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EQUISINGULARITY THEORY FOR PLANE CURVES WITH
EMBEDDED POINTS

A. NOBILE

It is studied the foundations of a theory of equisingularity
for plane algebroid or complex analytic curves, reduced ev-
erywhere except at one point. A definition of equivalence, or
equisingularity, for two such curves, involving resolution by
means of quadratic transformations is given as well as several
definitions of the concept of equisingular one-parameter fam-
ily of such singularities are proposed. The theory is related to
both the theory of equisingularity for plane, reduced curves
and that for ideals with finite support. The different notions
of equisingularity for families are compared and a number of
examples are presented.

Introduction.

The theory of equisingularity for plane, reduced algebroid curves is classical
(cf., e.g., the treatise by Enriques and Chisini [EC]), it was renewed and
expanded by Zariski (cf.[Z] and the bibliography cited there) and continued
by other authors (cf., e.g., [C]). Basically, one attempts to determine when
two singularities are equally complicated, and given a family of singularities
to find criteria insuring that all its members are "equally singular". In this
planar case, it's remarkable that many seemingly different definitions turn
out to be equivalent (cf. e.g., [Tl, 5.3.1]). For skew curves the situation is
considerably more complicated. Anyway, it is reasonable to consider, more
generally, curves which are not necesarily reduced (see, e.g., [A, p.33]). This
seems particularly interesting in the case of skew-curves. In this situation, a
reduced (even smooth) curve can degenerate into one with embedded points.
In the paper [BG] it is systematically considered families of such curves, and
the behavior of various numerical invariants of the curves in the family.

In the present article, we intend to study in some detail the case of plane
algebroid (or locally analytic) curves, reduced everywhere but at one point
(or a finite number of points, in the analytic case). We introduce a notion
of "equivalence," completely analogous to that for reduced curves, which re-
quires that the desingularization process of the curves, via quadratic trans-
formations, be the same. In this non-reduced case, that process essentially
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amounts to desingularize the corresponding reduced curve and an ideal, hav-
ing support corresponding to the embedded points. This is studied in Section
2. Before, in Section 1, we recall the necessary basic facts about reduced
curves and QJl-primary ideals in a regular, two-dimensional local ring (A,
SDt).

As usual, it is important to have a good notion of "equisingular family of
plane curves with embedded points". There are two obvious such definitions
(say, for a one-parameter family, parametrized by an open set T in C). One
is to require that the different members Xt be equivalent to each other in
the sense introduced in §2. Other is based on "resolving in a nice way"
the ideal of the total space of the family. A little more precisely, if the
one-parameter family is given by π : X —> T, where X is a surface in an
open Z c C 3 , defined by a sheaf of ideals X C 0χ, try to "improve" X by
taking a monoidal transform of Z with center a curve W, such that at each
w G W the stalk Xw is not principal; take the proper transform Xλ of J ,
and repeat the process if necessary (i.e. if X does not define a divisor of the
blown-up variety Zγ). This was studied first by F. Pham (in [P]), see (3.5)
and (3.6) for the precise definitions. We call these families T-equisingular
and I-equisingular respectively. It turns out that these two approaches are
equivalent, the proof (in §5) is based on that of Risler in [R], where he
considers families of ideals with finite support. However, these definitions,
in a sense, are not completely satisfactory from a geometric standpoint. In
fact, with Pham's procedure, one gets a sequence of "ambient spaces" Z =
Zo, Zi, . . . , Z r, each one a blowing-up of the previous one along a smooth
curve and on each space an ideal Xi C Ozi5 the "proper transform" of Xi-\.
Of course X{ defines a subspace X{ <Z Z^ and there is a natural projection
Xi —> T. for each i, these would be the successive "proper transforms"
of the "original family" X -+ T. But, even if the original family is I -(or
T-) equisingular, the morphisms Xi -» Γ are not necessarily flat. If, as
usual, we demand the "flatness condition" to talk about families, this means
that we cannot really simultaneously "desingularize" the flat family X —> T
in a reasonable way obtaining flat families throughout the process. So, a
stronger equisingularity condition would require, moreover, the flatness of
the morphisms Xi -> T mentioned above. We call this C-equisingularity.
In general this is strictly stronger than I-equisingularity, but there is an
important case where these notions are equivalent. Namely, when all the
ideals X OXt (i.e. the ideals induced by X on the different fibers) are complete,
or integrally closed. This is proved in §5. This condition turns out to be
equivalent (under the assumption of I-equisingularity) to requiring that the
sheaf of ideals X C Oz be integrally closed. To our understanding, the
latter fact is not completely trivial. One has to prove first the corresponding



CURVES WITH EMBEDDED POINTS 545

statement for families of ideals with finite support, which seems to be rather
technical. This is done in §4. Other properties of equisingular families are
discussed in §5. Perhaps other criteria developed by Zariski in the reduced
case will remain valid, with suitable modifications, in the present situation.
We hope to address these questions in the future, as well as to study the case
of skew-curves; although here the theory is probably much more complicated.

In the present paper we work over an algebraically closed field of zero
characteristic and, in the last three sections, over C, with the language of
local Analytic Geometry, in order to simplify the presentation. In section 0
we fix the terminology and conventions.

I want to thank B. Johnston and J. Verma who introduced me to the
theory of complete ideals in two dimensional rings (also initiated by Zariski)
by means of a series of very nice seminar talks, J. Castellanos for several
fruitful discussions on the theory of equisingularity, and E. Casas Alvero,
who discovered an error (concerning the weighted tree of a curve, cf. (1.1))
in a previous version of this paper.

0. Notation and Conventions.

Throughout this paper, the following notation is used:
1. N,Z,R,C denote the natural, integral, real and complex numbers re-

spectively; we consider 0 to be an element of N.

2. All rings are commutative with an identity, which is respected by ho-
momorphisms. If A is a ring, and / and M are ideals of A, then vM(I)
is the M-order of the ideal J, i.e, max{r : / C Mr} (this could be oo).
If / G A,vM{f) i s *^ e b o r d e r of the principal ideal (/), The symbol
r{I) denotes the radical of the ideal /.

3. If A is a ring and I an ideal of A, the integral closure (or completion)
of / is the set J = {b E A : bn + £ILi αA = 0, α< € P for all i and
n a suitable natural number }, which is an ideal of A. The ideal / is
integrally close or complete if / = / .

4. If X is a scheme or an analytic space, Oχ denotes the structural sheaf.
If X C Oχ is a sheaf of ideals, we also say that X is an Oχ-Ideal (with
capitals) or just an Ideal, if X is clear. The support of an Ideal X is
{xeX .ItϊOx,,}.

5. We follow the standard terminology of Algebraic and Analytic Geom-
etry as presented, e.g., in [H] and [HI] (appendix by B. Moonen).

1. Review of Known Results on Reduced Curves,

l . l Let us recall some basic facts on the theory of equisingularity for plane,
reduced curves (cf. [Z]). Let C be an algebroid plane reduced curve, defined
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by / = 0 (i.e. C = Speck[[x,y]]/(/),/ £ k[[x,y]] being a series without
multiple factors). A weighted tree will be one in which to each vertex it
is associated a vector w in F^ ( where n may vary from vertex to vertex).
Let C be as above, and consider an ordering 7 of its braches, or irreducible
components, 7 = (71,-•• ,7*). We associate to the pair (C,7) a weighted
tree TΊ(C,7) as follows. We take the quadratic transformation X1 —> A2 =
Specfc[[rr,y]], i.e, the blowing up of A2 with center the closed point; we
consider the proper transform C of C (defined by J := ε~n(f)Oχ1, where S
is the sheaf of ideals defining the exceptional divisor E and n the multiplicity
of C), let {Pu... , Pr} = E D C", and d = Spec (θχuPi/Jp^ ,» = 1,... , r.
Then, the algebroid curve CΊ II ... II Cr (having r connected component)
is, by definition the (algebroid) proper transform of C. Next we repeat the
process using the fact that Oχltp. « fc[[a:,y]] and C{ is defined by a single,
reduced equation. The tree TΊ(C) is obtained by considering a vertex for
each connected algebroid curve that appears in this process, with the obvious
incidence relations, and to each vertex (say, that corresponding to a curve
with t irreducible components <&i, ,5*, arranged in the order induced by
7) we associate the vector (mi, ,mί), where rrii is the multiplicity of δ{.
(Actually, this is naturally a directed tree with a root, or "lowest vertex".)
Then, given two plane reduced algebroid curves C, Z?, one says that they are
equivalent, or (Zariski) equisingular, if (for suitable orderings 7, δ of their
branches), their corresponding trees TΊ(C,7) and Tχ(D^j) are isomorphic
(as weighted trees). It is well known ([Z]) that this definition is equivalent
to many other "reasonable" possible definitions. However, in case C has more
than one branch, it would be erroneous to describe Zaraiski-equisingularity
by means of the tree introduced above, but where the weight associated to
a vertex is the multiplicity of the corresponding curve. For instance, the
curves C : (y3 - x4)(y4 - x3) = 0 and D : {y2 - x3)(ys - x4) = 0 have
isomorphic weighted graphs (using the definition just given), but they are
not Zariski-equivalent. The tree Ti(C,7) will have, eventually, vertices with
weight one only, i.e., eventually , we eliminate the singularities of C by means
of quadratic transformations. We let σ(C) = min{m G N : a sequence of m
suitable quadratic transformations desingularizes C}.
1.2. Let us recall some well-known facts about 971-primary ideals in k [[#, y]],
SDΐ = (#, y) (cf. [ZS, appendix 5]; [L2]). One defines the transforms of
such an ideal / as follows: let Xλ -> A2,8,E be as in (1.1), then the
support of Xι — ε~mIOXl (m = 3Pΐ— order of /) has finitely many points
Qij ,QS (necessarily in E). Then 1{ = lιOXl)Qni = 1,... ,s, are the
(first order) strict, or proper transforms of / (of course, here we assume
5 ^ 1, if {Qι,... , Qs} = 0 , the proper transforms are undefined); whereas
I&XuQiii — 1? 5 ^ are the (first order) total transforms of /. Repeating
the process one gets the higher order transforms. It is well known that any
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first order proper transform J; of / satisfies: e(/j) < e(I) (multiplicities in
the appropriate ambient ring, see, e.g., [R, p. 5, Cor.l]); also v(Ii) < v(I),
where v is the order with respect to the maximal ideal. We may associate
to / a weighted directed tree τ(I) (where the weights are non-negative inte-
gers), each vertex corresponding to each proper transform of /, with obvious
incidence relations, and where to each vertex we associate the order of the
corresponding ideal. Then, r(I) is a finite tree (because of the formula
e(Ii) < e(I) quoted above). Let σx(I) be the number of quadratic trans-
forms necessary in order to obtain the whole tree τ(/), if / is the unit ideal
we set σi (/) = 0.

One defines, following Risler ([R, Section 2]): two 9Jt-primary ideals /, J
are equivalent, or equisingular, if r(I) « τ(J), as weighted trees. It is well
known that τ(I) = τ(ϊ), where ϊ is the integral closure of / in R = k[[x, y]].
One might hope that if /, J are 9Jί-primary ideals and τ(I) = τ(J), then ϊ
and J are isomorphic, in the sense that k[[x,y]]/I« k[[x,y]] J (isomorphism
of fc-algebras). However this is not true, as the example of / = (y2,xy,x4)
and J = (y2

Jx
2y,x3) (both complete ideals) show. They are not isomorphic

(they have distinct Hilbert-Samuel functions) but r(7) = τ(J), see [Br], p.
78; in the same section there are other examples.

2. Equivalent Plane Curves.

2.1. By a plane algebroid curve we mean a closed subscheme C of A2 =
Spec A; [[re, y]] of dimension one. Thus, letting R = k [[#, y]], 9Jt = (#, y), C =
Spec(i?//) and / is either a principal ideal or an ideal having a (minimal)
primary decomposition / = V\ Π ... Π Vr Π M, where each Vi has height 1,
r ^ 1, and r(M) = 9JI. If C — {9Jt} is reduced we'll say that C is generically
reduced, in this case V\ Π ... Π Vτ is a radical ideal (necessarily principal,
generated by series / G R without multiple factors). Note that using the
fact that R is a unique factorization domain, we may write for the ideal / of
a plane curve:

(2.1.1)

where / G R and either r(λί) = 971 or λί = R (in the latter case there
are no embedded points). It is easy to check that Λί = (/ : Jo), where
Io = V\ Π ... Π Vr (using the previously introduced notation). It is also
possible to obtain the factorization (2.1.1) from the Hilbert-Burch Theorem
on ideals of homological dimension equal to one, cf. [Bu] or [BG, Statz 6.1];
this approach shows that λί is a determinantal ideal ([BG, Section 6]).
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2.2. In the sequel we shall consider algebroid plane curves C which are
generically reduced. Let C be defined by an ideal I = (f) Λί (as in (2.1.1)).
Then Crβd (the reduced curve associated to C) will be defined by the principal
ideal (/). We may introduce infinitely near points as follows. Consider πλ :
Xι —> SpecΛ, the blowing-up of center {QJί}, let E be the exceptional divisor,
defined by the ideal £ C Όχx. To define the proper transform of C, let n
(resp. m) be order of / (resp. oίΛί). Consider

(2.2.2) h = (£-n-m)(f)'McOXl.

Then, jEnsupp(/x) is a finite set {Pi,... , P r}. Then, by definition, Pi , . . . , P r

are the points (infinitely close to the origin of C) in the first neighborhood of
C; the first order proper transform of C is the disjoint union of C[ι , . . . , C^,
where C\ is the subscheme of Spec (θχltpΛ « *A2 defined by I\Oχlipi.
This ideal is called the proper transform of the ideal (2.2.1) at Pim Now
assuming that C has indeed an embedded point at the origin, there are
three possibilities for each "connected component" d (we'll check this in
a moment): (a) d is again a curve with an embedded point at the origin,
(b) d is a reduced curve, (c) d ιs a subscheme of Spec (θχ1^pi) « A2 whose
support is the "origin", i.e. the closed point of A2. In each case, we may
continue the process: in case (a), d ιs i n the same conditions as C, and
we repeat what we did, in (b) and (c), we are in the situations described in
§1 , we take proper transform as in that section.

Let us check the claims just made. We may choose coordinates (x, y) such
that / = (/) Λ/", where, if F = in(f) and G is the greatest common divisor
of {in(g) : g G λί and V(x,y)(g) = V(Xty)(N)} ( in(h) denotes the initial form
of h e R in grm(R) « k[U,V]) then U = in(x) does not divide FG. Write

F = ΠlLi {otiU - V)n\ G = Πi=i (βjU - V)m> . Now, E (the exceptional

divisor) is isomorphic to P 1 ; if P G E has homogeneous coordinates (1 : Z),

and lx is as in (2.2.2), then: OXlP « k[[x,x(y — I)]] and

(2.2.3) J W : = hOXlF> = (f')λf'

where / ' = x~nf(x,x(y — l)),n = v(f)\ and Λί' is generated by {g1 : g' =

x~mg(xix(y — I)) and g G Λί}. It immediately follows that 1^ is the unit

ideal if I $ {α i , . . . ,au,βι... ,βυ, } if / = α» = βj ( for suitable i,j) then, at

P, we have situation (a); if I — α* but α^ ^ {/?i?... ,/?„}, we are in situation

(b); if I = βj £ {αi, . . . , α u } , we are in situation (c).

Thus, given our algebroid plane curve C, generically reduced, by taking

proper transform we get C[x\ . . . , Cff in the first neighborhood, repeating

we get C[2\.. , C^ in the second, etc. Each C^ is a generically reduced

curve (possibly reduced) or a (possibly non-reduced) point.
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2.3. We'll see that any algebroid plane curve C, generically reduced, can be
desingularized by means of quadratic transformations. More precisely, this
means the following. Consider the components of the proper transform of C
(in the first neighborhood), Cχ\ ... , C$. For each C\1^ consider if possible
the proper transform , with components C^ ... C^. It might be impossible
to do this, precisely in case when we are in case (c), (2.2), and the proper
transform gives the unit ideal. Repeat the process with each C\ί] ia thus
obtained, and so on. The claim is that, eventually, each component C\3.]„ ia

will be either a smooth algebroid curve or a zero-dimensional scheme, whose
transform leads to the unit ideal.

This is an immediate consequence of the desingularization theorems for
curves and for ideals mentioned in Section 1. In fact, if C, defined by / =
(f)λί (as in (2.1.1)) is a generically reduced curve, define σo(C) := cr(/) +
σi(Λf). Then σo(C) = 0 means that u(f) = 1 (/ = 0 is smooth) and v(N) =
0. A simple calculation shows that in the first neighborhood there is just
one component, which is a smooth curve. If σo(C) > 0, then concerning a
component C\ in the first neighborhood, either we are in case (a), i.e., this
is a curve with an embedded point, clearly satisfying σo(Ct ) < σo(C), and
we can use the induction hypothesis, or we are in cases (b) or (c), i.e., we
are in the situation of Section 1. But then we already know that we may
desingularize by means of quadratic transformations.

2.4. We may associate to a generially reduced curve C, together with an
ordering 7 of the branches of Crecb a bi-weighted directed tree T2(C,7) as
follows. Take the different proper transforms of C (in the first neighbor-
hood, second, etc), {C\ϊ\ ir). Consider a vertex for each such connected
component, join the vertex P and Q if the component corresponding to Q
is obtained from that corresponding to P by a single proper transformation.
Attach to each vertex P an ordered (ij) (i a vector, j and integer) as fol-
lows. If P corresponds to C^ i r , and (in the appropriate local ring, which
is isomorphic to fc[[tx,υ]]) this curve is defined by the ideal {f')N', with λί1

primary to the maximal ideal, let i= (mi, ,mt) where ms is the multi-
plicity of the 5-th branch of the curve defined by /', in the order induced by
7, and j = v(N'). According to the results of (2.3), this tree will contain at
least an infinite branch, each such having, eventually bi-weights (1,0) only;
and possibly some finite branches, its "final" point having weight (0,r), for
some r ^ 1. We also say that this is the tree associated to the ideal / of
(2.2.1).

Examples. We exhibit the trees corresponding to the following ideals.
The calculations are left to the reader.

(a) I - (y)(x,y), (b) I = (y2 - χ*){y\x% (c) I = (y2 - x*)(y\x),
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2.5. Definition. Two (algebroid, plane, generically reduced) curves C, D
are said to be equivalent or equisingular, (notation: C = D) if there is an
isormorphism of bi-weighted trees T2{C,7) « T2(D, £), for suitable orderings
7, δ of the branches of C, D respectively.

2.6. Remarks, (a) It follows from the given definition that if C = D, then
C is reduced if and only if D is reduced. For reduced curves, definition (2.5)
agrees with Zariski-equisingularity (see (1.1))

(b) Clearly, if generically reduced curves C and D are isomorphic (as
schemes), then they are equisingular. The converse is not true. E.g., as
remarked in (1.2), if C is defined by the ideal / = (/)Λf (cf.(2.2.1)) and
C by / = (/)ΛΓ (i\T= integral closure of Λf), then T2(C) = T2(C), hence
C = (7; but if λί is not integrally closed C is not isomorphic to C. In fact, it
is easily proved that if C (defined by {f)λί) is isomorphic to D (defined by
(#)M), then R/λί ~ R/M (as fc-algebras). Even if jV", M are integrally closed
9Jΐ-primary ideals of JR, C and D are defined by (f)λί and {g)M respectively
and C = D, then it does not necessarily follow that C and D are isomorphic.
Again we may use the examples (1.2): let C (defined by (y — x)(y2,xy, x4))
and D (defined by (y — x){y2,x2y, x3)), they are equivalent, C = ΰ , but not
isomorphic, although here λί, M are both integrally closed.
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2.7. In the article [BG], the authors introduce the invariants ε and δ for
a (not necessarily plane) generically reduced algebroid curve. Given C —
Spec(A), A — R/I, a generically reduced curve, then JV= nilradical of A is
an A-module of finite length ε (also ε = dimfc JV, as a vector space), this
is the ε-invariant. The J-invariant is δ = δu — ε, where δu = dim(Ao/Ao),
where Ao = A/N (the associated reduced ring) and the bar indicates integral
closure in the total ring of fractions. This seems to be the "correct" δ-
invariant in the non-reduced case. The ε-invariant is not an invariant of the
equisingularity class of C, i.e., C = D does not always imply ε(C) — ε(D).
In fact, we have:

2.8. Proposition. Let C = Spec A, A == R/I, I = (f)λί (as in (2.1.2)) te
a generically reduced plane curve. Then, N= nilradical of A is a principal
ideal, N — (a)A,a G -A, and if r=smallest i such that ai+1 = 0 and s =
dim^(A/ΛΓ) (as α k-υector space), then s ^ ε(C) ^ rs
Proo/. Clearly, we have Ao := ̂ 4/iV = i?/(/), hence an exact sequence:

0 -> (α) -> A -» A, -> 0

where a is the class of / in A. Thus, iV is principal. Since A — R/fΛf, one
easily checks that if # i , . . . , gs are elements of R inducing a basis of A/Λf,
then {/*5j : i = 1,... , r , j = 1,... ,s} induces a generating set for the
vector space (a) C A. Thus, ε(C) < rs. On the other hand, we may choose
gι = 1; then the elements /, fg2,... , / # s , induce linearly independent vectors
in A (were ]P*=1 Ufgi G (/) - λfji € k for all i, then X)f=1 Zipi G ΛΓ, hence
/i = 0 for each i, since gu... ,^5 are linearly independent mod jV); thus
s < ε(C). D

2.9. If / = (f)λί ( as in (2.1.1)), where / G ΛΓ, then the number r of (2.8)
is equal to 1, in this case we get( for the curve C defined by /): ε(C) = s =
sr = dimA/Λf. If / G Λf and ΛΓ is not integrally closed (e.g. Λ/* = (y2,x3),
here x2y is integral over J\ί but not in ΛΓ), then ε(C) > ε(C), C defined by
(f)Λf; however C = C, as was seen before. It is possible to find curves C
such that s < ε(C) < rs. For instance if C is defined by (y2 — α;2)(a;3,y3,xy),
then r = 2, s = 5, but ε(C) = 6.

2.10. What was presented in this section can be developed, with minor
changes, in the context of complex local analytic geometry. The translation
of the results above to the case of germs of curves (C, O) of complex curves is
straightforward. Sometimes it is convenient to consider more global objects.
Namely, a (locally) plane curve will be a one-dimensional complex subspace
C of a smooth surface S. The curve C might have several singularities, and



552 AUGUSTO NOBILE

even isolated points. By the bi-weighted tree of such a curve we mean the
following. Let {P^ : i G 1} be the points where Oc,Pi is not regular and one-
dimensional, fix orderings 7* of the branches of (Cred, Pi) for each i. Then, the
bi-weighted tree T2(C,7) is the disjoint union of the trees T2((C, Pi),7;),i G
1. If the curve is reduced, the "second weight" will be always zero, we may
drop it, and consider the resulting (single) weighted tree. It X is the sheaf
of ideals of Os defining C c S , w e also write T2(X,7) := T2{C,η).

3. Basic Properties of Families of Curves and Ideals.

3.1. In this section we shall use the language of local analytic geometry, to
simplify the presentation and to be in agreement with the main references
that we shall quote. The germ determined by an analytic space X at P G X
is denoted by (X, P ) , or simply X if "the center" P is clear from the context.

3.2. Definition. A one-parameter family of generically reduced locally plane
curves is a commutative diagram:

X

(3.2.1)

where Z is a smooth three-fold, X is a closed surface in Z, T is an open
neighborhood of O G C, π is smooth and surjective, p is flat, Xt := p~ι{t) is a
one dimensional subspace of X for all t ET, moreover each point P G Xt such
that OXup is not one- dimensional and reduced is isolated in Xt. Sometimes
we say that the family (3.2.1) is a deformation of the "special fiber"Xo C Z

o.
3.3. Definition. A one-dimensional family of plane ideals, parametrized by
an open set T C C 1 , is an ordered pair (X, π) where π is a smooth morphism
π : Z —> T (where Z is a smooth three-fold) and X is on C^-Ideal (cf. [R],
Section 2). The family is flat if the morphism p : Y —> T(induced by π,
where Y is the subspace of Z defined by X) is flat. A family of ideals induces
a sheaf of ideals l(t) := lθzt C Ozt<> for all t G T. A one parameter family
of curves (cf. (3.2)) induces a family of ideals by taking X C Oz to be the
O^-Ideal defining X C Z] this is a flat family of ideals.

3.4. Theorem. Consider a family of curves (3.2.1) and points P G Z and
O € T such that π(P) = O {note that Oz,p ~ C{x,y,t} and 0Zo,p «
C{x,y}); let Io - (f)(gu... ,gm) define the inclusion (X0,P) C (zJ,P),
where r(gιJ... ,gm) = {x,y). Then the inclusion {X^P) C {Z,P) is de-
fined by an ideal I C C{x,y,ί}, of the form I = (F)(G\,... , G m ) , where
F = f + Σri=i tifii GJ = 9j + Σί=i tι9ji (for suitable fu... ,gml in C{x, y, t})
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in such a way that (F)C{x,y,t} (resp. (Gu... ,Gm)C{x,y,i}) defines, by
taking suitable representatives of the corresponding germs, a family of re-
duced curves (resp. a flat family of ideals with finite support).

The proof is given in [BG, p. 112].
In [P], F. Pham proposed the following definition of equisingular family

if ideals. If (X,π) is a family of ideals as in (3.3), let |X| denote the support
of I ( = {z e Z : Iz φ Oz,z}) and [X] = {z G Z : lz is not smooth }
(the singular locus of I ) , both regarded as reduced subspaces of Z. Here, lz

smooth means that in a suitable system of coordinates near 2, say Uι,... , u n ,
we have Xz — vu[, for some r ^ 1, υ being a unit near z.

3.5. (Pham's Definition.) A family (X,π) of plane ideals (as in (3.3)) is

equisingular if the following conditions hold: (To) : π|[X] is smooth, (2\) :

blow up Z along [X] to get Z[ ^ Z, then πτji| [xOzj] is smooth, (T2) :

blow-up Z[, along [IOZl] to get Z'2 ^ Z[, then T Γ ^ ^ I VLOZ'Λ is smooth,

and so on until, eventually , (Tm): if ηr : Z'r —> Z'r_x is the blowing-up of

Z'r__λ with center fzC?z; 1 , then πηx... ηr\ [IOZr] is smooth and !OZr is a

normal crossings divisor.

3.6. In the case where π induces a finite morphism [1] -> T, this definition
may be rephrased in terms of proper transforms. Recall that if W C Z is
a smooth connected curve, defined by the Ideal J C Oz, if I is an Ideal of
Oz and for w G W we denote by u(w) the J^-order of the ideal Xw C Oz,™,
then there is an analytic open dense set U C W such that for w € E7, z'(w)
is constant; this number 1/ is called the generic order of X along W. Then,
if we take the blowing-up Zx -> Z of Z with center W, the OZl - Ideal
Xi := E~uTOZl, is called the proper transform of X (where E is the OZl~
Ideal defining the exceptional divisor).

Then, definition (3.5) translates as follows, as is easily checked: here we
impose conditions P o , . . . , Pr : (Po) : π|[X] is etale, (Pi): we blow up Z along
a connected component of [X], to get Zx A- Z, we demand that πp!|[X2] be
etale, where X\ is the proper transform of Xi, [P^ we blow-up Zλ along a
connected component of [Xx] to get Z2 ^ Zu we demand that πpi^lpζz] be
etale (where X2 is the proper transform of Xx), etc; finally in (Pr) it must
be true that the proper transform Xr of Xr_i satisfies: [Xr] is empty. In [R],
Section 2, the following result is proved:

3.7. Theorem (Risler). Let (X, π) be a one-parameter family of plane ideals
with finite supports, i.e., such that the induced morphism π : |X| —> T is
finite. Then, the family is equisingular (in the sense of (3.5)) if and only if
r(X(0)) « r (!(*)), forteT (r indicating "tree", cf. (1.2) and (2.10)).
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3.8. Remarks, (a) If a family of ideals (with finite supports) (X, π) is eq-
uisingular in the sense of (3.5) (or (3.6)), it does not follow that it is flat
(see (3.3)). In fact, in this case (i.e., when p is finite) flatness is equivalent
to: length (OZt/l(t)) := l(l(t)) (the colength of X(ί)) is constant. But,
e.g., the family given by X — (x2,txy,y2) C C{x,y,t} is equisingular, but
1(1(0)) = 4, l(l{t)) = 3 for t φ 0, hence it is not flat . (b) Even if an equisin-
gular family (X, π) is equisingular and flat, it does not follow that the proper
transform is flat. More precisely, if (X, π) is an equisingular family of ideals
with finite supports (as in (3.7)), such that Y A T is flat (where Y C Z is
the subspace defined by X, and p is induced by π), W is a connected com-
ponent of |X|,2Ί —> Z the blowing-up of Z with center W and Yx C Zx is
the subspace defined by the proper transform Xx of X, then the induced mor-
phism YΊ —> T is not necessarily flat. In fact, consider for instance the one
parameter family given by X = (x3,txyb + (1 — t)x2y/ί

Jxy6,y7) C C{x,y,t}:

here |X| is the t-axis. It is easy to check that the tree τ(l(t)) is always
isomorphic to

3 3 1 1 1

and l(l(t)) = 17, for all ί, hence it is equisingular and flat. However, Xx

corresponds to {x3,(tx + t{l - t)x2)y3,y4), and f(Xi(0)) = ll,/(Xi(ί)) = 10
for t φ 0] hence YΊ —> T is not flat. In view of this, it makes sense to
introduce:

3.9. Definition. A one-parameter equisingular family of ideals with finite
supports (X, π) (cf. (3.7)) is said to be properly flat if (using the notation of
(3.6)) the induced morphism Yτ —> Γ, where Y; C Zi is the subspace defined
by the i-th proper transform Xτ of X, is flat, for i — 1,... , r.

We have:

3.10. Theorem. Let (X, π) be an equisingular one-parameter family of ide-
als, as in (3.7); assume I(t)Ozt,p is integrally closed, for all t and all P in
|X| Then, (X, π) is properly flat.

Proof. It is an easy consequence of the following facts: (a) The fiber over
t of Yτ —> T is identified to the subscheme (Zι)t (cf. (3.6)) defined by the
z-th proper transform of X(£), this is checked in [R]. (b) The "Hoskins-
Deligne formula: if / C C{x, y} is an (rr, y) primary ideal, integrally closed,
70 — /, / ] , . . . , Is are all the non-trival proper transforms of / (which are
again complete ideals), and v% — order of /; (in the appropriate ambient
ring), then l(J) — Σl=0 {Vi^1) (cf. [L, §3]), (c) for a finite morphism, flatness
is equivalent to the constancy of the length of the fibers. D
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4. Families of Complete Ideals.

In this section we study in greater detail families of ideals which are complete
or integrally closed. We'll see that in this case the "pathologies" of Remark
3.8 are not possible. Our basic setup is as follows.

4.1. We consider a germ (X, π) of a 1-parameter family of plane ideals, i.e.,
π : (Z, 0) —> (T, 0) is a germ of morphism, where Z (resp.T) is an open
neighborhood of the origin 0 of C3 (resp. C 1), and X C Oz is a sheaf of
ideals, which corresponds, in the usual way, to an ideal / C C{#,y,£}; we
assume that the support of X is the intersection of Z with the t-axis. We
assume that (X, π) is equisingular (cf. (3.5) and (3.7)). Our main goal is to
prove :

4.2. Theorem. Let (I, π) be as in (4.1), assume I — X (i.e., X is integrally
closed, cf. [Tl, p. 327]/ Then, X(t) = X(t) for all t G T,t small enough
(where, as usual, X(t) = XOZt,Zt = π " 1 ^ ) , * G Γ).

We need several preliminary facts, some essentially well known (Lemmas

4.3 to 4.8).

4.3. Lemma. Let (X,π) be as in (4.1). Then, e(J(0)) = e(J(ί)), for allt in

T (where e(X(t)) = e(J( t ) ,O Z t > P l ) ,P t = (0,0, t)).
Proof. This is true because the weighted tree τ(X(t)) is constant, and e(X(t))
can be expressed in terms of the weights u{ : e = ]Γ\ v\ (cf. [R, p.6]). D

4.3.'Lemma. Let (J,π) and I be as in (4.1). Then, /'(/) = h(I) (where V

is the analytic spread, cf. [1, Section (1)]; h(I) is the height of I).
Proof. This is an immediate consequence of Proposition 5.1 of [Tl]. D

4.4. Lemma. Assume (X, π) and I are as in (4.1). Then, I has no embedded

primes.
Proof. This is Theorem 3 of [LI, (Section 1)]. D

4.5. Proposition. Let (X, π) be as in (4.2) (i.e, we assume X — X). Then,
this is a flat family.
Proof. By definition, we have to show that if Y C Z is the subspace defined
by T and p : Y -* T is the induced morphism, then p is flat. But by (4.4), Y
will be a Cohen-Macaulay curve, and the morphism p is finite and surjective,
hence flat ([F, p. 154]). D
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4.6. Lemma. Let I C C{x,y,t} be as in (4.1), M— (x,y)C{x,y,t}, assume
I = ϊ. Then, IM^TM (inC{x,y,t)).
Proof. First, let us note that we may find discrete valuation rings Vi,... ,VS

of F (the field of fractions of A = C{x, y, ί}) such that / = / = fj^i (/V^ΠA).
In fact, it suffices to take any morphism / : X -> Spec A, birational and
proper, such that IOχ is invertible and X is normal; if Dλ,... , D s are the
irreducible components of the divisior defined by IOχ take Vi = Oχ}pt, where
Pi is the generic point of Di. Here we take / to be the normalized blowing-up
of Spec A with center /M. With this choice, moreover MlVi — MIV{. Since
MOγ{ is principal, i = 1, . . . , $ , from the finiteness of s if we take α, /? in C,
"generally chosen", then z — ax Λ- βy will satisfy:

(4.6.1) MVi = (z)Vi, i = l , . . . ,s.

Now consider Ao = A/(z)A. If the coefficients α, /3 are suitable chosen ("gen-
eral enough") the fact that / has no embedded primes (i.e, that A/1 is
C{t}-flat) will imply that Io = IA0 again has no embedded primes (this
is elementary, but it will be proved in Lemma 4.7). Note that Ao is again
regular, two dimensional. Since MA0 is principal, MIA0 has no embedded
primes, hence it has height one and so it is principal; hence a complete ideal
in the normal ring Ao ([T, 1.2]).

Let J = MΪ. We claim that J C MI + (z). In fact, in Λo, (M/)Λ0 C JA0,
but clearly JA0 is integral over (M7)A0, which is complete, so MIA0 = JA 0;
this implies the claim. Next we claim: J = MI -f z(J : z). In fact, if
a £ J, then by above's inclusion a — b + rz, with b G M7 and r E A, then
rz — a — b E J, i.e., r E (J : 2), so a E M/ + ̂ (J : z). The other inclusion
is clear. So, to show that J := MI — M/, it suffices to show: (J : z) C /,
which we do next. Let r E (J : z); then r z E J. Then, with the notation
of the beginning of the proof, rzVi C JV^,i = 1,... ,s, i.e. rzV^ C M/Iζ,
hence rzVi C /^VJ, for all z, then r E IVi Π A for all z, i.e., r E /, as
wanted. D

N o t e . I am indebted to Jugal Verma, who presented a proof of this Lemma
in the case of an (x,?/)-primary ideal in A;[[a:,j/]], this proof as well as the
proof of (4.8) are directly inspired by his.

As promised, we prove the result on embedded primes used in (4.6).

4.7. Lemma. Let A — C{x,y,ί},/ an ideal of A such that r(I) = (x,y)A
and having no embedded primes. Then for α, β generally chosen in C, the
ideal I (A/(ax + βy)) has no embedded primes.

Proof Let Aaβ = A/(ax + βy)Ja,β = IAaβ, R = C{£}. Since Aa,β/Ia,β is a
finite i?-algebra, Iaβ will have no embedded primes if and only if Aaβ/Iaβ
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is Λ-flat. Let B = A/1, note that Aaβ/Iaβ « B/(faβ), where faβ is the
class of ax + βy in J3; so we must show that B/(faβ) is jR-flat (α, /3 suitably
chosen in C).

Let N be the nilradical of B. Clearly since r(I) = (#,y), we have N =
(x1y)B. We have an exact sequence

(4.7.1) O->N -*B->R->0

and since {x,y)m C / for m large enough, 5 ( and hence N) are finite R-
modules. Since J has no embedded primes, B is Cohen-Macaulay and hence
iϊ-flat. It follows that N is also i?-flat, hence free. If N = 0 then / = (x,y)
and the conclusion of the Lemma is clear.

Assume N Φ 0. We claim that for α, β generally chosen in C, /<*,/? G iV is
part of a free basis of N as an i?-module. This will imply that B/(faβ) is
Λ-flat. In fact, writing / = / α ^, we have an exact sequence of R-modules:

where B/N « R. If / is part of a basis of iV, then N/(f) is i?-free, which
implies: B/(f) is i?-free, as stated. To check the claim (and conclude the
proof), consider N <8>R C. If the classes x,y in N <8>R C of x,y respectively
are both zero, then N ®R C = 0. But since N is 22-free, this implies N =
0, contrary to our assumption. So, x or y is not zero, and for α,/3 in C
"generally chosen", ax + βy φ 0 in N ® R C. But then, by Nakayama's
lemma, ax + βy G N will be part of a free basis of N as an R-module, as we
wanted to show. D

4.8. Lemma. Let (T,π) be as in (4.2) (i.e. 1 = ϊ ) . Let q : Zx -ϊ Z be the
blowing-up of Z along the support of X and X\ the proper transform of X.
Then, X\ is integrally closed.
Proof. Let / be as in (4.1), P a point of the exceptional divisor of <?,Xx the
proper transform of X. If we choose coordinates in a suitable way, we shall
get

OZιp « C{x,yut}

where y = xj/i and ^ is the (x, y)-order of/. Clearly it sufices to show that Iλ

is a complete ideal (P being arbitrary, with <?(P) sufficiently close to O G T),
or to show that J = /C{a;,j/i,ί} is complete. Now, let h G J, i.e., there is a
relation

(4.8.1) hn + αx/i71"1 + • + αn = 0, o< G J*.
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Let M = {x,y). We may write h = g/xr, α* = bι/xr,6; E PM r , for some
fixed integer r. Substituting in (4.8.1) and multiplying by xrn, we get:

n-l

i=0

Since bi{xrY~ι C ( Γ M ^ a ; ^ " 1 C (7Mr)\ we see that 3 E (7Mr)~ - 7Mr,

by (4.7) (applied r times). Thus, h — -^ E 7 ^ . , which is an element of
IC{x,yι,t} = J. This shows that J is complete. D

4.9. Before presenting a proof of Theorem 4.2 we need to recall a few more
facts about ideals in a two dimensional noetherian regular local ring. Let
R be such a ring, 2Jΐ its maximal ideal, 7 an Oft-primary ideal. Recall the
definition of a contracted ideal. Consider X -> Speci?, the blowing-up with
center 9Jt, and the associated isomorphism R -» H°(X, Ox). The ideal / is
contracted if H° (X, IOX) Π R = /. It is known that if / is complete then
/ is contracted, and if / is contracted then the fact that Xi (the proper
transform of 7 on X) is integrally closed implies that 7 is integrally closed.
We shall need, specially, the following translation into analytic language:
if X C OXQ is a sheaf of ideals (where Xo is a neighborhood of 0 in C2),
having {0} as its support, and XP (its stalk at P E XQ) is a contracted
ideal of OXQ,P « C{α;,y}, the fact that the proper transform J of X to X
(the blowing-up of Xo with center P) is integrally closed implies that X is
integrally closed (of course the only non-trivial thing is the completeness of
Xo, since XQ = 0XθίQ for Q φ 0). Finally let us remark that if / is an 971-
primary ideal in a two dimensional regular local ring i?, r(I) = 971, μ(7) is
the minimum number of generators of 7, v{I) its order, then μ(7) < v(I) -f 1,
with equality if and only if 7 is contracted ([L2, Corollary (3.2)]).

4.10. Proof of 4.2. Let X be our integrally closed sheaf of ideals defining
our equisingular family. We want to see that X(t) is integrally closed, for
all t near 0. We may assume, changing coordinates if necessary, that the
support of X is the intersection of Z with the t-axis. Since then the support
of X(t) is the point (0,0, t) E Z, it suffices to see that the ideal X(t)(O,o,ί) is
complete (in the ring Ozt1(o,o,t)) This is certainly true if t φ 0. In fact, this
is equivalent to checking that 7 ® β F is integrally closed in C{rr, y, t} ®R F,
where R = C{t} is the field of fractions of i?, 7 = Xo. But it is well known that
integral closure commutes with localization (in particular, with F). (Another
proof can be obtained using the characterization, X = f*(XOy) Π Oz-> where
/ : V -> Z is the normalized blowing-up of Z with center X, see [Tl, 1.31].)
So, the hard part is to check that X(0)p := 7p,P = (0,0,0), is complete.
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We shall proceed by induction on e (X(0)p,(9zo>p). Consider the blowing-
up q : Z1 ~» Z with center the support of X (i.e., the t-axis), and the
proper transform Iχ of X. Let Pi, . . . Pr be the points of Z\ lying over P €
Z, since the family is equisingular, ZιOZ'Q,Pi (with Z'o = (qπ)~ι(Q)) can be
identified with the proper transform of 1(0) (via the blowing-up of Zo at
P). Since the multiplicity drops by taking proper transform (cf. [R], p.5),
and since X\ is again integrally closed (by (4.8)), by induction the conclusion
is true for X1? i.e., Xi(0) is integrally closed. By (4.9), were the ideal 70 :=
1(0)p ( in Oz0tP ~ C{x,y}) contracted, thenX(O) would be integrally closed,
finishing the proof. We claim that the ideal Jo is contracted. In fact, (letting

It := I(ί)(o,(M))i if tφ 0, Hh) + 1 = Hit) + 1 = μ(It) < μ(/o) < Hh) + 1,
the 1st equality because (X, π) is an equisingular family, the second because
It is complete hence contracted, if t φ 0; the third by Nakayama's lemma.
Hence, v(I§) + 1 = μ(/0) and Jo is contracted, as desired. D

4.11. Proposition. Let (X, π) be as in (4.1). TΛen, for all t near 0,X(ί) =

W
Proof. Consider the (germ of) family of ideals (X, π). We claim that this is
equisingular, i.e. τ(X(0)) = τ(X(£)), t near 0, where r denotes "tree". As
remarked in the proof of (4.10), for t Φ 0,X(ί) = X(t) ("integral closure
commutes with localization"). For t = 0, we easily get

(4.11.1) X(0) CX(0)

so since ideals with the same integral closure have the same tree, r(X(0)) =
r(J(0)) - r(X(0)) = τ(X(t)) = r(J(ί)) - r(X(ί)). So, (X,π) is equisingular
and we may apply Theorem 4.10. We get: X(0) is complete; from this
(4.11.1) must be an equality, and this completes the proof. D

4.12. Proposition. If (X, π) is an equisingular family of ideals with X = X,
then it is properly flat.
Proof. Prom (4.2) it follows that X(t) is integrally closed, for all t near 0.
Now use (3.10). D

Theorem 4.2 has the following converse:

4.13. Theorem. Let (l,π) be an equisingular family of plane ideals as in
(4.1). Assume l(t) = X(ί) for all t £ T. Then, X = X.
Proof. We may work with suitably small neighborhoods (still dene ted by Z
and T) of P 6 SuppX and 0 = π(P) 6 Γ respectively ,we may assume that
the coordinates x,y,t on Z are such that SuppX := Tί is the intersection of
Z with the ί-axis and that π induces an isomorphism 7\ « T. Consider the
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exact sequence of (9^-modules 0 — > l - ϊ ϊ ^ C - > 0 ( C the cokernel of the
inclusion 1 C 2). We shall check that for all z = (0,0, t) E TUCZ = 0,this
will imply: C = 0. Consider the induced exact sequence of Rt := OTyt-
modules.

0 -> lz -> ϊz -+ Cz -» 0,

tensoring with Q : Rt/r(Rt) over /2t, we get an exact sequence of OZtyZ

modules:

where we used (4.2) and the flatness of OZiZ/ϊ2(cf. (4.12)) to identify Tz®Ct
with XzOzt By assumption, l(t)z is integrally closed. Since X(t)z is integral
over l(t)z,a must be the identity. So, C(g>Q = 0 . Now, note that SuppC C
Γi, which implies that Cz is a finite /^-module. So we may apply Nakayama's
lemma to conclude that Cz — 0, as wanted. D

5. Equisingular Families of Curves.

5.1. In this section we use again the language of Complex Analytic Geom-
etry. Throughout we work with one parameter families of generally reduced
curves, in the sense of (3.2), whose notation we shall use. We let I(X) de-
note the sheaf of ideals of Oz defining the inclusion X C Z, and we shall
make the following assumption:
5.1.1. The morphism [2(X)] -> T induced by π is finite, where [1] denotes
"singular locus of Γ'(cf. (3.4)).

We want to introduce and compare three equisingularity conditions to be
imposed on such a family.
5.2. Definition. A family (3.2.1) is said to be /-equisingular if the family
of ideals (Z(X),τr) is equisingular, in the sense of (3.5) (or (3.6), see also
(3.7)).
5.3. Definition. A family (3.2.1) is said to be T-equisingular if for any of
pair points ί, £' in the same connected component of T, it is possible to
introduce orderings 7t,7f of the branches of Xt and Xt> respectively, in such
a way that the trees T2[Xt-lΊt) a n d T2(Xt','Ytt) &re isomorphic (cf. (2.4),
(2.10)).
5.4. A family (3.2.1) is said to be C-equisingular if it is /-equisingular
and moreover (using the notation of (3.6)) when we consider any morphism
π ( ί ) : Zi -> T, where π ( ι ) = πpi... px,i = 1,... r, and X{ C Z{ is the subspace
defined by the proper transform 2̂  of X, then the induced morphism Xt —> T
is flat (i.e, for each z, the proper transform X{ oil defines a one- parameter
family of (not necessarily pure dimensional) curves, in the sense of (3.2), and
eventually we get a simultaneous desingularization).

We have the following:
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5.5. Theorem. Consider a family (3.2.1), subject to the finiteness condition
(5.1.1). Then:
(a) It is I-equisingular if and only if it is T-equisingular

(b) If it is C-equisingular, it is I-equisingular (and hence T— equisingular,
by (a)/

Proof, (b) is clear. Let us check (a).

(i) To prove either implication, we may restrict our attention to the family
induced by π over suitable (arbitrarily small) neighborhoods of P e Z, 0 £ T,
where these points are arbitrarily chosen, subject to the condition π(P) = 0.
We do not introduce new notation, i.e, X still denotes the neighborhood of
P, etc. Moreover, if the inclusion of germs (X, P) C {Z, P) corresponds to
the ideal / C C{x,y,t} « OZ,P then by Theorem 3.4, 7 = (F)(G),(G) =
(Gi,... ,G r), with the properties listed in that theorem. Thus we may
assume that 1 = FG on Oz, where T defines a family of reduced curves and
G a flat family of zero dimensional ideals (unless G = Όz-, which happens if
and only if we deal with a family of reduced curves).

(ii) Assume now that our family is /-equisingular. We work in the conditions
described in (i). First we state some easily verified facts:

1. If T', G' are sheaves of ideals of Oz, then [FGf] = [F] U [G'].

2. Let JF',G' be as in (1), then [FGf] -> T is etale if and only if both
[F] -» T and [G'] -» T are etale, and for any connected components
C,D of [F] and [Gf] respectively, either CΠD = ΦoτC = D (all the
morphisms mentioned above are induced by π : Z —> T, by restriction).

Note that on ΌZχ (notation of (3.6)) the factorization X = FG of (i) in-
duces: ϊ i = ^"iGi (the index "1" indicating proper transform), and similarly
for proper transforms over Z 2 , . . . , Zr. By using (2) repeatedly, the equisin-
gularity of I implies equisingularity of T and G (cf. (3.6)). But this implies
that, for all t G T, we may find an ordering ηt of the branches of Xt so that
ΆWt)) - T1(^(0)),r(G(t)) - τ(G(0)) (here Tx(f(t)) := ̂ ( ( X , ) ^ , ^ ) , cf
(2.10)). In fact, the statement for T is well-known (a form of Zariski's defi-
nition of equisingularity for families of reduced plane curves), the one for G
is Risler's Theorem 3.7. Using (2) again, it immediately follows that the bi-
weighted trees T2{Xt^t) corresponding to I are all isomorphic to T2(Xθ5 7o)>
as was to be shown.

(iii) Now assume that the family is T-equisingular. We work in the con-
ditions described in (i). It is immediately checked that the hypothesis " I
is T-equisingular", i.e., T2(I(ί)) = T2(Z(0)),t E T, implies that
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andr(G(t)) = r(G(0)), allt E T (here and in the sequel, T2(X(t)) :=
T2(Xί7 7t), Γi (^"(t)) := Ti ((-Yred)t ? 7t) j for a suitable ordering of the branches
of Xt). This implies that the families of ideals (J°, π) and (G,π) are eq-
uisingular, in the sense of (3.6): the first one (which defines a family of
reduced curves), by Zariski's equisingularity theory; the second by Risler's
Theorem. From now on, we assume G φ Όz, otherwise we're done at this
point. To check that X also satisfies (3.6) (i.e, that out family of curves
is /-equisingular), consider first the morphism [I] = [«̂ G] —> T induced
by π (stage (0) of (3.6)). We claim this is etale. But, as remarked in (1),
(2) above, [X] = [T] U [G], and [F] -> T and [G] -» T are etale, because
T and G satisfy (3.6). Now P e [F] Π [G]; if [T] φ [G] then the fiber of
[X] —> T would have, for t £ T near 0, more than one point; clearly this
forces: T2(X(0)) φ T2(X(t)). Thus, [T\ = [G], and by (2), [I] -> T is etale.
We may continue in a similar way on higher order neighborhoods. E.g.,
consider px : Zγ -» Z, and a point Q E [lχ] lying over P (there are finitely
many such). Near Q, we have one of three possibilities: (α)Ii defines a
family of reduced plane curves, (β) X\ defines a family of 0-dimensional ide-
als, and (7)Xi = ^.Gi where T\ defines a family of reduced curves and
Gi one of 0-dimensional ideals. In either case, X\{t) is the proper trans-
form of X(ί), for all t (here, in Iχ(t) we use the ordering of the branches
induced by 71). This is because the T-equisingularity assumption forces:
v(F(x, y, t)) = v(F(x, y, 0)), v(G(x, y, t)) = is(G(x, y, 0)), t near 0. Prom this
it follows that in case (a) 7i(X(ί)) is constant, in case (β) r (Xi(ί)) is con-
stant, and in case (7) T2(Xχ(ί)) is constant. In the first two cases [XJ —> T
is etale (Zariski's and Risler's theories respectively),in case (7) we are in the
same conditions as before, and we may repeat the argument just given to
get the same conclusion. Repeating the process (or, if one prefers, by using
induction on σo((Xt)),t general, cf. (2.3)), we check the /-equisingularity of
our family, completing the proof of Theorem 5.5. D

5.6. Remarks (a). Given a smooth morphism π : Z —> T as in Definition
3.2, if X C Όz is a sheaf of ideals which admits a factorization X = ^ G ,
where T defines a family of reduced curves and G(t) C Ozt defines a zero
dimensional subspace of Zt for all ί, then X is a flat family of ideals (i.e, X
defines a flat family of curves, in the sense of (3.2)) if and only if G is a flat
family of ideals. This is checked in [BG, 6.2 and 6.3].

(b) In the course of the proof of Theorem 5.5 we have essentially verified
that if a family of curves (defined by an ideal X C Oz) is /-equisingular, then
(using the notation of Definition 3.6), for each morphism Zi+1 -> Z^Ii+ι{t)
can be identified to the proper transform of Xj(t) via the induced morphism
of fibers {Zi+1)t —>• (Zi)u which is the blowing up of (Zi)t with center [X»(t)].
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Thus the morphisms Zτ -> Z r_x ->
the ideals X(t) C Ozt, fiberwise.

induce a desingularization of

An J-equisingular family is not necessarily C-equisingular. In fact we
have:

5.7. Example. Consider the family (3.2.1) defined by the ideal (of C{x, y, t})
I = (y — x)(x3, txy5 + (1 — t)x2yA, xy6, y7) (i.e. T, Z are small neighborhoods
of the origins of C and C3 respectively, X C Z is defined by the Oz Ideal
X corresponding to /). We claim that this family is J-equisingular but not
C-equisingular. In fact, first of all p : X —> T is flat, because the ideal
(G) = {x*,txy6 + (l-t)x2y*,xy6y7) defines a flat family of ideals (cf.(3.8) (b),
then use Remark 5.6(a)). Now, [X] is the ί-axis, we consider the blowing-up
Zι of Z with center [X]. If Xi is the proper transform of X, Xλ its correspond-
ing subspace of Z l 5 then Xx has two connected components V and W, where
V is the proper transform of the trivial family of reduced curves defined by
y — x = 0, and W is defined by the proper transform of the ideal (G), i.e. by
(x\, {txi + (1 - t)x2)y3,y4). By (3.8) (b), the projection W -> T fails to be
flat at a point lying over 0 G T. Thus, Xι is not flat over T. However, the
original family of curves is T-equisingular, hence J-equisingular. In fact, for
all t near 0, the tree T2(l(t)) is isomorphic to

(1,0)

(1,0)

(1,0) V

(0,1)

(0,1)

(0,1)

(0,3)

(1,3)

The phenomenon of this example cannot occur if we are dealing with
families involving complete ideals. Precisely, we have:

5.8. Proposition. Consider a family of curves (3.2.1), where X C Z is
defined by an Ideal X C Oz\ assume l(t) := IOzt is integrally closed for all
t ξzT, and that the family is I-equisingular. Then, it is C-equisingular.
Proof. It suffices to check the statement for sufficiently small neighborhoods
of an arbitrary point P G Z and 0 = π(P) E T respectively. Here, we may
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write X = TG respectively as in the proof Theorem 5.5, part (i) (i.e, T
locally principal, G(t) with zero dimensional support) for all t. Using the
fact that in a normal domain D an ideal J is integrally closed if and only if
uJ is integrally closed, u G D,u φ 0, it follows that G(t) is integrally closed,
for all t GΓ. NOW the theorem is an immediate consequence of Theorem 3.10
and Remark 5.6(a). D

The following proposition explains when the hypotheses of Theorem 5.7
are met.

5.9. Proposition. Consider an I-equisingular family of curves (3.2.1), where
X C Z is defined by an Ideal X C Oz- Then X(t) is integrally closed in OZt,
for all t G T, if and only if I is integrally closed.
Proof. By writing (locally) X — TG, resp. where T defines a family of re-

duced curves and G one of zero-dimensional ideals (cf. (3.4)), the proposition

is an immediate consequence of the fact that X is complete if and only if G

is complete (cf. the proof of (5.7)) and Theorems 4.2 and 4.13. D

5.10. Remark. Since the integral closure X of an Ideal X C Oz is always
defined ([Tl, 1.3.1]) it is possible to associate to each /-equisingular family
of curves (3.2.1) an /-equisingular family of curves satisfying the conditions
of Proposition 5.8 (hence, it will also be (7-equisingular). Namely, take the
family defined by X. In fact, by writing (locally) X — TG (as in the proof of
(5.8)), we have X = TG. Since r(G(t)) - τ(G(t)), for all t G T, it follows
that G is an equisingular family of 0-dimensional ideals, and since [G] = [G]
(and the same holds for their proper transforms), it rapidly follows that
TG = X is /-equisingular. Now use Proposition 5.9.

Next we'll see how to associate to an equisingular family of plane curves
(3.2.1) another whose members are reduced curves. In fact, this is achieved
simply by substituting X by Xred > its associated reduced space. Precisely,
we have:

5.11. Theorem. Given an I-equisingular family of plane curves (3.2.1), let
P G X be a point such that (Xt,P) is one-dimensional. Assume P G 5, the
singular locus of Xτed Then, Xreά is equisingular at P along S (in Zariski's
sense), and there is a neighborhood U of P in Xred such that for all t G T,
sufficiently near 0 = τr(P), (Xreά)t ΠU is a reduced curve Ct, Ct0 S consists
of a single point Pt which is the only singularity of Ct and the germs (C^, Pt)
and [CO,P) are equivalent (cf. (1.1)), for all t near 0.

Proof. Restrict the given family to suitably small neighborhoods of P and
0 = π(P) G Γ, which are still denoted by Z, X and T respectively. According
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to Theorem 3.4, we have a factorization X = FG of the Ideal defining I c Z ,
corresponding to the factorization / = (F)(G) of that theorem (where / =
Xp C Oz,p = C{x,y,t}). By the equisingularity assumption, [X] — [f] U [G]
is etale over T; if our neighborhoods are small enough we may assume π
induces an isomorphism [I] -> T. It is clear that Xτed C Z is defined by
the ideal T and that the singular locus of Xred is just \T\ = [X] (e.g., using
the constancy of T2{Xt) we see that the multiplicity of Xred along [T] is
constant). The fibers Ct of the induced morphism Xτed —> T are all reduced
(this is clear for the general fiber, and since Xred is defined on Z by a single
equation, it is Cohen-Macaulay; this easily implies that the special fiber is
also reduced). The constancy of the bi-weighted trees T2{Xt) immediately
implies the constancy of the tree Tι(Ct) (cf. (1.1)); it is well known that
this is equivalent to Zariski's equisingularity of Xreci along S — [J7] (e.g.,
"2i(Ct) constant" implies the constancy of the number of branches and the
"δ invariant", then use [T2, 5.3.1]). This proves the theorem. D

5.12. Remark. In [BG] it is shown (Korollar 2.3.5) that given a family
(3.2.1) (of curves not necessarily locally plane), with X equidimensional,
then the induced morphism X -» T, (where X -> Xred is the normalization)
has the property that all the fibers Xt are smooth if and only if ε* is constant
or equivalently, δt is constant (cf. (2.7)). As we saw, in the case where our
family (3.2.1) is /-equisingular, the family Xτed -> T is Zariski equisingular
family of reduced curves; it is well-known (cf. [T2, 5.3.1]) that this im-
plies that the normalization of Xred simultaneously desingularizes the fibers.
Thus, with notation of (5.10), ε{Xt,Pt) = ε(X0,P0), t near 0 G T and the
same holds for the δ invariant. Since equivalent curves may have a different
ε-invariant, it follows that we cannot uconnect^ two equivalent curves by
means of an /-equisingular family parametrized by a connected space. The
observation might be of interest if one wishes to develop a theory of moduli
for non-reduced curve singularities.
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