
PACIFIC JOURNAL OF MATHEMATICS

Vol. 170 No. 2 1995

FINITE GROUPS WITH A SPECIAL 2-GENERATOR
PROPERTY

TUVAL FOGUEL

This paper deals with finite groups. J. L. Brenner and
James Wiegold defined a finite group G as lying in T\ ' if G is
nonabelian and for every 1 φ x G G, either x is an involution
and G = (x,y) for some y G G or x is not an involution and
there is an involution z G G with G = (z,z). In this paper we
expand the work of J. L. Brenner and James Wiegold, and
that of Martin J. Evans in the investigation of which finite
groups lie in Γ̂  .

1. Introduction.

Definition 1.1. An element x in a group is called a mate of an element

Definition 1.2. We say that a finite group G lies in Γ ^ if G is nonabelian
and for every 1 φ x E G, either x is an involution and x has a mate y G G
or x is not an involution and x has an involution z G G as a mate (see [3]).

Brenner and Wiegold [3] proved that PSL(2, q) lies in Γ ^ except when
q = 9, and that PSL(n,q) does not lie in Γj for n > 3 unless n = 3 and
q = 2, or 4.

Evans [6] proved that if G = Sz(22n+1) is a Suzuki group, then G lies in
Γj moreover if G is a simple Chevalley group over a finite field K of odd
characteristic and G lies in Γf \ then G = PSL(2,K).

Using the fact that each of the groups Sp(2n,K), PΩjn(UΓ), and Pίlϊn(K)
act irreducibly o n 7 = K2n, and PSUm{K) acts irreducibly o n 7 = ifm,
we find an element x of order greater than 2 that acts trivially on a "large
enough" subspace, so that two conjugates of x can not act irreducibly on V\
if dimension of V is large. We get in [7] that over a field K of characteristic
2, PΩϊΛK), for n > 4 or | i ί | > 2, and PSUm(K) for n > 3, Sp(2n,iQ for
n > 3, and PΩfn(ίί) for n > 5, or \K\ > 2, do not lie in r£2 ). Similarly we
show in [7] that Σ n for n > 5 and An for n > 5 do not lie in T^\

483
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In this paper we classify all those solvable groups that lie in Γ̂  , and we
show that a finite non-simple non-solvable group lies in Γ ^ if it is isomorphic
to the semi-direct product of N and (x) where x is an involution and N is
a simple nonabelian group. Many simple groups are excluded from being
candidates for the N above. We also continue in the investigation of which
simple groups lie in Γi2).

2. A Preliminary look at if0.

This section deals with general facts about groups which lie in Γi . We state
Lemmas 2.1-2.6 but since they are obvious we omit the proofs.

Lemma 2.1. If G is a group and G = (x,y) where y is an involution and
xφ\, then H = (x,xy) is a normal subgroup of G.

Lemma 2.2. If G is a nonabelian simple group and G < M < Aut(G), and
M = (x,y) where 1 / x G G, y E M and is an involution, then G = (x,xy).

Corollary 2.3. If G is simple and G lies in Y^\ then every conjugacy class
of G other than the classes of elements of order 1 or 2 contains a pair of
conjugate elements which generate G.

Lemma 2.4. If x and y are conjugate in G and y has a mate, then x has a
mate.

Lemma 2.5. If G lies in Γp\ then Z(G) = 1.

Lemma 2.6. If G lies in Y± and N is a nontrivial normal sungroup of G,
then G* = G/N is cyclic.

Definition 2.7. A finite nonabelian group is called a Y-group if G = NP,
where N is an elementary abelian normal 2-subgroup, and P is a cyclic group
of prime order acting irreducibly on N.

The last condition says that no proper subgroup of N is P-invariant. Since
CN(P) is P-invariant, CN(P) = 1 or CN(P) = N. Since G is nonabelian
CN(P) = 1.
Remark 2.8. If G is a Γ-group, then p = \P\ is an odd prime.
Remark 2.9. Given an odd prime p, there is a Γ-group G of order divisible
by p. It is the subgroup of Aff (1,2n), where n is the unique positive integer
such that n\(p— 1), andp|(2n —1) but p does not divide 2m —1 for 0 < m < n.

Lemma 2.10. A Y-group G = NP (N and P as in Definition 2.7) has the
following properties:
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1) G lies in lf\
2) N is the commutator subgroup of G.

Proof. Let y G G - {1} and P = (x).
If y G N — {1}, then (y) is a non-trivial P-invariant subgroup of N and

(y)(χ) = N. Therefore, G = (x,y). IfyeG-N, then y is iV-conjugate to
a power of #, so that any (y)-invariant subgroup of N is also P-invariant.
Thus, G = (y, n) for any n G iV— {1}, and G lies in Γ^\ Since P is an abelian
group, G' < N and G' = N because G' is P-invariant and nontrivial. D

Notation. If y G G, then 0(y) is the order of y.

Theorem 2.11. If G lies in Γ^2 , £Λen G has a proper normal subgroup of
odd index if and only if it is a Y-group.

Proof. By Lemma 2.10 any Γ-group lies in Γ̂  , and has a proper normal
subgroup of odd index.

Assume that G has a proper normal subgroup K of odd index. Since
\G/K\ is odd and |G| is even, K is nontrivial; therefore, Lemma 2.6 gives
that G/K is cyclic. Let M* be a subgroup of G/K of odd prime index p. If
M < G such that M/K = M*, then M is normal in G and |G/M| = p is an
odd prime.

If x is an involution in G, then x is in M because 0(xM) = 1. If y is an
element of M — {1} with O(y) φ 2, then y has a mate ί of order 2. Thus,
£ is in M. But G = (y, t) gives that G = M, a contradiction. Therefore,
|MI = 2n and M is an elementary abelian 2-group. Since, \G/K\ is odd and
K <M,M = K.

Let x be an element of order p in G, and set P = (x). Then G is the
semidirect product of M by P, because M ί Ί P = {1} and G = MP. If
z G G — M, then 0(zM) ^ 1 and so O(zM) = p. Thus, p|O(z) so we see
that O(z) = 2*p for some k. lft = zp, then ί E M Π C G ( z ) ; therefore t is in
Z(G) and by Lemma 2.5, t = 1. Therefore, O(z) = p.

Let AT be a minimal P-invariant subgroup of M, and d an element of
N — {!}. Now, d has a mate y. Since G = (d,y), y is not an element of
M. By the preceding paragraph O(y) — p. Hence, (y) is M-conjugate to P,
by Sylow's Theorem. Thus, (y)m = P for some m G M, and because M is
abelian dm — d. It follows that

G - (d,y) = (dm,ym) - (d,P> = (J\Γ,P) (because d G JV).

Hence, G = ATP and |G| = \N\ |P | . This implies that N = M. Therefore
P acts irreducible on M and G is a Γ-group. D
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Theorem 2.12. If G lies in r£2) and G φ G', then either
1) G is a T-group,
or
2) G is isomorphic to a semi-direct product of G' by (y), where y is an
involution. If, in this case, G' is abelian, then G is isomorphic to D2p,
where p is an odd prime.

Proof. If G* = G/G', then G* is cyclic by Lemma 2.6.
If G* is not a 2-group, then there exists a normal subgroup N of G with

G1 < N < G and \G/N\ is odd. Since |G/JV| > 1 is odd, G is a Γ-group and
G' = N, by Lemma 2.10.

If G* is a 2-group, note that G is not a 2-group, for Z(G) = 1. Therefore
there exists a n x E f f of odd prime order p. The element x has a mate y
of order 2. Since G = (ar,y), G* = {xG'.yG1) = (yG')\ therefore |G*| = 2,
G' Π (y) — 1, and G is isomorphic to a semi-direct product of G' and (y).

If G' is abelian, then zy — z for any z G G' if and only if z = 1, because
Z(G) = 1. Hence, y acts fixed point free on G' and, since y is an involution,
G' is of odd order and for all z G G' - {1} zy = z~ι. Since G = (rr,y),
G; = (x) and |G'| = p. Therefore G S A P , for \G\ = 2p and G = (ar,j/),
where χp = y2 = 1, and a;2' = a;"1. D

Lemma 2.13. Let G lie in Γ^ . If G is isomorphic to a semi-direct prod-
uct of N by {x), where x is an involution, then x acts on N as an outer
automorphism of N.

Proof. Assume x acts on N as conjugation by an element y G N, then xy~x

acts trivially on N. Therefore, 1 φ xy"1 is in the center of G, contradicting
Lemma 2.5. D

Definition 2.14. A group is a proper semi-direct product of N by P if G is
a semi-direct product of N by P and NCG{N) Φ G.

Note. The situation in Lemma 2.13 gives us an example of a proper semi-
direct product, since NCQ{N) — N φ G.

In [6] Evans shows that if a simple Chevalley group over a field of odd
characteristic lies in Γi2), then it is isomorphic to PSL(2,K). Below we will
present a generalization of this result.

Definition 2.15. 1) Δ denotes a root system of a Lie algebra.
2) Δ + denotes the set of positive roots in Δ.
3) Δ + denotes the set of negative roots in Δ.
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4) Π denotes the fundamental system of roots of Δ.
5) xr(k) denotes the generator exp(/ader) of a Chevalley group.
6)X, = (xx(k)\keK).
7) U=(xr(

Recall that each root r G Δ can be written as r = ]Γ kaa (a G Π) with
integral coefficients ka all nonnegative or all nonpositive [10, 10.1].

Definition 2.16. The height of r G Δ (relative to Π) is ht(r) = Σ,ka.

Prom the Steinberg decomposition of automorphisms of a finite simple
Chevalley group M [4, Theorem 12.5.1], we get that if τ € Aut(M), then
r = idgf, where i is an inner automorphism, cί is a diagonal automorphism,
g is a graph automorphism, and / a field automorphism. Prom the Bruhat
decomposition [4, Chapter 8] we get that if i G inn(M) == M since M is a
simple group, then i = uιhιnu2h2, where til,u2 G 17, Λi, h2 G H and nt G JV.
H and TV denote the diagonal and monomial subgroups of M respectively.

So by combining the above remarks we get that every t G Aut(M) can
be written as

r = Uχhχnu2h2dg f'.

Theorem 2.17 Let M be a non-nilpotent subgroup of a finite simple Cheval-
ley group G over a finite field K, and M — (Xs^X^)y where y G Aut(G) and
s is a root of greatest height in Δ + , then there is a homomorphism from
SL%K) ontoM.

Proof. Let g be a graph automorphism, then since g(r) G Δ + for all r G Δ + ,
g\u and g\z(u) are automorphisms.

Since y G Aut(M), it follows from the remarks above that

y =

Let s* = g~1(s), then by the choice of s we get that X8 and Xs> are central in
U [4, Theorem 5.3.3], and that H [4, page 100], all diagonal automorphisms,
and all field automorphisms normalize X8 and Xsι. So we get that

M =
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Let wt denote the image of nt in the Weyl group under the natural homo-
morphism from N to N/H ^ W. Since X^ = XWt(s), M S (X8,,XWt{s)).

For all r,s G Δ which are linearly independent there exists a w G W such
that w(r), w(s) G Δ + . Therefore (X r,Xs) is isomorphic to a subgroup of U
which is nilpotent. Since M is not nilpotent, we get that wt(s) = — s'. So we
see that M = (Xs>, X-s>) and by [4, Theorem 6.3.1] there is a homomorphism
fromSX(2,ir) onto M. D

Theorem 2.18. Let M be a finite simple Chevalley group over a finite field
K of odd characteristic p, and M < G < Aut(M). // G lies in Y^\ then

Proof. Since G lies in Γj2 and O(xs(l)) = p Φ 2 where s is a root of
greatest height in Δ + , x8(l) has a mate y of order 2. By Lemma 2.2 M —
(xs(l),xs(l)y), therefore M = {Xs,X

y). So by Lemma 2.16 we see that
there is a homomorphism from SL(2,K) onto M, and since M is simple

). D

3. Non-Simple Groups that lie in r£2 ).

An easy consequence of Lemma 2.6 and Theorem 2.12 is:

Corollary 3.1. A solvable group G lies in T[ if and only ifG = D2p, where
p is an odd prime, or G is a T-group.

Theorem 3.2. If G is a ntn-solvable group lying in Γ^\ then either G is a
nonabelian simple group or G is isomorphic to a proper semi-direct product
of N by (x), where x is an involution and N is a simple group.

Proof. Let M be a maximal normal subgroup of G and let G* = G/M.
Case 1: If M = {1}, then G is simple.
Case 2: If M ψ {1}, then G* is cyclic, by Lemma 2.6, and G' Φ G. Since,

any Γ-group is solvable, by Theorem 2.12 and Lemma 2.13, G is isomorphic
to a proper semi-direct product of G' by (#), where x is an involution.

If {1} φ N < G' and N is normal in G, then G/N is cyclic, by Lemma
2.6. But G/N is a nonabelian group; a contradiction. Therefore G' is a
nonabelian characteristically simple group (since G is not a solvable group);
that is, G' = Kλ x ... x Kn where Ki = Kj are nonabelian simple groups.
For k G Ki a nontrivial element of odd order, let y be its mate of order 2. By
Lemma 2.1, H = (A;, ky) is a nontrivial normal subgroup of G, and H < G;,
thus H = G'. Since, Kλ is a normal subgroup of G1 and G'/Kx = {kyKλ) ^
K2 x ... x Kn is abelian, we have, n = 1, and so G' — K — 1 is a simple group.
Thus by Lemma 2.13 G is isomorphic to the proper semi-direct product of
G;, a simple nonabelian group, by (x) where x is an involution. D
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4. Non-Simple Non-Solvable Groups.

In this section we look more at the structure of non-simple non-solvable
groups which lie in Γ^ .

Theorem 4.1. If G is isomorphic to the semi-direct product of An and (x)
where x is an involution and n > 5, then G does not lie in Γj .

Proof. Suppose that n φ 6, then by [11] Aut(An) = Σ n . Assume that G
lies in Γ^ , then by Theorem 3.2 G == Σ n . It is easy to see that in Σ n

(n > 4) the 3-cycles do not have an involution as a mate, so G does not lie
in if. D

Note. Note that there are two nonisomorphism classes of proper semi-direct
products of A6 and Z2: one is Σ 6 which does not lie in T^\ while the other
involves the exceptional automorphism of AQ.

Theorem 4.2. // G is isomorphic to the semi-direct product of A6 and (x)
where x is an exceptional automorphism of AG of order 2, then G lies in T\ .

Proof. Let θ send the following transpositions in Σ 6 to products of three
2-cycles:

(12)—>(23)(15)(46)

(23)—K12)(34)(56)

(34)-»(23)(16)(45)

(45)—>(34)(15)(26)

(56)—>(23)(14)(56).

Since the five 2-cycles above generate Σ 6 and θ acts on them as a homomor-
phism, and the five products of three 2-cycles above also generate Σ 6 , θ is
an automorphism of Σ 6 . Since θ does not preserve the cycle structure θ is
an exceptional automorphism of Σ 6 and AQ. It is easy to see that θ2 = 1.

Let G = <A6,0) we will show that G lies in Γ^2). Set a = (123) = (23)(12),
6 = aθ = (136)(254) (multiply left to right). Let H = (α,6) < (a,θ) = (b,θ),
ab = (15426), and ab~ι = (1452)(36) € H, so \H\ is divisible by 9,5, and 4.
Thus H = J46, and G = (α, θ) — (6, θ). Thus, elements of order 3 in A6 have
mates of order 2 in G.

One can check that (12345) G CG{Θ). There are in A6 two maximal
subgroups that contain (12345), M the stabilizer of 6, and N a transitive
A$. All elements of order 3 in M are 3-cycles, while N contains no 3-cycles.
θ maps M into JV, and since, M = ((12345), (12)(34)),

N = ((12345), (12)'(34)') = ((12345), (14)(56)) .
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Since (34)(56)(14)(56) = (143), (34)(56) & N, and clearly (34)(56) 0 M.
Thus we see that

((12345), (34)(56)>=i4β,

and since (12345) € CG(0), G = <(12345)*',(34)(56)) for ί = 1 and 2. Note
that (12345)0 and (12345)20 are not conjugate in G. Thus, elements of order
2 in AQ have mates in G.

Set A = ab = (15426), and B = ba = (25436), the 0 sends A^b. Set
# = (A,B) < (A,0), then (AS 3 ) 2 = [(16)(2435)]2 = (23)(45) e H. Since
(12345)(12536) = (15426) = A and (34)(56)(12536> = (23)(45), thus, (A,θ) >
(A,(23)(45)) = Λ . So, ((15426)%0) = G for i = 1 and 2. Therefore,
elements of order 5 in A6 have mates of order 2 in G.

By similar reasoning AB3 = (16) (2435) has 0 as a mate. Thus, elements
of order 4 in A6 have mates or order 2 in G. So all elements in A6 have
mates as required.

Since θ sends δ α - ^ α δ " 1 , θ inverts αfc"1 = (1452)(36). The element
(24)(36) also inverts (1452)(36). So, η = (24)(36) G ^ ( α ά " 1 ) . rj2 =
(24)(36)(12)(45) = (1254)(36) = (aft"1)-1, since 0(24)(36)0 = (12)(45). It
follows that η has order 8 and (r/,0) = D 8 . Since |(ry,0)| = 16, this group
is a Sylow 2-subgroup of G, and all involutions outside A6 are conjugate
to 0. Let x E G — A6, note that x2 G A6. If the' order of x2 is odd, then
x is conjugate to 0, or (12345)1* for i = 1 or 2 (since no elements of or-
der 3 in A6 commute with 0 ). If x2 has even order, then x is contained
in a Sylow 2-subgroup of G. Since x 0 A6, x is conjugate to η or to 773.
We have seen that η2 = (1254)(36), so τ?2(12)(34) = (25364) = (65432)2.
Since (65432)(16X25)(34) = (12345) and (12)(34)(16>(25»34) = (34)(56), we get
(η\ (12)(34)) = G for i = 1 or 3. D

Proposition 4.3. LetM be a finite simple Chevalley group over a finite field
K of characteristic p, and let G be isomorphic to the semi-direct product of
M and (x) where x is an involution. If G lies in T^\ then M = PSL(2,K).

Proof. This is a direct consequence of Theorem 2.18. D

Note. Note that since A6 = PSX(2,5), it is not true that for every M —
PιSL(2, K) where K is a finite field of odd characteristic p, there exists a
proper semi-direct product G of M and (x) where x is an involution such
that G liesinΓ^ 2 ).

In [7, Chapter 8] we eliminate many more simple groups from the possi-
bilities for N in Theorem 3.2.
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5. Eg Case.

The Lie algebra L over a field K has a Cartan decomposition [4, Ch.7]
L = H φ ΣreA Lr, where H is generated by hr for r G Π, and Lr is a one-
dimesional vector space generated by an element er for r G Δ. For a simple
Lie algebra L over K, Chevalley defined a group L(K) which is simple except
for a few exceptional cases. L(K) is uniquely determined by its action on

The elements of Π will be denoted by aλ,... , aλ. The method of this
section gives us some insight into the action of L(K) on L and proves that
L(K) does not lie in Γ ^ when Δ = Eg. In this section we are using the
standard notation for roots in Eg.

Definition 5.1. Let / be a function from ΠUΠ" to the integers defined by

Definition 5.2. Φ = {T £ Δ|(τ,αi) = 0}, where (, ) is as in [10, page 39].

Lemma 5.3. If A — Eg, and τ G Φ, then x α i e r = eT, and X-aieτ = eτ (
where xr = z

Proof. Since all roots in ϋ?8 have the same length, this implies that if r G Φ,
r φ —c*i and T — aλ and r + ax & Δ. Thus by the formula on [4, page 61]
we see that x±aieτ = e r. D

Let L = H ® ΣteA Lt be the Cartan decomposition of L [4, Ch.3]. L can
be written as L — Σteϊl Ht θ ΣteA Lt where Ht = (/î ), and Lt = (e*). For
Δ = Eg, let T = Hai@ Ha2 θ Has θ Σ ^ Δ - Φ ^ and,

ί6Π-{α 2 )α 3} *€Φ

Note. Note that L = V θ T, and xα i and z_α i act trivially on L'.

Lemma 5.4. Given L, L' and T as before, then there exists no subset 0 φ
S < L' ΠH invariant under the action of E8(K) where K is a finite field of
characteristic 2.

Proof. Assume that such an S exists, then let x G S — {0}. We can write x
as x = aχhTl + ... + anhτ where each α̂  φ 0, each r{ G Π, and f(τχ) < ... <

f(Tn).
Note that in all cases, /(τi) > 2 by the way we constructed L1. Thus

we can choose a root t G Π with f(t) — f(τχ) — 1 such that (ί, TΊ) =
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2(t,τi)/(t,t) = I(mod2), and (t,τj = 0 for i = 2,... ,n. So we get that
xthTl = hTl + e r, and xthTi = hTi for i == 2,... ,n. Therefore α;tα; ^ 5,
contradicting that 5 is L(X)-invariant. Therefore there exists no subset
0 φ S < V ΠH invariant under the action of L(K). Ώ

Lemma 5.5. There is no invariant subspace of L' under the action of E$(K)
where K is a finite field of characteristic 2.

Proof. In view of Lemma 5.4 it will be sufficient to prove that any ES(K)-
invariant nonzero subspace S of V is a subspace of H.

Assume that S is not a subspace of if, then we can write any element
υ £ S — H as υ = aSleSl + aS2eS2 + . . . + /ι, where h £ H, and s^ £ Φ.

Since all the roots in E$ have the same length, then by [10, 10.4 Lemma C]
all the roots are conjugate under W, the Weyl group of JS?8. Thus there exists
an element w £ W, with w{s\) = OL\. Note that since w is an automorphism
w(si) Φ QLi for i > 1, and that w = wri ... wrt (here wri is the reflection in
the hyperplane orthogonal to the root r{). Let N be the monomial subgroup
of E8(K), and nr as in [4, Proposition 6.4.2]. By [4, Theorem 7.2.2] there
is a homomorphism from N onto W under which nr—>wr for all r £ Δ. nr

acts invariantly on if, and nres = ±eWr(sy Since we are in characteristic 2,
nres = eWr(β). Let n — nri .. .nn £ iV, then n—>w by the homomorphism
N—>W. So neSl = ew(Sl) = eai, and nh £ H. Hence nv contains a term
eai, contradicting that v £ S. Thus S is a subspace of H. D

Theorem 5.6. If G = E$(K) where K is a finite field of characteristic 2,
then G does not lie in Γ^ .

Proof. Using the description of roots in the system E8 in terms of orthogonal
vectors given in [2, page 268] we get that the number of positive roots in Φ

So we get that cod (I/) = 117. Both xai and x_αi act trivially on I/;
therefore xaix_ai also acts trivially on V. Assume that G lies in Γj , then
since O (xaix_ai) φ 1 or 2, xaix_ai has a mate of order 2. Let S = L'C\(L')y\
since G = (xaix-ai,y), we see that G acts invariantly on S. Since

cod(S) < 2 cod (£') = 234 < 248,

S Φ 0 contradicting Lemma 5.5. D
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6. Twisted Groups in odd Characteristic.

L e m m a 6.1. If q is odd and G = 2At(q2) for I > 2, or 2Dt{q2) for 1>A, or
2E6(q2), then \G\ > \SL2(q2)\. Also \3D4(q3)\ > \SL2(q3)\ for q odd.

Proof For q = pn where p is an odd prime we get:

1) \SL2(q2)\ = q2(q* - 1) < ( l / % 3 ( 9

2 - l)(q3 + 1) < |2Λ(<?2)|, / > 2.

2) \SL2(q2)\ = q2{q* - 1 ) < (Iβ)q12(q4 - 1) < | 2 A(<? 2 ) | , J > 4.

3) \SL2(q2)\ = q\q" - 1) < ( l / % 3 6 ( < ? 5 + 1 ) < \2E6(q2)\.

D

Consider a Chevalley group G* = L(K) and p a non-trivial symmetry of
the Dynkin diagram for L. Recall that if K has a certain order depending on
L, then we can choose an automorphism σ (a product of a field automorphism
and a graph automorphism determined by p) of G* such that the twisted
group G = ιL(K) is a subgroup of G* stabilized by σ, and Uι is the subgroup
of U centralized by σ (recall that U1 < (7). We will call G* the corresponding
Chevalley group of G. Note that σ(xr(t)) = xrι(ηrt'), where ηr = ±1 and
£' = f(t), f a certain field isomorphism, and r' arises from the symmetry of
the Dynkin diagram [4, 12.2]. Since all the roots in the system associated
with the groups of Lemma 6.1 have same length, the above action is an
isometry [4, Prop. 12.2.2], and there exists a unique root of maximal length
s [10, 10.4 Lemma A], and thus s1 = s (note that this is not the case for
2 G 2 (3 2 m + 1 ) [4, 12.4]).

Lemma 6.2. If G is a simple twisted group, and G* is the corresponding

Chevalley group of G, then Aut(G) < Aut (G*).

Proof From [8, page 303 and 5, Table 5] Aut(G) is a product of an inner, a
diagonal, and a field automorphism. D

Theorem 6.3. Ifq—pn where p is an odd prime and G is a simple group
of type 2Aι(q2), l>2,or 2Dι{q2), I > 4, or 2E6(q2), or 3DA(q*), then G does
not appear as a composition factor of any group in Y2 .

Proof Let K = GF(q2) if G = 2Aι(q2)J > 2, or 2Dι(q2)J > 4, or 2E6{q2),
and K = GF(q3) if G = 3D4(q3). Let s be the root of maximal height.
If 7s = 1, let x = xs(l)- If 7* = —1 (this can happen in the case that
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K — GF(q2)), then the automorphism / associated with the group has
order 2 and there exists an element t € K — {0} such that t' = —t. So, let
x = xs(t). In each case σ(x) = x and x £ Z(U) Π U1 [4, Def. 13.4.2] so
xeZ{Uι) and O(aτ) = p .

If G appears as a composition factor of any group in Γ̂  , then x has a
mate y G Aut(G) < Aut (G*) of order 2, and G = (x,xy) < (Xa, (Xs)

y) = M
(note that M is a subgroup of G*, not of G) from Lemma 2.2. Since M is a
nonnilpotent subgroup of G* by Lemma 2.17, there is a homomorphism from
SL{2,K) onto M, but by Lemma 6.1 \G\ > |M|, a contradiction. D

7. Centralizers and Γj .

In this section we will use the result that if two subgroups have order greater
that the square root of the order of the group, then they have a nontrivial
intersection [9, Sec. 2.5], to investigate whether some groups lie in Γ̂  .

Lemma 7.1. If G is α finite simple group with an element of order not 1 or
2 that has a centralizer of order larger (|G|) , then G does not appear as a
composition factor of any group in Γ^ .

Proof. Assume that G appears as a composition factor of a group H in Γ̂  .
Then, by previous results, G is a normal subgroup of H with index at most
two. Let x e G such that O(x) φ 1 or 2 and \CG(x)\ > ( |G|) 1 / 2 . Since H lies
in Γχ2 , x has a mate y G H of order 2. By Lemma 2.2 G = (x, xy), and since
\Ca(xy)\ = \CG(X)\ from the above we get that Z{G) φ 1, contradicting the
simplicity of G. D

Theorem 7.2. The groups J2, Suz, Cθχ, Ly, Fi22, Fi23, Fi'2A, D^Ί), and
2Zλj(2) do not appear as a composition factor of any group in Γ ^ .

Proof. Prom [5] we see that each of the above groups has an element of order
3 with a centralizer of order greater than the square root of the order of the
group. D
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