg)-
The Fourier transform on k™ can be defined as follows.

226)  f() =] f(X)ePOPdX = [ f(X)e X dX.
.

k*

In the same way, we define the Fourier transform on t*. We record the
following facts about the Fourier transforms of distributions on ¢* for use
later.

If feC>®(t*), Tisa distribution on £*, and w € W, set fo(z) = f(w™z)
and T¥(f) = T(f*). Then (f"’) = (f)* and if T is tempered, we have
Tw = (T)*. (T is the Fourier transform of T. See Section 3.) Thus a
tempered distribution is W invariant (resp. skew invariant) if and only if its
Fourier transform is W invariant (resp. skew invariant). Lastly, it is easy to
verify that g_iw(uJ,p) = eBw(s+r),),

2.3. Results on nilpotents. N[g] (respectively N[p_]) will denote the set
of nilpotent elements of g (respectively p,). It is known that A[g](respectively
Nlp.)) is a finite union of G (respectively K¢) orbits.
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An ordered triplet {Z,, Z,, Z3} of elements in g, is said to be a triple if
the following commutation relations are satisfied: [Zl, Zy) = 224,(2,,25) =
—~2Z;3, and [Z,, Z3] = Z;. Let us fix a triple {H, E, F'} in g with the property
that 6(H) = —H, and 6(E) = —F. A triple {H,E,F} in g with these
properties will be called a g Cayley triple. Every nilpotent E' in gis G
conJugate to a nilpotent E lying in such a triple. Now define a new triple
{c(H),c(E),c(F)}, which we will call the Cayley transform of {H, E, F},
as follows: ¢(H) = i(E — F),c(E) = (1/2)[ — i(E + F)], and ¢(F) =
(1/2)[H +i(E + F)]. The triple {c(H), c(E),c(F)} is normal in the sense of
Kostant and Rallis [KR], i.e. ¢(H) € Ec: and c( ),c(F) €p,,

Let Q = Q[E] be the G orbit of E in g and O = O[c(E)] be the K¢ orbit
of ¢(E) in p,- The assignment of Q to O defines a bijective map c, also
called the Cayley transform, from the set of G conjugacy classes in Ng] to
the set of K¢ conjugacy classes in M[p_]. Proofs of this result can be found
in [Secl] and [Dj]. (Note that Q[E] and O[c(FE)] lie in the same G orbit.)

¢!, the inverse of the Cayley transform, is obtained as follows. Let O[e’]
be a K conjugacy class in N[p_]. Then O[e'] contains an element e which
lies in a normal triple {z, e, f} with the additional property that o(e) = f.
A normal triple with these properties will be called a p , Cayley triple. Now
define a triple {c7!(z),c (e ) ~1(f)} in g with ¢ \(z ) =e+ f,cl(e) =
(i/2)le - f —z] and c7!(f) = (i/2)[e — f + z]. (Then {c*(z),c™(e),c™" ()}
is a g Cayley triple.) Thus ¢! assigns Ole'] to Q[c™"(e)].

3. Homogeneous distributions, group actions and differential
operators.

Let f € C*(R") and m € C°(R™)', the space of distributions. Then if¢ > 0,
define the functions f; as follows: f;(z) = t‘" f@?! m)(for all z € R™). We
define f, the Fourier transform of f by f(7) = [g. f(z)e~“"®) dm(z). Here
(+,-) = the scalar product on R™ and dm is Lebesgue measure on R". Under
appropriate hypotheses on f, the Fourier inversion theorem holds. That is,
f(z) " fan £( 'y)e’(”") dm(y). It is easy to show that (f,) = t~"(f)s-
or equlvalently (fe-r =t f,.
S = S(R") is the Schwartz space of R™. If m is tempered, we define rn,
the Fourier transform of m, by (f) = m(f) for all f € S.
A distribution M on R™ is said to be homogeneous of degree s if M(f;) =
M(f).
Remark 3.1.1. A homogeneous distribution on R" is tempered. (See
[Do].)

Lemma 3.1.2. Let M be a distribution on R™ which is homogeneous of
degree s, then M, the Fourier transform of M, is homogeneous of degree
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-n — s.
Proof. This depends on the fact that M(f;) = t*M(f) for f € S. ]

Ezample 3.1.3(a). § = &, the Dirac delta function at 0, is homogeneous of
degree —n. Its Fourier transform, a constant multiple of Lebesgue measure,
is homogeneous of degree 0 = —n — (—n).

Ezample 3.1.3(b). The Heaviside distribution H,, corresponding to a non-
zero vector v € R", (see Section 2.1) is homogeneous of degree —n + 1.

Lemma 3.1.4. Let M be a homoageneous distribution on R™ of degree
s and let D be a constant coefficient, homogeneous differential operator of
order € then D - M is homogeneous of degree s — £. (Note that by definition
D - M(f) = (-1)*'M(Df).)

Proposition 3.1.5. Let T and S be homogeneous distributions on R™ of
degree k and £ respectively. If T xS (the convolution of T and S) is defined
then T x S is homogeneous of degree k + £ + n.

Proof. It suffices to show that T xS satisfies the Euler equation (k+£+n)® =
Z x]—g% This is done by computing ijﬂr;;—g—s—) using (1) the fact that
J

j=1 j=1 J
for each j, where 1 < j < n, we have the equality:

AT _(,,77) (22)
z; e “’faxj *S + T x* :lrjamj +T=xS

and (2) the homogeneity of T and S. Formula (3.1.6) follows by taking the
Fourier transform of both sides. O

(3.1.6)

Corollary 3.1.7. Let T;,i =1,2,...,r, be homogeneous distributions on
R™ such that degT; = k;. Assume that the convolution Ty % --- x T, is
defined. Then deg(T,*---*T,)=>._,ki+(r—1)n.

Let us now consider the action of GL(n,R) (respectively O(n)) on func-
tions and constant coefficient differential operators (respectively distribu-
tions) on R™.

Suppose f is a smooth function, D is a constant coefficient differential
operator, and T is a C* distribution on R". Let a,b € GL(n,R) and
g,s € O(n). Then we define actions of GL(n, R) on functions and constant
coefficient differential operators as follows: (a - f)(z) = f(a™'z); and [(a -
D)(f)l(z) =[a~* - (D(a- f))](z). One then checks that (ab) - f =a- (b- f),
and (ab) -D = a- (b-D). One also defines an action of O(n) on smooth
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distributions as follows: (¢-T)(f) = T(¢~'-f), and one checks that (gs)-T =
q-(s-T).

Now assume that D is homogeneous of degree d. Let us compute [q -
(D - D)(). Well [g- (D -T))(f) = [D-T)q™ - ) = (~1)*T[D(g~* - f)] =
(—1)*T[g (¢ D(g"-f))] = (-1)*lg-TH{ (g~ D)(f)} = {(¢7"-D)-(¢-T)}(f)-
Sog-(D-T)=(¢7"-D)-(q-T).

We also need a result on the action of differential operators on families of
distributions depending on a parameter A € R".

Remark 3.1.8. Let D be a homogeneous differential operator with
constant coefficients of degree d. Suppose a € GL(n,R) and a™! - D =
¢(a™1)D where ((a™!) is a scalar. Then Dyd,x = (=1)%(a™!)D - §,5. (If
T, is a family of distributions depending on a parameter A € R"™, then
D, T,(f) is defined to be D applied to the expression T (f) where differen-
tiation is in the variable A\.) We argue as follows. First note that Ddy =
(—1)¢D - 8, because (Dydy, f) = (by definition) D, ((dx, f)) = Da(f(A)) =
(Df)(A) = (0, Df) = ((~=1)?D-4y, ). Similarly, (Dsday, f) = Dr(f(aX)) =
D,[(a - /)(N] = {D[(a~1 - A = {a~' - [@* - DY(HB(N) = {a* -
(@ )D(AIHA) =@ )fa™t - (DHIA) =¢(a™)(Df)(aA) = (a™"){ban,
Df) = ((a™)((~1)D - duy, f). In general, Dadr = (~1)%(a~ - D) - b
The following lemma will be used in Section 6.

Lemma 3.1.9. Let f € C*(R"),u,v1,Vs,... ,Vy € R™ with all the v; # 0.
Then,

oo o0 o0
lim "™ Z z Z fru+51vi + jova + - 4+ Vi)

t—o0 4 4 i
J1=0 j2=0 Jm=0

=H, «H,, x---xH, (f).

Proof. If m = 1, the lemma asserts that

lim "~ ift(u +jv) = lim t7 if[t‘l(u +3v)] = Hy(f).

t—o0 c
Jj=0

This is a consequence of the usual Euler Maclaurin expansion. (See Theorem
6 and formulas (6.18)-(6.21) in [W].) For m > 1, the lemma follows from the
multi-dimensional analog of the Euler Maclaurin expansion. (See formula
(1.6) in [Ly1] and formula (1.4) in [Ly2].)

Convolutions such as H,, *xH,, - --*H,,_ in (3.1.9) will appear frequently
in formulas in sections 6 and 7. Here is an alternate description of this
convolution in these cases. O
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Proposition 3.1.10 (Theorem B4 in [GP]). Let R? = {(s1,... , 8m)|s:i >
0, for all i}, be the positive orthant in R™,V be the span of the set of non-
zero vectors {vi,... ,v,}, and let L : R? — V be the mapping which sends
(815--- ,8m) onto s1v; + -+ + SpU,. Suppose that in addition for some &
in real dual of V,&(v;) > 0 for all i. Then the mapping L is proper and the
convolution H,, «H,, x---«H, = L.(ds;...dsy,), the push forward of the
standard Lebesgue measure on R

4. The pushforward to k* of the measure defined on a nilpotent
orbit in g*.

Let E € g* be nilpotent and let Q2 = Q(E) denote the orbit G - E. Let fq
denote the canonical Liouville measure on Q2. Then (g is tempered. This is
true for any G orbit in g*. (See [Rao].) Moreover, g is a Radon measure on

. Since Q2 is nilpotent, fq is homogeneous of degree (1/2) dimg 2 —dimpg g.
(ThlS fact about homogeneity follows from equation (5) in Theorem 1 in
[Rao].)

If f € Cug*), letlo(f) = I(f) be the integral [, f(g - E) dfq. Recall
the projection map J : g* — k*. We define the distribution J,(fq), the
pushforward of Bq to k*, as follows.

Definition 4.1.1. If f € C.(k"), then (J.(Ba), f) = I(f o J).

Remark 4.1.2. The previous definition makes sense because if f € C,(k")
and we consider f € C(g*) defined by f = foJ then supp f N is bounded.
For we argue as follows. Define norms | - |l; on &" and || - [ on p* by
|1Z||? = —B(Z,Z) and |W|2 = B(W,W) (where B is the Killing form on
g*). Then || - ||; and || - ||; are K invariant, and since VY € g*,B(Y,Y) =

— Vel + [ Y,]l5 (where Y, and Y, are the components of Y in k™ and p*), w
have the equality B(E, E) = B(g ‘E,g-E) = =(I(g- E)&ll)? + (g E)pll2 )
Therefore —(||(g - E)gll1)® + (/|(g - E)pll2)? is constant on Q. Now suppose
that suppf C {W € k" : ||W]} < C—} where C is some positive constant,
and suppose that g - E € supp f. Then J(g - E) is in supp f which implies
that ((g - E)elh)* < C, and hence we have (l|(g - E)ell)? + (I(g - B)ylla)? <
2C + B(E, E). Therefore supp f N Q is bounded.

Note that J,(8q) is K invariant in the following sense. If f € C.(k”), and
for each z € K,Z € k', f*(Z) = f(z - Z), then (J.(Ba), f*) = (Ju(Ba), )
This follows from the G invariance of I and the fact that ifz € K,and g € G
then z- (g9 E)y = (g - E);.

Lemma 4.1.3. (a) If v is any homogeneous K invariant distribution of
degree d on k*, then (A")!(v) is homogeneous of degree d + |AY| on t*.
(See Section 2.2 for definition of (A*)!). (b) If Q is nilpotent then the
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distribution J,(Bq) is homogeneous of degree (1/2)dimg Q) — (1/2)dimgk
and (A*)(J.(Bg)) is homogeneous of degree —dimpt—|A}|+ (1/2) dimp Q.

Proof. To prove (a), note that if ¢ € C®(k*) and if € is regular, then
At (¢:)(&) = t71A[AT(4)]¢(€). Thus, on the one hand we have (v,¢;) =
t4v, ¢) = t*((A*)*(v), A*(4)). But also

(v, e) = (A7) (v), A" (¢r))
= t71A((A%)" (v), [A*(9)])-

So the result follows. 5 3
To prove (b), suppose that f € C®(k*), then f, = t%™72(f),. Hence

(Jo(Ba), fi) = I1(£)] = I[t"™=2(f),]

= 4™ 2]((f),]
— tdimR Et(1/2) dimg Q—dimpg gI(f)

= (/D dimpQ—dimpk(J (3.} f).
O

Remark 4.1.4. Now note that if ¢(E) € p7, denotes an element of the
Cayley transform of 2, then we have that dimg Q(E) = 2dim¢ K¢ - ¢(E).
Thus J,(B8q) is homogeneous of degree —dimc K¢ + dimg K¢ - ¢(E) =
— dimg K&,

5. Asymptotic multiplicity distributions.

5.1. Definitions and basic properties. Let R be a semi-simple K module
with finite K multiplicities. K denotes the set of equivalence classes of
irreducible representations of K. Let A*(ks,to) = AY be a fixed choice
of positive roots, and p = half the sum of the roots in A}. If 7 € K , let
p(7) denote the corresponding dominant integral weight relative to A}, © ,(x)
denote the character of 7 and O(u(w)) denote the orbit K - {—i(u(mw)+p)} in
k*. mp(n) denotes the multiplicity of = in R and d(u(7)) is the dimension
of w. r will denote the rank of K.

Definition 5.1.1. We define my, the multiplicity distribution (or formal
K measure) on k* associated to R as follows. If f € C°(k"), then

mg(f) = Z mR(W)ﬁu(n)(f)-
rek
Here f,(x) is the canonical Liouville measure defined on the orbit O(u()).
We will usually identify K with the set of dominant integral weights and
write mp = -, g mr (1) B,-
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Remark 5.1.2. my is clearly K invariant. Assume that it is tempered.
(This is true with mild restrictions on mg(u). See Lemma 5.1.8 below.)
Recall (A1), the isomorphism between K-invariant tempered distributions
on k* and W skew-invariant tempered distributions on ¢* defined in section
2.2. It follows from Example 2.2.4 that

(A+)t(m72) = CI—{,IT : Z mz () Z €(w)5—iw(u+p)

#EI? weW

(where 0_y(u+p) is the Dirac delta function at —iw(u + p)). We will some-
times abuse notation and write

mye = Y me(p) D (W) _iuuin)-

uef{ weWw

If 7 € K, and g = pu(rr) then ©, is a smooth function on K. If §, is the
lift of ©,, (see Theorem 3.1 in [BV3]), then it is a result of Harish Chandra
that 6, is a distribution on k£ whose Fourier transform is Bx.{—i(u+)} = Bu-
(In the notation of [BV3], we have 6,(X) = O, (exp(X)){(X), where £(X)
is the square root of the Jacobian of exp : g — G.) For this reason we define
two additional distributions related to my.
Definition 5.1.3. The distribution ©® = 3 _zmz(1)0, is called the
formal K-character of R on K, and its lift 6% = }° _zmz (u)0, is called
the formal K-character of R on k.

For the proof of the following lemma, recall the definitions of the Fourier
transform on £ and ¢* in (2.2.6). Set vol(K/T) =[x/ 1 dx/r(2).

Lemma 5.1.4 (Compare Theorem 3.8 in [Ch]). If f € C(t*), and X is a
reqular element in Hompg/(it, R), then:

(5.1.5)
lim i > e(w) f(t7 (—iwA)) = C(N) - {( 11 Da> . f} (0)
weW aceAT
where C(X) = [yent %)l

Proof. This is based on results of Harish Chandra in [HC]. We begin with
the following analog of Theorem 2 in [HC] which holds for all Z, Z' in ¢

(5.1.6) 7T(Z)W(Z')/ exp[B(Ad(z)(2), 2')] dx/r (%)

K/T

= vol(K/T) ( H (a, p)) Z e(w) exp[B(wZ, Z")).

acAF weWw
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Let Z = —t~'), and multiply both sides of (5.1.6) by f(Z') where Z' belongs
to t*. If we then integrate in variable Z' we obtain:

w7 [ dgr(@) [ exalB(Adz) (X, Z)(2)f(2) dz

= vol(K/T) H o, p ) Z e(w) / exp[B(—wt™'\, Z")|f(2") dZ'.

eAt weWw
Thus we have
617wt [ @HAdE) )] digr(3)
KT
= vol(K/T) ( II (e p)) Y e(w) FliwtN).
aeA? wew

If g € C™(t*), then §(Z) = kg(—Z) where & is independent of g. If we
multiply both sides of (5.1.7) by /41 and factor 7(—)) as /4%l (iX), we get

il [ (nf)[Ad(2)(i#7N)] disr()

K/T

= t'Acﬂnvol(K/T) ( H (a,p)) E e(w) f(—iwt™'\).

aEA: weW
Therefore,
i lat] -1(_4
Jim 471 37 e(w) f (£ (~iwA))

SR fgp lAd@) )] dir(@)
o kvol(K/T) (acar (@)

_ idln(inrf(0)
K (HaeAj' (a, P))

Now (Daf)(y) = [-B(a,)f)(7) and m(2) = (=i)*¥ [Iocas B(e, 2). Tt

follows that
rf(0) = i1¥¢1x . {( 11 Da) -f} (0)
acA}

and hence the desired limit equals

o {(1.2) Jo
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O

_ aziar TN (o, )

Lemma 5.1.8. Suppose there is a constant ¢ such that mg(p) < cd(u) for
all p € K, then (a) mp,OR and % are tempered distributions, (b) myp is
the Fourier transform of 6% (if k and k” are identified).

Proof. (a) The fact that O is a distribution on K follows from Lemme I11.2.1
of [DHV]. Since K is compact, OF is tempered . (For example, suppose
that O® = Y- % d(4)©,, then the Plancherel theorem for K asserts that
OR is the Dirac delta function at the identity e € K.)

We know that (A*)*(mgz) is a constant multiple of

z mz(p) Z f(w)‘s—iw(u+p)

. “ef{ wew

and (A*)*(%) is a constant multiple of 3 ,c g M () X yew €(w) eBEE+0)),
Because of the bound on mg(p), we can find a positive integer s such
that 3=,z me(p)(1 + [lull)~* < oo. It follows that for each w € W, both
Y ek MR(1)O_iw(uts) and T, cx mr(p)eB@®+0) are tempered distribu-
tions. (See Part I, Section 3 of [SW] or Part II, Section 28 of [Do].) Thus
(A*)t(mz) and (A*)!(6R) are tempered. Hence so are my and 6%.

(b) follows from the fact that 3, is the Fourier transform of 6,,. O

In the remainder of this section R will usually be a finitely generated
S(p,,) module with a compatible K¢ action such that:

5.19(a). R is S(p,)¥° finite (i.e., there is an ideal I C S(p,)"c with
finite codimension which annihilates R), and

5.1.9(b). R is K finite, and completely reducible as a Ko module.

Proposition 5.1.10. If R is a finitely generated S(QC) module with a
compatible Ko action satisfying conditions 5.1.9 (a) and 5.1.9 (b) then all
K¢ multiplicities in R are finite and for some constant ¢ = cr, we have
me(p) < cd(p) for dl pe K.

Proof. By (5.1.9(a)), I = Ann(R) N S(p)¥° has finite codimension in
S (I_)C)KC. Here Ann(R) is annihilator of R in S(p,). It follows that the ring

S e ., .. m -
—<—— is Artinian. So I = ()., Jx where the J; are the maximal ideals of

S(p,)¥e which contain I. Therefore ;. S(p.) - Jx € S(p,) - I € Ann(R).
S(p,)

, has finite Ko multiplicities, since
S@C ) ] Jk C p

It is clear that for each k&
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S(p.)

————— is the ring of regular functions on a finite union of closures of
S(p,) - Jk

K¢ orbits in p?, [KR]. Suppose, O = K¢ - z is one of these orbits, and R[O]
(respectively R[O]) is the ring of regular functions on @ (respectively O,
the Zariski closure of ©). Then for all 4 € K, since R[O] C R[O], we have
My (1) < mrioy(p) = dime V.56 (where V,X¢ is the space of K7 invariants
in the irreducible module V,,). Thus my (1) < d(u). So the multiplicity of

in S—(QC)— is bounded by a constant times d(u). Now T = Ste,)
S(p,) - Ik ) N1 S(p,,) - Jk
has finite K multiplicities and for all p € K, ms(u) < d(u) because 7T is a
m S(EC)
= S(Z_)C) - Jk

S(p.)

K submodule of the direct sum & . Because we have a surjec-

tive map of (S(p,), Ko) modules: 7 — — (0), the multiplicity

Ann(R)
. S(Bc) . . .
of p € K in is also bounded by a constant times d(p). Finally
Ann(R)
o o S(p.)

(5.1.9(b)) implies that R is finitely generated over Ann(R) Thus we can
find W, a finite dimensional K submodule of R, such that the K module

S
map 1) ®W — R, defined by f ® w — fw, is surjective. This implies

Ann(R)
the desired bound on mxg (). O

We can investigate the asymptotics of mz (1) by studying the behavior of
the following functions of the positive variable ¢, as ¢ — oo:

(5.1.11(a) Na(t)= 3 melu) d(u)

uek
lutpli<t

(5.1.11(b)) NEW = Y melu) d)
Q;Zi)létz
(5.1.11(c)) Nt = 3 me(p) ().

ek
L(p)<t

Here || - || denotes the norm on it* coming from the Killing form, Q, is
the Casimir operator for k, and Q4(p) is the value of the Casimir on V.
L(p) denotes the sum of the coefficients of the fundamental weights in the
representation of p as a sum of fundamental weights.

NE(t) is closely related to the Borho-Kraft multiplicity function [BK],
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defined as follows when R is also a ring:

(5.1.12(a)) F{R}(t) = 3 mr(w).
K<

For convenience when R is a ring write:

(5.1.12(b)) FB{R}) = 2 mz (1)
Il

(5.1.12(c)) FORY) = 3 ma)
95?5)1;2

The function F{R} is a quasi-polynomial (in the sense of Definition 2.2 in
[Bo]) and so are the functions Nz, N5, N, FB{R}, and F¢{R}. (Note that
the degree of the leading term of F{R}(t) is equal to the Krull dimension
of the ring R2+, where n, is the complex subalgebra of k. spanned by the
root spaces for A} ([Bo]).)

We show below that NS and Ny each grow like a positive constant multi-
ple of t¢ where d = Kdim R, the Krull dimension of R as an S (p,) module.
We then use this fact to define a K invariant distribution on k* which mea-
sures the asymptotic behavior of mz (u).

Proposition 5.1.13. Let R be a finitely generated S(p,) module with a
compatible Ko action satisfying 5.1.9(a) and 5.1.9(b). For each t > 0, let
Ry denote the subspace of R spanned by eigenvectors of § with eigenvalue
< t? so that N{(t) = dim¢ Ry). Let d = KdimR (the Krull dimension of
R as an S(p,) module). Then there are constants A and B (depending only

on g) and c(R) (depending on R) such that for t sufficiently large:

(5.1.14) A-c(R)-t* < N§(t) £ B-c¢(R) -t

Proof. Modify the arguments of Proposition 5.4 and 5.5 in [Vo2] for R rather
than a Harish Chandra module. |

Corollary 5.1.15. Under the hypotheses of Proposition 5.1.13 there are
constants A’ and B' (depending only on g) and c¢'(R) (depending on R) such
that for t sufficiently large:

(5.1.16) A (R)-t* < Np(t) < B'-(R) -t



176 D.R. KING

Proof. 1t is clear that N and NS have similar asymptotic behavior, so the
result follows from Proposition 5.1.13. O

Proposition 5.1.17. Let R be a finitely generated S(p,) module with a
compatible K¢ action satisfying 5.1.9(a) and 5.1.9(b). Let d be the Krull
dimension of R. Let p(mgy) be the largest integer p such that (i) for each
f € C®(k"), the following limit is finite and (ii) for some f € C>(k™) it is
not equal to zero:

(5.1.18) hmt P(mz)(f:) = Jim £77 Z me () Bu(ft)-

pGK
Then p(mg) = d — dimg k.

Proof. We first show that lim,_, t~%4™%(mgz)(f,) exists (i.e. is finite) for
all f € C*(k"). For each such f, choose L > 0, so that suppf C {z € k" :
(z,z) < L}, then supp f; C {z € k" : (z,z) < tL}. So

me(f) = ) mr()B.(f) =t > me(w)B.[f(¢)]

~

uel? HEK
[let+pll<tL
Hence,
|(me)(fi)] <t~4™& N mg(p) vol(O(u)) sup|f|
pek
llutpll<tL
= amkgup|f| Y me(u) d(n) = CtImENR (L),
nek
[let+pll<tL

where C depends on f. By (5.1.15), Nz (¢tL) is bounded above by a constant
(depending on R) times L%t¢. So it is clear that lim;_,., t~9t4™E|(mz ) (f;)]
exists, and so the limit in (5.1.18) exists when p = d — dimg k.

We next show that if p = d — dimg k, the limit in (5.1.18) is non zero for
some f € C>(k").

Choose a function ¢ € C°(k*) with the following properties: ¢ > 0,¢ > 1
on {r € k*| ||z|| < 1}, and ¢ is K invariant. Note that ¢;(z) > t~4m& if
=l <t

Z mr (1) Bu(¢e) = t~4™E Z mr (1) d(p)$[—it ™" (1 + p)]

pek nek

because of the K invariance of ¢.
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It follows that,

tPmp(¢,) = tPUimk 2 mz (i) d(p)$[—it ™" (1 + p)]
pEK

> ¢7PAmE N mp () d(p)

uek
lu+pll<t

= ¢7PAmEN, (1) = t 72 Ng(t).

Since by (5.1.15), Nx(t) is bounded below by a positive constant times ¢¢,
we must have
JYim £+ () () £ .

On the other hand if p > d — dimk, then for all f € C(k"), we have:
Jim 7P () (f) = Jim 674D 456D () () = 0.
So p(mg) = d — dimk. Od

Definition 5.1.19. Let R be a finitely generated S(p,) module with
a compatible Ko action satisfying 5.1.9(a) and 5.1.9(b). Let My be the
distribution on k* defined by the limit in (5.1.18) for p = p(mg) = d —
dimg k, i.e. Mz (f) = lim;_, o, t~4™E(my)(f;), for f € CX(k"). It is clear
that Mz is K invariant and homogeneous of degree —d + dimp k. Mg will
called the asymptotic multiplicity measure of R.

Remark 5.1.20. Assume R satisfies the same conditions in Definition
5.1.19 then we can also define the Cg, the asymptotic K character of R,
(in a similar way to Mz): Cr(f) = lim;_,o+ t40%(f,), for all f € C(k").
It is clear that Cp is also K invariant and homogeneous of degree d. Also
My = CR, the Fourier transform of Cr. If we set R' = R ®¢ F, then
Mz = (dimgc F)My. This is based on the fact that @R = ©@ROF. This
allows us to prove that Cx: = (dim¢g F')Cg, from which we obtain the desired
result for M. We omit the details.

Now suppose that P and S are (S(p,), K¢) submodules of R. Then it is
easy to establish the following facts concerning Nz, Np, and Ns which are
analogues of facts proven in [Bo] concerning F{R}, F{P},andF{S}.

(5121(&)) NR/p = NR — Np

(5.1.21(b)) Npns = Np + Ns — Nps

We also have the analogue of Lemma 2.6 in [Bo].
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Proposition 5.1.22. Suppose R is an integral domain containing C (the
complex numbers) satisfying conditions 5.1.9(a) and 5.1.9(b), and S is a K
stable subring of R containing C such that R is the integral closure of S (in
its field of fractions). Let KdimR = d. Then as quasi-polynomials, Ng(t)
and Ns(t) have the same leading terms and deg Nz;s < KdimR.

Proof. We argue as in Lemma 2.6 of [Bo]. First since S C R, we have the
inequality Ns(t) < Ng(t) for all t. Let Q(S) denote the field of fractions of
S. Since R is the integral closure of S in Q(S), R is finitely generated as
an § module. Consider the left S-module R/S. Let I = Anng(R/S), the
annihilator of R/S in §. I # (0) because (1) for each r € R, there is an
s € S such that sr € S (since R C Q(S)) and (2) R/S is finitely generated
over §. Clearly I is a K submodule of S. Choose a highest weight vector
e € I. Let w € Hompg(it, R) be the weight of e. We have the inclusion
eR C S, and hence eR% C S™ (since e € I2). It follows that for any
1 € K, we have the inequality: mz(u) < ms(p + w). Since w is dominant,
d(p + w) > d(p). This implies that: mg(p) < ms(p + w)d(p + w). Hence,

(5.123) Ne(t)= 3 me(u)dp) < Y ms(s+w)d(u+w)

ME? uEI?
llutpll<t llu+pll<t
= Y mswdr)< Y., ms@)d@)
uew+ﬁ v€w+R
lv—w+plI<t llv+oll <t+||wl|

< Y ms()d(v) = Ns(t+|lwl).

~

veK
llv+pli<t+wll

We have established that N (t) < Ns(t + ||w||). Therefore since Ng(t) <
Nz (t), we conclude that Nx(t) and Ngs(t) have the same leading terms.
This together with (5.1.21(a)) implies that deg Nz/s < KdimR. g

Proposition 5.1.24. Assume the hypotheses of Proposition 5.1.22; then
MR = Ms.

Proof. Let d = Kdim S. It follows from Proposition 5.1.22 that KdimR = d.
Suppose that M — Mg # 0. Then since Mz — Mg is K invariant, there
would exist a K invariant function ¢ € C°(k”) such that {Mz — Ms}(¢) #
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0. If we assume that supp ¢ is contained in {z € k" : (z,z) < L}, then

tH Ay — ms](gy) = tE S (mr () — ms (1) (1)

ek
=t }::(mn(u) —ms(p))d(p)p[—it™" (1 + p)]
pEK
=t }; (mr(p) — ms(p))d(p)p[—it ™ (b + p)].
neEK
llutell<tL

The last sum above must go to zero as ¢ — oo, because

}:A (mr(p) —ms(p))d(u) = Ng(tL) — Ns(tL)
i<t

is asymptotic to a constant times LY¢% with d' < d. But this contradicts
{Mz — Ms}(¢) # 0. O

Lemma 5.1.25. If Kdim(P) = Kdim(S) > Kdim(P N S), then Mp,s =
Myp + Ms.

Proof. Apply (5.1.21(b)) and argue as in Prop. 5.1.24. O

5.2. Asymptotic multiplicity measures of K orbits inp*. If Aisa
quasi-projective variety in p7,, let R(A) denote the field of rational functions
on A. R[A] denotes the ring of everywhere regular rational functions on A.
Thus, if A is closed (in the Zariski topology on p7)) and irreducible, R[A] is
the co-ordinate ring of A. In this case A™ denotes the normalization of A.
Let O be a K¢ orbit in p?,, O its Zariski closure and I(O) = the ideal
of functions on p7, vanishing on 0. Suppose that O is regular in p7,, i.e. of
maximal dimension among K¢ orbits in p7,. Then I O)ns (po )¢ has finite
co-dimension in S(p,,) )X (see Chapter II, of [KRY)). It is then clear that R[O]
is a finitely generated S(p) module which satisfies the conditions (5.1.9(a))
and (5.1.9(b)). If O is not regular, then O is contained in the closure of
a regular K¢ orbit in p7, (by Theorem 9 of [KR] and the discussion which
precedes it). And aga.m we can conclude that R[O)] is a finitely generated
S(p,) module which satisfies the conditions (5.1.9(a)) and (5.1.9(b)).
Definition 5.2.1. If O is any K¢ orbit in p},, define mg (1) = mpg, (1) for

all p € K. Then mg;, the multiplicity distribution of 0O, is the distribution
on k™ defined from the multiplicity function mg = 3 _ ma(p)B,. We of-
ten identify mg with (A*)(mg) = cx,r - ZMGK ma(1) Y wew (WO _iw(utp)-
Similarly define ©° = ©FO] and 9° = RO,
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We can now apply Definition 5.1.19 to R = R[O]. Note that K dim R[O] =
dimg O = dimg O.
Definition 5.2.2. Let O and mg be as above. Let Mg = Mp;. That is,
for f € C>(k"),

Mp(f) = lim t~4me O*imatimg)(f,).

—00

The degree of homogeneity of Mg is dimgc O — dimg k. Mg will be called
the asymptotic multiplicity measure of O.

We will sometimes want to consider the W skew-distribution (A*)*(Mg)
on t* in place of the K invariant distribution Mz on £*. Note that for all

¢ € CX(t), ckr - (A1) (Mp)(4) =

(5.23)  lim ¢~ dime OHlallr { S man) Y e(w)(s—iw(p+p)} (¢:)-

uGE weW

By Lemma 4.1.3, the degree of homogeneity of (A1)!(Mg) is dime O—|A}|—
r. We set p(O) = dimc O — |A}| — 7.

Ezample 5.2.4. Let us consider the case when O = {0} in p7,. Then O =

O,mo(u) =1if p =0, and me(u) =0 if u # 0. Also dlmCO = 0, so that
p(0) = —r — |A¥|. We now apply the Lemma 5.1.4. Let ¢ € C(¢*), then

ckr + (A7) (Mo)(¥)

= tl_l_)lg griadl Z (W) iwp(Yr) = { ( H Da) . 50} ().

weWw acA?t

Now ¢™*(0) = @ = {0} in g*. It is clear from another result of Harish
Chandra that (A*)(J.(Bq)) is given by a constant multiple of the same

expression.
For by definition, (J,(8g),®) = (0o, J*¢) = J*$(0) = ¢(0) where ¢ €
C(k"). Recall the definition of Harish Chandra’s invariant integral on K:

(5.25)  FX(Z)=n(2) /K L HAE)2) dir(@) (2 €)

where 7(Z) = [l ca+(ia, Z). By Harish Chandra, we know that up to a
constant we have the equation

osim{(17) e
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Since F(Z) is a constant times A*(¢)(Z), we obtain the equation

(Ju(Ba), ¢) = llm{(H D ) -A+(¢)}(H)

eat

= a constant multiple of < ( H D ) do, A (¢)>

aEA+

Thus (A*)(J.(Ba)) is a constant multiple of (Hae AF D,),) - 0 which is

equal to cg'r - (A%)(Mo). It follows that J,(Bq) is a constant multiple of
M. This is a special case of a conjecture of Vogan. (See (8.1.1).)

Remark 5.2.6. It is possible to define an asymptotic multiplicity mea-
sure for any K¢ orbit O = K¢ - 2, not just for O. Consider R[O)], the
regular functions on O. R[O] is an (S(p,), Kc) module, which is com-

pletely reducible as a K¢ module, and Kdim R[O] = dimc O. If p € K , set
mo(p) = mpjo)(4) = dimg V7 (by Frobenius reciprocity). Then R[O] satis-
fies the following asymptotic growth condition. For some positive constants
co and dp, if t is sufficiently large:

(5.2.7) cot®™¢ © < Ngo)(t) < dpt?™e©.
We then define M, the asymptotic multiplicity measure of O, by:

(f) — tllfg t—dxmc O+dimpg k(mo)(ft)
for f € C>°(k"). (The degree of homogeneity of M is dimg O — dimpg k.)
Condition (5.2.7) holds for any K¢ orbit O in p}, because the same sort
of growth conditions are satisfied by Np(t). For we can argue as follows.
Set No(t) = Ngjoj(t) and Ng(t) = N (t). Certainly, N5 < No which
implies that Ny is bounded below by a positive multiple of td On the other
hand, if mg, (1) is the number of copies of V,, inside R[O] whose highest

weight v, does not belong to R[O], and Ng\o is the sum of all products
mp\o(#)d(p) for ||u+ pll < t, then No = Ng + Ng, -

Let {fi/g1,--- s fr/GrsPrs1,--- ,hs} be aset of generators of R[O]2% chosen
so that fi,...,fr,91,..-,9r, and h.yq,...,h, all belong to R[O]2«. The
corresponding (dominant) weights are &;,... , &, 71, .-+ ,¥r, and (ppr1y ..., Cs-
Suppose V, is inside R[O] and v, does not belong to R[O]. Since v, is a
polynomial in the generators of R[O]2«, for some i, 1 < i < r, a power
of fi/g; appears in v,. Fix ¢t > 0. For each ¢ between 1 and r, let M,(t)
denote the largest power of f;/g; which appears in a highest weight vector
v, € R[O]/R|[O] such that ||u + p|| < t. It is clear that for each i between 1
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and r, there is a dominant weight w; such that ||w; + M;(¢) (& —vi) +p|| < t.
It follows that M;(¢)||(& — vi)ll = IM:(t)(& — v:)|| < t. Hence there is a
constant c;, independent of ¢, such that M;(¢)|v| < cit.

Now let g; = the product of all the powers gfw"(t) for all 1 < ¢ < r and
set v, = the weight of g; = Y M;(t)7y;. So if V, is inside R[O)],v, does not
belong to R[O] and || + p|| < t, then g;v, € R[O]. Clearly we have the
inequalities:

ma\o(1) < ma(p + 1) and d(p) < d(p +v4)

for all p such that mg (p) # 0 and |[u + p|| < t. But the inequalities:
Il + pll <t and M;(2)|:]l < c;it (where ¢; is independent of t) imply that
for some constant x (independent of t) ||p + vy + p|| < wt. It follows that
Ng\o(t) < Ng(kt) which implies that No(t) grows no faster than a positive
multiple of t°.

Suppose that O = K¢ - e¢ is a nilpotent orbit in py,. Let 0" denote
the normalization of ©. We may assume that Ko acts on O" with finitely
many orbits, and the normalization map 7 : 0" - O is K¢ equivariant. (See
section 5.3 for a construction of O".) We can view R[O"] as a K¢ submodule
of R[O)], so that R[O"] is a completely reducible K¢ module. R[O"] is then
a finitely generated S(p,) module which satisfies the conditions (5.1.9(a))
and (5.1.9(b)). Mg_ is therefore well defined.

Proposition 5.2.8. Let O be a nilpotent K¢ orbit in i then Mz = Mg~.

Proof. R[O"] is the integral closure of R[O] in R(O). Now apply Proposition
5.1.24. g

If g is complex, then we may identify Ko with G and 2 with g*. The
following results are useful in computations.

Corollary 5.2.9. Let g be a complez semi-simple Lie algebra and let O be
a nilpotent G orbit in g*. Then Mo = Mg.

Proof. Apply the Proposition 5.2.8 and note the R[0] = R[O"] since R[O]
is the integral closure of R[0] in R(O) (see Lemma 3.7 in [BK]). O

The following proposition will be useful later.

Proposition 5.2.10. Suppose X = G¢c-eNpz, = 0, U...UO, (disjoint
union) where each O; is a nilpotent Ko orbit in Py whose closure is a com-
ponent of X. Then Mx = 3;_, Mg..

Proof. We have R[X] = ¥°;_, R[O;]. Note that K dim R[X] = K dim R[O}]

which exceeds Kdim{R[O;] N R[O;]} for all i # j, and apply the obvious
generalization of Lemma 5.1.25. O
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Remark 5.2.11. Let X be as in the preceding proposition and assume in
addition that GC e does not contain a G¢ orbit of co-dimension 2. Then
for each 4, R[O;] = R[0;], as we argued in Corollary 5.2.9, because each K¢
orbit in O; has codimension at least 2 (since G¢ orbits in G¢ - e are even
dimensional). Therefore, Mo, = Mg» = Mg,. Hence Mx = >°;_, Mo..

Remark 5.2.12.  (Orbit Covers) Let O = K - e where e € py,. Let
(K&)' be a subgroup of Ko such that (K§), C (K&)' € K&. Then the
quotient O = K¢ /(K&)' is a finite covering of O = Ko /K&. D = K& /(K&)'
is the covering group and R[O] = R[O]P. (The actions of Ko and D on
O commute. The D action is as follows: @ -Z = Za, where @ = a(K&),
and T = z(K¢),. Kc acts on the left.) This leads to the fact that Mg =
d - Mo, where d = |D|. Essentially, this is a consequence of the fact that
deg(Ngz — d- No) is less than dimg O = dimg O. (See Lemma 2.7 in [Bo).)

5.3. Multiplicity formulas for rings of regular functions. Let {z,e, f}
be a Py, Cayley triple, with O = K¢ - e. In order to study Mg, we will
consider X = X (e) a non-singular variety which is a desingularization of O
(see Definition 5.3.1 below). Set mx(p) = the multiplicity of the K-type p
in R[X]. my is the corresponding multiplicity distribution, and My is the
corresponding asymptotic multiplicity measure. Using ideas of McGovern
[Mc], we will show how to “approximate” mx(u) in order to compute Mx.
Recall that B denotes the Killing form of g. Let B¢ denote the Killing
form of g ,. We want to make explicit the identification of g , and g7, provided
by BC Ifz € g, thenlet 2" denote the element Bc(z ) ingy, and 1fy €9g;,
let y* denote the element in g , such that y = Be(y, ). Ifw,y € g7, then
define [w, y] to be [w’, y]".
Definition 5.3.1. (Construction of a desingularization of O.) Let 9. (z;7) =
{z € g l[z,2] = jz}, the j- elgenspa.ce of z. Likewise define pc(w j) and
B (g5, Set V = V(6) = Spos gt (539),

C=q(e)= g.(zm7), u =u(e)=) g.(z:4),

720 >0

and I" = I’(e) = g;,(2;0). Let g,l, and u denote respectively (g*)’, ("),
and (u*)". ¢, and u may be regarded as subalgebras of g, so that ¢
is a parabolic subalgebra with Levi decomposition ¢ = [ EB u. Let Q,L
and U be the connected subgroups of G¢ with Lie algebras g¢,l, and u
respectively. It is well known that the morphism 7 : GoxgV — G -,
defined by 7([g,v)] = ¢ - v is a desingularization of G - e. By similar ar-
guments, if V= PO Bg(a:; j)=Vn py., then the (restriction) mapping
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7 : Ko Xgnke V — Kg - € is a desingularization (resolution of singularities)
of K¢ - e in the sense of [Slo].

(Since ad(e) : ¢* — V is surjective, ad(e) : ¢* Nke = V N p;, is surjective.
This enables us to conclude that the orbit Q N K, - e is dense in V. The
remainder of the argument is essentially the same as the one establishing
that m : Go xg V — G¢ - e is a desingularization of G¢ - e and may be
found at the beginning of the proof of Theorem 3.1 in [Mc]. See Section 2
of [Sek?2] for a discussion of the case when e is a principal nilpotent.)

Set X = X(e) = K¢ Xgnke V. We also consider X as a vector bundle
over K¢ /QN K¢ with projection map 7: X — Ko/QNKg. Ox will denote
the structure sheaf of X.

Throughout this section we will work with the fundamental Cartan sub-

algebra h = gt of g. Let h = t+ @' be the Cartan decomposition of h.
Let A = A(g yhe) and let Ay, Ay, Aim, and Ay, denote the subsets
of A comprising respectlvely the compact imaginary, non-compact 1mag-
inary, imaginary and complex roots. Then g, = ko + p, where k.
o ® Laea, CXa ® Taca,,i, C(Xa +0X,) and p, = ' ® 3 sea,,., C(Xa -
0Xa) ® Yoea,.. CXa. Let Q be the set of non-zero weights of ¢ in p_.
Then Q = A,.; U{als, : @ € Acys}, and each weight in Q has multiplicity
one.

If  and 2 are as above, we define a positive system for A, as follows.
First note that since {z,e, f} is a p7, Cayley triple, 7’ € it. Let A (z°) =
{a € Aijp|a(z’) = 0}. Then A;,,(z°) is a root system. Choose any positive
system (A;n(z°))t for A (zb). Set A}, = (Aim(z*))t U {a € Ainla(zb) >
0}. A}, is a positive root system for A;,. Now choose an ordering on
the full set of non-zero t, weights in g 9c which is compatible with A7,
This choice gives an order in Q which is consistent with A}, = A} N
A, Denote the resulting set of positive elements in @ by Qt. Write
OF = {f1,--- Moy theg1,--- , s} Where AL = {pepr,... ,ps}. AF = AZ U
{#1,.-. , e} is a positive root system for A(ks,1ts)-

The action of i on g7, is the co-adjoint action. That is, ifwe g7, H €
tc, and y € g, then we have: (H -w)(y) = —w(H -y) = —w([H,y]) =
~B¢ (v, [H, y] = B¢ ([H,w'],y). It follows that H - w = [H*, w).

Now since [* D tf., it is clear that g*,L*, and u* are t, modules. Suppose
that w € ¢* is of weight « for the action of t,. Then [z, w] = z*-w = y(z*)w
It follows from the definition of ¢* that y(z*) is a non-negative integer.
Define A(l" N kg, tc) to be the set of non-zero ¢, weights of * N k. Define
A(l'Np:,te), Alu'Nke,to) and A(u*Npy,to) analogously. It is clear that
A" Nkg, tc) (respectively A(L"Np7,tc)) consists of all B in A, (respectively
Q) such that 5(z*) = 0. A(u* NEp,tc) (respectively A(u* Np?,ts)) consists
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of all 8 in A} (respectively QF) such that 5(z") > 0.
Remark 5.3.2. It is clear that R[X] is a finitely generated (S(p ) Ko)
module satisfying the conditions (5.1.9(a)) and (5.1.9(b)) and that

Kdim R[X] = Kdim R[O] = dim¢ O.
Also, My = Mg, by Prop. 5.2.8, since X is a normalization of O.

Theorem 5.3.3. (McGovern [Mc]) Let d = KdimR[X] = dimcX =
dim¢c O. Let S = x(H'(X,0x)) = X¢ (~1)H{(X,0x). Then:

(a)  For each p, H?(X,Ox) is a finitely generated (S(p_), Kc) module
satisfying conditions (5.1.9(a)) and 5.1.9(b)).

(b) Ifp >0, the support of HP(X, Ox) is contained in 00 = O\ O (the
boundary of O).

(C) MX = MS.

(d) As a K module, S is isomorphic to

(6:34) Y1 L(-1)'H (Ko/Qn Ko,

j i

Ko xanke [S(85/(q" NpL) © Np2 (3 1)]).

Proof. This is based on ideas in the proof of Theorem 3.1 in [Mc].

We would like to express the K structure of R[X] in terms of more familiar
K modules. Since R[X] =T'(X,0x) = H°(X, Ox), we begin by investigat-
ing H?(X,Ox) for arbitrary p. Since 7 : X — O is proper, for each p > 0,
the higher direct image sheaf RPm,Ox is a coherent sheaf on O. In addition
by Théoréme 3.7.3 of [Grot2], there is a Leray spectral sequence:

(5.3.5) H™(O, R’1,0x) = H™?"(X, Ox).

Since O is affine, the cohomology H™(O, RPn,Ox) with m > 0 vanishes.
Hence by (5.3.5) there is an isomorphism: H°(O, RP7,Ox) ~ HP?(X,Ox).
Now since RPm,Ox is coherent on O,I'(O, RP1,0x) = H°(O, RP7,0x) is
finitely generated over R[O]. Thus H?(X, Ox) satifies (5.1.9(a)). (It satisfies
(5.1.9(b)) because of (5.3.8) below.)

Now let U = 771(0) and Z = X \ U. To prove (b), consider the exact
sequence of sheaves on X:

(5.3.6) 0 — 7#(Ox|v) = Ox —» i.(Ox|z) =0
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where 1 : Z — X and j : U — X are inclusions. By applying the higher
direct image functors RPm,, we obtain a long exact sequence:

(537) 0— W*(jg(0X|U)) - m,0x — W*(i*(oX‘Z))
— RlT(*(jg(Oxl(j)) — Rlﬂ'*OX — Rlﬂ*(’i*(OXlz))
— R27T*(j!(OX|U)) — R27T*OX — R2Tr*(i*(OX|Z)) - ...

The mapping 7|y : U — O is affine. So by Cor. 1.3.2 of [Grotl1], if p > 0,
then RP7,(5i(Ox|y)) = 0. From the long exact sequence in (5.3.7) it follows
that for all p > 0, we have 0 — RPn,Ox — RPm,(1.(Ox|z)). Therefore
the support of the sheaf RP7w,Ox is contained in the support of the sheaf
RPr,(i,(Ox|z)) which is contained in n[Z]. It follows that H°(O, RP7,Ox)
and hence H?(X,Ox) has support in 7[Z] = O \ O.

We now prove (c). For each: > 0, Kdim H*(X,O0x) < d, since the support
of H(X,Ox) lies in O \ O which has dimension strictly less than d. So if
m; denotes the multiplicity distribution of H*(X, Oy), Prop. 5.1.17 implies
that for all f € C®(k"), lim;_, ¢t~ 4 mE m(f,) = 0. Now R[X] - S =
%, (~1)*H(X,0x). Thus for all f € C®(k"),

=1
d
(Mx —Ms)(f) = Z(—l)l tljglo tmHmEm(f,) = 0.
i=1
Hence MX = MS-
To prove (d) note that the mapping 7 : X — K/Q N K¢, is an affine
morphism of schemes with X noetherian. So by Chap. III, Cor. 1.3.3 of
[Grot1],

(538) Hp(X, OX) 2}:IP(I<C/QﬂI(C:T*()X)’

where 7,0 is the direct image of O x under 7. So x(H (X, Ox)), the Euler
characteristic of the cohomology groups H (X, Ox), is equal to x(H (K¢ /QN
Kc,7.0x)), the Euler characteristic of the cohomology groups H (Kc/Q N
Ko, 7.0x). Furthermore, 7,0 is the sheaf of sections of the bundle

Y KC XQnKc R[V] — Kc/Q ﬂKC

So H(Kc/Q N K¢, 7.0x) = H? (Ko /Q N Ko, Ko Xqoke RIV]) -
Let b = dimc p7,(z;1). Then we also have the following Koszul type reso-
lution of R[V] as a Q N K¢ module:

(5.3.9) S(py/(g* NpL)) ® A°pl (23 1)
= S(p,/(g" NpL)) ® A" p (1) > -
= S(ps/(q" Npy)) ® AP (2;1) = R[V] = 0.
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(See Section 3.5 of [AJ].) We can obtain a resolution K¢ Xgnk, R[V] by
replacing each term W of (5.3.9) by K¢ Xgnk, W. Using this resolution of
K¢ Xgnke R[V] and the additivity of the Euler-Poincaré characteristic we
conclude that:

(5.3.10) > (-1)'H' (K¢ /QN Ko, 7.0x)

i

= Y (1P Y (-1 (KC /QN Ko,
Ko X anke 1805/(@” N5)) ® N (a3 )]).

This proves part (d) of the theorem since § =

d
S (-1)'H(X,0x) = Y _(-1)'H* (Kc/Q N K¢, 7.0x) .

i=0 i

O

Corollary 5.3.11 (Notation(5.3.3)). If e is even, mgs(p) is given by the
following formula:

(5.3.12) ms(u) = Y e(w)p(w(p + p) — p)

weW

where p is the Kostant partition function for A(u*ﬂ;_%, to), that is p(v) = the
number of ways of ezpressing v as a non-negative integral linear combination
of weights in A(u* Np;,tc).

Proof. Since e is even, p7 (z;1) = 0 and V=u N p;,- So that (5.3.10)
becomes:

(5.3.13) Z(—niHi (KC/Q N Ke, Ko Xonko [S(pL/(¢" ﬂ;g;}))]) .

The multiplicity formula (5.3.12) follows from (5.3.13) and the Bott-Borel-
Weil Theorem.

The multiplicity formula (5.3.12) can be used to show that (A%)* (Mgp) is
a sum of expressions of form 3, . aw-(D-Y*) where D is a homogeneous
differential operator with constant coefficients on t*, Y is a convolution of
Heaviside functions and the a,, are constants. (See Section 8.) O

Proposition 5.3.14. (Compare Theorem 7.2 in [BK].) Let g be a complex
semi-simple Lie algebra. Suppose that s = m @ w is a parabolic subalgebra,
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h € m is a semisimple element, m = g" and w is the sum of the positive
eigenspaces of ad(h) acting on g. Let S,M and W be the corresponding
connected subgroups of G. Choose e € w, so that G-e = G - w, i.e. so
that e is a Richardson element for s. Let X = G Xgw, and d = dim¢ X.
Set £ = [G® : S¢], the degree of the moment map X — G - w (defined by
[(g,v)] = g-v). Then Nx and Nz have the same leading terms. (It is
clear from the proof that Nx > {Ng=.)

Proof. The moment map 7 : G Xxsgw — G -w is proper and of degree ¢ [BB].
Therefore 7 is finite (Exercise 11.4.6 in [Ha]). Since 7 is finite, R[X] is finitely
generated as a module over 7*R[G - w]. Recall that n, is the nilradical of
k¢ which in this case is the same as g ,. By Corollary 10 of [Gros], R[X]™
is finitely generated over (7*R[G - w])2. It follows that for some positive
integer s we can find highest weight vectors hy,... ,hy € R[X]2 such that:

(5.3.15)  R[X]™ = n"(R[G - w])®hs + - + 7" (R[G - w])**hs.

We may assume without loss of generality that each h; belongs to a single
weight space. Set \; = the weight of h;. Since 7 has degree £, R(X) is a
¢ dimensional vector space over (R(G - w)). So we can find highest weight
vectors g, ... ,g¢ € R[X]2 constituting a basis for R(X) over 7*(R(G - w)),
i.e., such that:

(5.3.16) R(X) =n"R(G-w)g, + - + T R(G - w)gs.

Set &; = weight of g;. Now consider each h; appearing on the right hand side
of (5.3.15). By (5.3.16) we can find functions f;,..., fi, in 7*(R(G - w))
such that h; = f; 191+ - -+ fi ¢ge- But since the g;’s are a basis for R(X) over
7™ R(G-w), and h; and all the g; are n, invariants, the functions f;,... , fi,
must all belongs to (7*R(G - w))2. So by a lemma in [Ro], each of these
functions is a quotient of functions in (7*R[G - w])2+. Therefore by taking
the product of the denominators of all the f; ; (for 1 <i<sand 1< j <¥),
we can find a function b € (7*R[G -w])2+ (belonging to a single weight space)
such that for all 7, bh; belongs to the sum:

(7*R[G - w])2 g, + - - - + (7*R[G - w])®gs.
We now see that (5.3.15) implies that:

(5.3.17)
bR[X]% C (n*R[G - w])™ gy + - -+ + (7" R[G - w])™g, C R[X]™*.

It is easy to deduce from (5.3.17) that Nx and ¢Ng., have the same leading
terms as in the argument for Prop. 5.1.22. O
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Proposition 5.3.18. Assume the same hypotheses as in Prop. 5.3.14 and
the same notation as in the proof. Then as G modules:

R[X] ~ ) (-1)'H'(G/S, G xs Rw]) ~ Ind§(1).

i

Proof. The first isomorphism is established as follows. Let ( : X — G/S be
the obvious projection mapping. (Note that X is the cotangent bundle of
G/S.) R[X]=T(X,0x) = H°(X,0x). It is known that H(X,0x) =0 if
i >0 (Lemma A2 in [BK]). So R[X] is the Euler-Poincaré characteristic of
H (X,0x). Since ( is an affine morphism, for all > 0,

H(X,0x) = H'(G/S,¢.0x) = H(G/S, G xs R[w)).

Hence o

R[X] =~ (-1)'H'(G/S, G xs R[w)).
The fact that ¥ ,(—1)'H(G/S, G xs R[w]) ~ Ind$ (1) follows from Lemma
2.1 of [Mc]. (|

Remark 5.3.19. It follows from (5.3.18) that if 4 is an irreducible finite
dimensional representation of G on the space V,, then mx(p) = dime VﬂM
and this function is given by the Heckman-Kostant formula. (See Section
6.)

Remark 5.3.20 (Notation 5.3.14). Suppose that either (a) G-w is normal
and that G° is connected or (b) G* = S°% then mg.,(1) = me.(p) =
ma.n(p) = dimg VM for all p € G. Explanation: If (a) holds then apply
Theorem 6.3 of [BK]; if (b) holds then apply Theorem Al of [BK].

6. Richardson orbits in complex semi-simple Lie algebras.

In this section, we will assume that g is a complex semi-simple Lie algebra.
But we identify g with g* = Hompg(g, R). k is now a compact real form of
g- As usual ¢ is a maximal torus of k. Let j be the centralizer of £ in g and
let J be the Cartan subgroup of G corresponding to j. K¢ can be identified
with G, and p, can be identified with g. Thus if  is a nilpotent G orbit in
g,¢(Q), the Cayley transform of 2 will be identified with Q.

Let us adopt the notation of Proposition 5.3.14 so that 2 = G - e is the
Richardson nilpotent orbit for the parabolic subalgebra s = m & w. (Recall
that S, M and W are the connected subgroups of G corresponding to s, m
and w). We will also assume that 5 C m. The main goal of this section is to
show that: -
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Theorem 6.1.1. with assumptions as above There is. a nonzero constant
cq, such that J,(Bq) = caMq. (Recall from (5.2.6) that Mg = Mg.)

Now A(kg,tc) = A(g,j). Assume that Z € t is regular and we de-
fine A*(kg,to) = {9 € Alke,to)l9(iZ) > 0} Aw,j) = Aw,ts) C
At (kg,to). Set At = A(m,to) N A (kg,to). W is, as usual, the Weyl
group of A(kc,tc). Wy, is the Weyl group of A(m, t.). W, is the “standard

cross-section” to Wy, in W. That is,

W, ={0 € Wl|a e A% (kg,tc) and 0~ 'a €AY (ko tc)
implies o € A(w, t)}-

We will write A*(kg,tc) = {b15--+ s Pns Pnt1y--- > Pja+|} where Af =
{¢1a R a¢n} and A(—“-j-’ic) = {¢n+17 s 7¢|A+|}' Set Y;— =H_;p, * H_jp, *
-+ * Hig ., (the convolution of the Heaviside functions of all the weights
—i;), Y =H_;4, *H_j4,%---«H_;5 ,and Y} =H_;4  «H_;5  *---%
Hij, ., So that Y} = Y} Y. B
Theorem 6.1.1 is a consequence of:

Theorem 6.1.2. (A")Y(J*(Bg..)) and (AT)'(Mg..) are each a constant
multiple of

(6.1.3) T,= Y e(n)r-{| I Da| Y3

(Recall that D, is the directional derivative in the direction —ia.)

Remark 6.1.4. Before proving (6.1.2), we note that it is easy to show
that (a) T, does not depend on the choice of coset representatives for
W/Wp,; (b) T, is W skew invariant; and (c) T, has the right degree of
homogeneity, namely —r +|A(w, ¢c)| — |AL|- (According to Definition 5.2.2,
p(Q) = dimc(Q) — |A* (ke to)| — 7 = 2|A(w to)| — [AT (keoto)| — 7 =
A, o)) - |A%))

Proof of (6.1.2). We first show that (A*)*(J.(8a)) is a constant multiple of
T,. There are two main points in the calculation. The first is an unpublished
result of Harish Chandra that if f € C°(g*), then (up to a constant) (G, f)
is the “value” at 0 (actually a limit) of the function defined by applying
the differential operator (]'[ae At Dm)2 to Fy. (This result has been greatly
generalized. See [BV1], [BV2] and [Gi].) Here, F; is the invariant integral
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defined as follows:

F2) =) [ S(A@)2)den(@) (Z€ 5,
where dg/;(Z) is a G invariant measures on G/J.

(dgys is defined as follows. Let o denote conjugation with respect to
the real form k of g. Then (X,Y), = ~B(X,0Y) is scalar product on g.
Then define a Lebesgue measure d, on g and g* such that the hypercube
determined by an orthonormal basis has unit volume. In the same way define
a canonical Lebesgue measure d; on j and j*. Now normalize dg,; by the
requirement that d, = |r.(H)|*dg,;()d,; H.)

The second main ingredient in the calculation of (A+)!(J,(Bg)) is a result
of Sengupta ([Sen1] and [Sen2]), which says that up to a constant multiple
independent of Z:

(6.1.5) (A1) (1(Bo.2) = D e(whw- (7 * Y7).

weW

Here are the details of the computation of (A*)!(J,(8q)). Note that the
“equations” appearing below will usually only be true up to multiplication
by non-zero constants which depend on such things as the normalization of
measures. Throughout the computation we will use results from section 3
on the actions of groups and differential operators on homogeneous distri-
butions.

Let D = (HaeA,‘t. Da). Suppose that ¢ € C*(k*) and f = J*¢. Then
by definition (J,(Ba),#) = (Bq,f) = (by Harish Chandra) lim,_q+(D? -
Fy)(tZ). By the chain rule and the homogeneity of D, we have that D, -
{F;(t2)} = Alaz! (D?- F;)(tZ) (The subscript Z indicates differentiation in
that variable.) Rewrite this equality as (D?-F;)(tZ) = t 22=/D2 . {F;(t2)}.
Then

(6.1.6) (Ba, f) = lim ¢ *45IDY - {Fy(:2)}.

Since Z is regular, 8g.z = Cn.(Z)dg,; where C depends on the connected
component of ‘i:eg containing Z. See [Senl]. By formula (2.2.1), F;(tZ) =

{Bg.+z, [) (up to a constant independent of Z).
Thus (6.1.6) becomes lim; o+ t'ZIAED%{(ﬂG.tz, )} = (by (6.1.5))

(6.1.7) Jim 2AnIp? {< 3 e(w)w- (8ez * Y;), A+(¢)>} =

wew

lim ¢ 214! < > e(w)D%, (w (02 * Y;)) , A+(¢)> .

+
t—0 weW
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We can rewrite the sum appearing in (6.1.7).

(6.1.8) Y e(w)D% (w- (9,7 + Y}))

= 3 e(w)D} (w +(0rz) ¥ w - Yi)
wew

= e(w) (D:)z(w'(&z)) *“"Y;)

weW

= Y e(w) (DL (0uz) v - Y})

wew
(by Remark 3.1.8)

= 3 elw) ((~)*22!82 @™ D) - (Buuz)) +w - Y
weW

= (=1)"PlpPal 37 e(w) (™ D?) - (Buz)) xw - Y,

weWw

=202l 37 e(w) (W™ - D?) - (w- Y])) xw- b,z

weW

= 215z > e(w) (w - (D*- Y;)) *w- ;7.

weW

Using the fact that W), is a cross-section for W,,, we rewrite (6.1.8) as:

(6.1.9.)

2185 Z e(r)7 - { Z e(w)w' - ((D2 .Y;) * 6tz)}

TEWL w' €Wm

= pleal 3 e(T>T~{ > ew) (w’-(D"’-Y£“>*W"5tZ)}

TEW) w' €W

=202l 37 ey 3 e) (@)D [’ Y xw' - biz)
TEWL w €W -

since D is W, skew

= plal 3 dﬂr-{ > ) (DQ-[w’-YE]*W"JtZ)}-

TEW], 'EWm

Now write Y = Y/ * Y and observe that if w' € W,,, then w' - Y} =
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(w'-Y})* Y} So (6.1.9) becomes:
(6.1.10)

214851 E 6(7’)7’-{ Z a(w')( - Y+])*w bzxD-Y, }

TEW], w EWm

Replace the sum in (6.1.7) by (6.1.10). It is clear that (Gq, f) =

(6.1.11) tl_i)r‘%< Z e(r)r

TEW),

{ > [w-(D-Y)lxw'-5z%D- Yg} ,A+(¢)>-

wE€Wm
: + _
Since D- Y}, = do,

> (D YR xw b= Y w b

w' €W wEWp

It follows that (6.1.11) equals (ZT€W1 e(r)7-[D-Y[], A*(¢)). This estab-
lishes the first half of Theorem 6.1.2.

We will now compute (A1)!(Mg) = (A%)!(Mgq) and show that it is a
constant multiple of T,. Set p = —r+|A(w, t)| —|A}|. Choose f € C(t*).
By definition, -

(6.1.12) (A*)"(Mg)(f)
= c;{}T hm t~ {Z ’mg(ﬂ) Z 7)6—"‘(u+0)} (fe)-

pek TEW

It follows from Props. 5.3.14 that if X = G x sw, then My is a scalar multiple
of Mg. So by Prop. 5.3.18 and Remark 5.3.19, we can replace mg(p) in
(6.1.12) by some multiple, say « (which depends on Q) of mx (p) = dime VM.
There is an explicit expression for dimg VuM which is due to Heckman and
Kostant:

(6.1.13) dime VM = Y e(o)plo(n +p) — p)
geW

where p is the Kostant partition function defined relative to A(w,ts). (See
Lemma 3.1 in [He].)
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Let At denote the lattice of dominant weights in ¢, and let Q denote the
root lattice. Then

(6.1.14)
{Z mx (1) Z 5("')5—ir(u+p)} (f¢)
#GI’E TEW
=3 > > e@e)plolp+p) - p)f(—it(s +p))
TEW c€W peAtnQ
=YY Y elr)elo) > fe (=T (p+p))
TEW 0€W per+nQ ko €27 ,0€A(w)

=01 (p+z kaa)—p

=YX Tene) X f-ine (o4 Tkea))

TEW oW ka€Z%,acA(w)
o ! (p+z kaa)—pentnQ

=Y e X s (p+ k).

TEW oW ke €Z1,a€A(w)
o7 o+ kaa)—pEATNQ

Set w = 7o~! and note that e(w) = e(7)e(c™!). Then (6.1.14) becomes:

>Xcw X fi(iw(e+ Ehka)).

weW ceW ko €Z1,acA(w)
o1t (p+z kaa)—pEATNQ

Let us now take advantage of the fact that Wﬂll_ is a cross section for Wy, to
write the previous sum as:

(6.1.15)
Z e(7) Z Z Z e(w') f; (—z'Tw' (p + Zkaa))
TEWL oEW ka€ZF,0€A(w) wEWm

o1 (p+z ke a)—p€A+ﬁQ

= Z (1) Z Z Z e(w) (vt -f)t(—z'w' <p+

TEWL cEW ka€Zt,aeA(w) W EWm

cr'l(p+z kaa)—pentnQ
)

= > &r) > > et f) (—iw’ (p + Zkaa)) .

TEWL ka€Zt ,0€A(w) WEWm
p+2 koo is regular

This is clear because if for some o in W, 671 (p+ Y k,a) —p € ATNQ, then
p+ Y ks is regular. On the other hand if p + Yk, is regular then for a
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unique o in W, 67 (p+ Y ko) — p € A*. Furthermore, since 07 p —p is a
sum of roots, 0~(p + Y k,a) — p must also lie in Q.
It now follows that the limit in (6.1.12)

- i —-p ,
(6116) =Jime> 3 e(r) 3 3 elw)
TEWn ko€Zt,0€A(w) WEWm
P+Z koo is regular

(™ e (—iw’ (p +3 kaa))
Sim T AR S e S o)

TGW;’}_ ka€ZT,acA(w) wEWp
p+E ko« is regular

(r71 f): (—-iw’ (p + Zkaa))
Z e(w)w - H D, 'Yl (fe)

TEW,‘,._ QGAE

(up to a constant multiple).

This last assertion follows from Lemma 3.1.9 and Lemma 5.1.4. The proof
of Theorem 6.1.2 is now complete. O

7. Even nilpotent orbits in real semisimple Lie algebras.

We again assume that g is real. In this section, {z,e, f} is an even p?,
Cayley triple. The correspondmg g* Cayley tripleis {H, E, F'}. (See Section
23.) O=Kc-eand Q =G - E, so that O = ¢(Q2). Assume the notation
from section 5.3. In addition, set A = —iz = E — F, and ¥ = G - A. Recall
that we have chosen a positive root system A+ = A for A(kq, 1) such
that ¥ = i)\" is dominant A+. We will show:

Theorem 7.1.1 (with assumptions as above). There is a non-zero constant
cq such that J,(Bq) = coMp.

Theorem 7.1.1 will follow from:

Theorem 7.1.2. (A")!(Mg) and (A*)(J.(Ba)) are each multiples of the
sum;:

(7.1.3) T, Y., eww:(Drk-Y"),

wEW/Wrnk
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where Dyak = [laeat,, Do (Afnk s @ positive system for AN ke, tc)),
and Y+ =H_;,, +---«H_y,, with {1, p2,... ,pn} = QY N A NpL, to).

Remark 7.1.4. Since z is even, e is also a Richardson element of u. Thus
dim¢ G¢ - e = 2dime u. It follows that dimg O = §(dime G¢ - €) = dimg u.
Now it is easy to see that T,, (A")*(Mg), and (A*)!(J.(Ba)) all have the
same degree of homogeneity, namely —r — |Afnk] + AN Phite)l =-—r—
|A k| + dime(u* Np?).

Proof of 7.1.2. The fact that (A*)!(Mp) is a constant multiple of (7.1.3) fol-
lows from Prop. (5.3.3) and the multiplicity formula in Corollary (5.3.11) as
in our calculation of (A*)*(Mg) (in the second half of the proof of Theorem
6.1.2.) when O is the Richardson orbit of a complex semi-simple Lie algebra.
(This is based on the similarity between the sums appearing in (5.3.12) and
(6.1.13).)

The fact that (A1)%(J,(Ba)) is a constant multiple of the sum T, (defined
in (7.1.3)) follows from two basic results. The first is that Sg = lim; o+ Bew.
This is an unpublished result of Rao (see [Ba]) which is a consequence of
the fact that the even nilpotent orbit €2 is a deformation of the elliptic orbit
U. The second fact is a formula of Duflo and Vergne [DV] for the Fourier
transform of J,(By). These two results allow us to compute the Fourier
transform of J,(8g), and hence J.(Bq)-

Here are the details of the computation of (4¥)*(J.(6a)). Suppose that
¢ € C*(k*) and f € C*(k) is such that ¢ = f. We have:

-~

(T14)  (J(Ba),#) = Jim (T.(Boun), 9 = lim (. (Buw), ).

In the notation of [DV], Fiy /|, is the Fourier transform of J, (8;¢). Therefore,

~

t—0t

By definition,
(Fale, ) = (A7) (Feele), (A1)(f))-

Théoréme 41 of [DV] gives an integral formula for (A*)*(Fiy|x). It follows

~

from this formula that lim;_,o+(J, (Bsw), f) =

(18) [ [ (prpeex (ismj) (H) ( 11 a(H))

Jj=1 a€At

(AN (f)(H) ds; ...ds, dH.
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In (7.1.5), FK/LOK (Z}’:l sj,uj) () is the function on t,,, defined as follows.
(See the formula for FX/H#(y X) following Corollarie 28 in [DV].) We set
Ag/inr = {a € Ala(iX°) # 0}, A}/LHK = {a € Ag/rnkl|a(iX’) > 0} and
v =37 s;u;. Then,

1 eu(wH)
(7.1.6) FE/ILNK())(H) = :
Wenk| wgv HQEA;/L(\K a(wH)

(Note that although Théoréme 41 is proven under the assumption that rank
g = rankk, it easily extends to general g.)
To complete the proof of (7.1.2) we need to rewrite the product

Wwwmm(ﬂawﬁ

a€A+t

in the integrand of (7.1.5). First note that by (7.1.6) and the W skew
invariance of ([J,ca+ a(H)), we have

(7.1.7)
WWWmm(Han
acAt
1 eV (wH)
N (Wrakl wgv { HaeA}/LnK a(wH) <w) ag+ a(WH)}
= —1—— w)e’(wH) a(wH).
'WLOKI “’;}V e( ) aegnl( ( )

Let W}, be the set of all w € W such that whenever p € 7, is dominant
relative to A1, wp is dominant relative to Al . Wi,k is the standard
cross-section to Wiyng in W. Then each element w € W has a unique
decomposition w = o7 where 7 € W,fn x and 0 € Wing and length w =
length o+ length 7. Identify W/Wynk with W} k.

Now rewrite (7.1.7)as:

(7.1.8) ! Z () Z e(o)er e H a(oTH).

7%
| LnK| TEwIEnK ceWrLnk aEAtnK

Since [[oenr  aloTH) = €(0) [laeny, a(tH), (7.1.8) becomes:

Z e(7) Z e’ (T H ao(TH).

TEW] 1k c€EWLnK aeAtnK

1
Winkl

(7.1.9)
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If we substitute (7.1.9) for FX/X"(y)(H) ([Toca+ @(H)) inside the inte-
grand of (7.1.5), we obtain:

(7.1.10) ) —1)rere
TEW,{nK G(T /—.UGWLnK ‘/ °
I a(rH)(AY)(f)(H)ds, ...ds, dH.
aGAtnK

Since e*(°7H) = gle T (TH) = Sy sip; and Wik permutes {u;, pa, .. -,
tn}, the integral:

R+(—1)"e"(”H) - H o(TH)(AT)(f)(H) ds; . . . ds,,

aeAan

has the same value for all 0 € Wik, namely:

(7.1.11) /R (e ] al(rH)(AY)(f)(H) ds, .. ds,

" QEAI,,K

In light of (7.1.11), (7.1.10) can be written as:

(7.1.12)  [Winkl e(r) / / _1)rerrH)

‘rEW}JnK
I «(H)AY)(f)(H) ds;...ds, dH.

aEALnK

If we reverse the order of integration in each summand in (7.1.12), and
then make the change of variable H' = 7H, we obtain:

(7.1.13)  |Wink| e(T)/ /( 1)re”H)

TEWink

I «HEHYAN))(H) ds;...ds, dH'.

aEALnK

Let g(H) = HOEAInx a(H)(AY)(f)(H). Since (A*)(f) is W skew invariant,
(7.1.13) is the same as

(7.1.14)  (=1)"|Winx|WL x| / ( (- isjﬂj)) ds, ... ds,
j=1

which equals (up to a constant)

(7.1.15) WDk - (Hoiy, * - Hog,, ), [(AF) ()
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e —

Since T, is W skew invariant and (T, [(A*)(f)]) is equal to (7.1.15), we
conclude that (A*)*(J.(Bq)) is a constant multiple of T,. The proof of
Theorem 7.1.2 is now complete. O

Remark 7.1.14. Proposition 7.1.1 can be shown to hold for each K¢
nilpotent orbit O in N[p}] in the case g = su(p, q) because the analogue of
Proposition 7.1.2 can be established. Since the argument is essentially the
same as that for Theorem 6.1.2, we will only sketch it.

Suppose for the moment that g is arbitrary, O is an arbitrary K¢ nilpotent
orbit in N [22,] and that there is a @ stable parabolic subalgebra ¢ = [ ® u
(Levi decomposition) such that O = K¢ - (u* N ;1_)2,) (where u* C o) and
u* corresponds to u as in Section 5.3). Then as in Prop. 5.3.14, if Y =
Ke X gnke (u*N EZ')’ we have a proper morphism Y — O. By the analogue of
(5.3.14), Ny and bN4 have the same leading terms, where b = [K§, : QNKE].
This allows us to conclude that Mg is a constant multiple of My. For the
purposes of calculating My, my (u) can be “approximated” by an expression
like (5.3.12) (just as for X in (5.3.3), mx is approximated by (5.3.12)).
Noting the similarity between (5.3.12) and (6.1.13), we conclude as in section
6 that (A1)!(Mpg) is a multiple of T,. (T, is defined as in (7.1.3).)

Now assume that g = su(p, g). For each nilpotent K¢ orbit O in N [p7],
there is a @ stable parabolic ¢ such that O = K¢ - (u* N p;,)- Barbasch
and Vogan give a formula for g (Theorem 4.2 of [BV4]) where 2 is the
inverse Cayley transform of 0. This formula is similar to (6.1.6). That
is, if D = D, = HaeAJr(Mc)Da, then Bg = the limit of D applied to a
regular elliptic orbital integral, as the elliptic parameter approaches zero
while remaining in a fixed Weyl chamber. We then compute J, (8q) by using
the results of [DHV] for the pushforward of the regular elliptic orbit.

These computation lead to an expression for (A*)*(J.(Bq)) as a sum over
W of terms of the form e(w)w-(D-Y{). Here Y is a convolution of Heaviside
functions H_;, with v in Q*. Since @+ = A*(I" Np7,,tc) UAT (u* NpL,to),
and A} = AY(I"Nkg, to) UAT (I Np?,, to), we can write D = Dyqk - D’ and
Y{ = Y*+Y' where D' is the product of the directional derivatives D, with
vin A*(I'NpZ,, o), and Y’ is the convolution of the Heaviside distributions
H_;, with v in A*(l* HBZ,,LC). Therefore, D - YE =Dix-YH+«D'-Y' =
Dy - YT x6y = Dpak - Y'. A few more elementary manipulations allow
us to conclude that (A*)*(J,(Bg)) is a multiple of T,.

8. A conjecture of Vogan.

Theorems 6.1.1 and 7.1.1 and many other examples suggest the validity of
the following conjecture:



200 D.R. KING

Conjecture 8.1.1 (Vogan). IfO is a K¢ nilpotent orbit in N(p} ], which
is the Cayley transform of the nilpotent G orbit Q in N'[g*] then there is a
non-zero constant cq such that J,(Ba) = cq - Mp.

In addition to the examples presented here which support the conjecture,
it clear that Mg and J,(Bp) must have the same general form, because
(AT){(Mg) and (A*)%(J.(Ba)) have the same general form. That is each of
these expressions must be a finite sum of terms like:

(8.1.2) > auw- (DY),
weW

where D is some homogeneous constant coefficient differential operator on ¢*,
and Y is some convolution of Heaviside functions of real valued weights on it,
and the a,, are constants. Because of Props. 5.3.3, 5.3.4, and Corollary 5.3.10
it is clear that ultimately (A*)*(Mg) can be computed in terms of partition
functions which must lead, as the computations in Theorem 6.1.2 reveal, to
a sum of expressions like (8.1.2). On the other hand, by unpublished results
of Harish Chandra, Bo must be computable as a limit of some constant
coefficient differential operator applied to Fy, Harish Chandra’s invariant
integral. By applying the results of Sengupta, as in Theorem 6.1.2, we see
that (A*)!(J.(Bq)) must be expressible as a sum of terms like (8.1.2).

So we see that there is a good reason to believe in the validity of Conjecture
8.1.1, although clearly the observations above and the methods of this paper
do not suffice to establish it in general.
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