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HOLOMORPHY TESTS BASED ON CAUCHY'S INTEGRAL
FORMULA

CARMEN CASCANTE AND DANIEL PASCUAS

We prove some holomorphy tests based on the Cauchy in-
tegral formula for the unit disk, the upper half-plane and the
complex plane.

1. Statement of the problems and results.

1.1. The classical Morera problem consists on studying the closed rectifiable
curves Γ on the complex plane C such that any continuous function / on C
satisfying

(1.1) f(foσ)(z)dz = 0,
Jr

for every σ G M(2), is entire. Here M(2) denotes the group of holomorphic
rigid motions of C, that is the group of all the mappings of the form σ(z) =
az + β, α,/3eC, \a\ = 1.

If Γ is the boundary of a "regular" domain Ω then the above problem is
equivalent to the classical Pompeiu problem, i. e. when the only continuous
function / on C such that

L(/ o σ)(z) dm(z) = 0, for every σ G M(2),
Ω

is / = 0.
Note that both problems are invariant under the action of the group M(2),

in the sense that if Γ (respectively, Ω) has the Morera (resp., Pompeiu)
property then σ(Γ) (resp., σ(Ω)) also does, for every σ G M(2).

A lot of work on those problems has been done by several authors, among
them, Brown, Schreiber and Taylor [8], Zalcman [23], Berenstein [1], Beren-
stein and Yang [4], Williams [21, 22], Brown and Kahane [7],.Garofalo and
Segala [12, 13], and Ebenfelt [10].

One of the most general results known about the Morera problem is the
following: if Γ is a non real-analytic curve which is the boundary of a Jordan
Lipschitz domain then Γ has the Morera property.
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For a more complete description of the history and list of references on
the above problems see [23] and the nice survey [24].

The Morera and the Pompeiu problem can be stated in other spaces dif-
ferent from the complex plane. In fact, Berenstein and Zalcman [5, 6],
and Berenstein and Shahshahani [3] obtained similar results for analogous
invariant problems in the context of the symmetric spaces of rank one.

There are also some non-invariant problems (in the above sense) which
are natural to consider. One of them is which are the closed rectifiable
curves Γ C D such that any / E C(D) satisfying (1.1), for every conformal
automorphism σ of D, is holomorphic on D. Some results on this problem
have been obtained in [2]. For instance, the answer to the above question is
affirmative for any non real-analytic curve which is the boundary of a Jordan
domain of class C2>ε.

In this paper we study a problem related with the Cauchy integral formula
in the same way that the Morera problems are with the Cauchy theorem.
That is studied on three settings: the complex plane, the unit disk and the
upper half-plane. In the first case the problem is invariant whereas in the
remaining ones it is not.

1.2. Let X denote one of the following domains: the unit diskD, the upper-
half plane U, or the complex plane C. Let G be either M(2) (the group
of holomorphic rigid motions of C) if X = C, or Aut (X) (the group of
holomorphic automorphisms of X), otherwise. Let Γ be a rectifiable closed
curve in X, and let a £ X \ Γ. Then the Cauchy integral formula says that

for every holomorphic function / on X. In particular,

(1-2)
z — a

for every σ G G, since / o σ is holomorphic on X.
The purpose of this work is to establish in which cases the converse works

if Γ is a Jordan curve. Namely, our aim is to study when a continuous
function / on X satisfying (1.2), for a Jordan curve Γ in X, is holomorphic.

The simplest case is when Γ is an Euclidean circle. Then it is clear that if
α is the Euclidean center of Γ, (1.2) means that foσ satisfies the mean value
property on Γ. Hence any harmonic non-holomorphic function / satisfies
that property. Thus we will always assume that a is not the Euclidean
center of Γ. In this case we obtain the following result:

Theorem 1.1. Let D be an Euclidean closed disk contained in X. Let
a & X be a point different from the Euclidean center of D and not lying on
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the Euclidean circle Γ = dD. Assume that f G C(X) satisfies (1.2), for
every σ G G. Then f is a holomorphic function on X.

In proving the above result for the upper half-plane we obtain the following
mean-value theorem:

Corollary 1.2. Let D be a Euclidean closed disk contained in U with center
c E U and radius r > 0. Assume that f E C(U) satisfies

Then f is harmonic on U.

It is noteworthy that, while the above result is always a "one radius" theo-
rem, the corresponding result for the unit disk D is a "two radii" theorem for
c = 0 (see [5]), and a "one radius" theorem when c φ 0 (see [2]). That fact is
in a certain sense a consequence of the non-invariance (under biholomorphic
mappings) of the mean-value problem we are dealing with.

For a general curve Γ in D or U we obtain the following result:

Theorem 1.3. Let X be either D or U. Consider a C 2 ' c Jordan domain
Ω C C l , 0 < € < 1. Assume Γ = <9Ω fails to be a real analytic curve, and
a G X \ Γ. If f e C{X) satisfies (1.2), for any σ G Aut(X), then f is
holomorphic in X.

Observe that, while our problem for X = C is invariant under the action
of M(2) (in the above sense), in the upper half-plane and disk cases it is
clearly not invariant under the corresponding automorphism groups. That
invariance is somehow reflected on the fact that in the planar case there are
points where (1.2) is automatically satisfied for a certain non-holomorphic
function. Thus the general planar results have to be stated for a class of
points which we call admissible (for a precise definition see §2). Then the
proofs in [1], [2], [8], [21] and [22] are easily adapted to obtain the following
result:

Theorem 1.4. Let Γ be a rectifiable Jordan curve in C, and let a be
an admissible point for Γ. Assume Γ is the boundary of a Jordan domain
Ω CC C satisfying one of the following conditions:

(i) Ω is convex and it does not have a unique supporting line through some
point p G Γ.

(ii) Ω is a C2)C domain, 0 < e < 1, but Γ is not a real analytic curve.
(iii) There is a (connected) real analytic curve Γ not completely included

in Γ but containing an open subarc ofT.
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(iv) Ω is a Lipschitz domain, but Γ is not real analytic and a G C \ Ω.
Then any f £ C(C) satisfying (1.2), /or every σ E M(2), is entire.

In Section 3 we obtain examples of couples (Γ, α) for which we can apply
the above theorem. For instance, any (Γ, a) where Γ is a regular polygonal
curve and α is not its barycenter.

The paper is organized as follows. Next section is devoted to give some
technical results which are used in the proofs of the theorems. The main one
is the reduction of our problem to one of testing harmonicity. In connection
with that, we also introduce the notion of planar admissible points. Our
planar theorems are proved in Section 3, while the disk and upper half-plane
ones are done in the last section.

The general approach to the proofs of the above results is based on the
ideas of Berenstein and Zalcman [6] and the methods in [2]. Basically, X
is considered as an homogeneous space G/K and then condition (1.2) is
written as a convolution equation in G, which can be solved using harmonic
analysis on G.

The general planar case could also be treated using the results of Brown,
Schreiber and Taylor [8], but we want to present a common approach for all
the cases in the spirit of [6]. However we were not able to prove the circular
planar case using their methods.

2. Some preliminary results.

2.1. The first results will reduce the problem of testing the holomorphy of
a function under the hypothesis of the theorems to the problem of checking
its harmonicity.

We need some definitions.

Definition. Let Γ be a rectifiable Jordan curve in C. A point a G C \ Γ is
admissible for Γ if

If a G C \ Γ is not admissible, it is called singular for Γ.

Remark. Let Ω be the interior of Γ. Since the function of a in the left-hand
side of (2.1) is holomorphic in C \ Γ, the set of admissible points in Ω is
dense, and there is at most a countable set of singular points in C \ Ω.

In the next section we will study more in detail admissible points.

Lemma 2.1. Let Γ be a rectifiable Jordan curve in €, and a E C\Γ. Then
the following statements are equivalent:
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(i) Any harmonic function f in C satisfying (1.2), for any σ G M(2), is
entire.

(ii) The point a is admissible for Γ.

Moreover, if a is a singular point for Γ, then the non-entire function
f(z) = ~z satisfies (1.2).

Proof. If / is harmonic then / = h + g, where h , g are holomorphic in C,
and g(0) — 0. Now h obviously satisfies (1.2), so does g, and we only need
to show that ̂ Ξ O .

Since g o σ also verifies (1.2), for every σ G M(2), it is enough to see that

Consider the Taylor expansion of g at the origin:

n = l

Take as σ any rotation, i.e. σ(z) = e~ιθz. Then (1.2) gives

0 0 / r ~ϊn A? \ °°

Σ A I / Linfl _ Tnrl/T πΊ V ή πnpinθ

CLn I / ~ I c — II1U.11 , d) 7 (lnCί β
n = l X t / 1 7 n = l

Thus

(2.2) dn ί — = Ind(Γ; a)dnά
n for every n > 1.

Jr z — a 2πi

If α is admissible for Γ then |§(0) = di = 0.
Conversely, assume a is a singular point. Then any σ G M(2) can be

written as σ(z) = e i β(z + 6), 6> G R, 6 G C, so /(z) = z satisfies (1.2). D

The upper half-plane and unit disk cases will be treated simultaneously

making a change of variables in (1.2), when X — U.

Let σ0 : U —> D be the conformal mapping given by

z -i
σ o ( z ) = 7ΪΊ-

Then, by making the change of variables w = σo(z), it is clear that (1.2) is
equivalent to

l α A , (Vα€Aut(D)),
- α0 1 —
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where Γo = σo(Γ), α0 = σo(α) G D \ Γ 0 and g = f o σ0 *.
When X = D, let Γo = Γ and α0 = a. With that notation (1.2) has the

following common reformulation for both the disk and the upper half-plane:

(2.3)
/ , — α 0

-H{z)

for every σ G Aut (D), where H = 1 (unit disk case) or i?(<z) = j^j- (upper
half-plane). Note that if we also take Γ o = Γ, α 0 = a and H = 1, (1.2) for
X = C is equivalent to (2.3), for any σ G M ( 2 ) .

Now assume Γ is the circle dD C C U , where as usual D = D(c, r) = { z G
C : \z—c\ < r }. Then Γ o is also a circle i n D . Let CQ and r 0 be its (Euclidean)
center and radius, respectively. We are going to express the condition aφ c,
i.e. a0 φ σ o (c), in terms of CQ and r 0 . In order to do that we recall t h a t the
Euclidean disk D — D(c,r) coincides with the pseudohyperbolic disk

z-d

z-d

where

(2.4)
d - c'r'

c = and
2r' Im c'

r = l - ( r ' ) 2

Now D o = σo(Aυ(c',r')) = ΔD(cό,r'), where c'o = σo(c') and

ze.(2.5) Δ D (c 0 ,r ') = | ,

By [11, P 3],

(2.6) co = - . \J .,Λ and

- c'oz
<"}•

- ( r ' ) 2 | c 0 | 2 0 1 /-#\OI _/ I9

(In fact, (2.4) follows easily from (2.6) using conformal invariance.)
A straightforward but tedious calculation using (2.4) and (2.6) shows that

so a φ c means that a0 φ c0 + j ^ -
Now we state a result similar to Lemma 2.1 for andU.

L e m m a 2.2. Let X be either the unit disk or the upper half-plane. Let Γ
be a piecewise C1 Jordan curve in X, and a G X \ Γ. Then, ifT is not an
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Euclidean circle, any harmonic function f in X satisfying (1.2), for every
σ £ Aut (X), is holomorphic on X.

Moreover, the same conclusion holds when Γ is an Euclidean circle and a
does not coincide with its center.

Proof. We will carry out the proof of the lemma in three steps.

FIRST STEP: Taking into account the observation just above the lemma,

we prove the next statement:

Let Γo be a piecewise Cι Jordan curve in D, and α0 G D \ Γ 0 . Then the
following items are equivalent:

(i) Any harmonic function f in D satisfying (2.3), for every σ G Aut (D),
is holomorphic on D.

(ii) There exists n > 1 such that

f ~zn dz
(2.7) / H(z)—

JrQ z- α0 2πι

(ii)=φ(i): An argument like the one in the planar case shows that we just
have to prove that if f(z) = Σ^=i dnZn is a conjugate holomorphic function
on D satisfying (2.3), then dx = 0.

Now, since the rotations are automorphisms of D, formula (2.2) works.
Then the hypotheses yield

If rz denotes the automorphism of D given by

f o rz obviously satisfies (2.3) so

T^(0) = 0, for every z

When n = 1, df/dζ = 0, i.e. / = 0, so we may assume that n > 2. We
compute the above derivative using Fad di Bruno formula:

r2)
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where the sums are taken over kι + 2k2 + + nkn — n, and k = kλ + k2 +
h kn. Since the previous sum is zero, isolating the highest order derivative

we have that

where the sum is as above, except that now k < n. But / is conjugate
holomorphic, henceholomorphic, hence

~ 1 / v \n-l-k

where
n\{n - k)

and the sum is over kλ + + kn = k and kλ + 2k2 + + nkn = n. It is
easy to see that for a fixed A, l < A < n — 1, there is at least one possible
choice of such A;1?..., kn. Hence any A^ is positive. Therefore it is enough
to prove the following:

Let n > 1 and let f be a conjugate holomorphic function on D. Assume
that

(2.9) 0 = έ α J k ( ϊ £ ^ j J ) n 0 ( z ) , for every * E D,

where αk > 0, k = 1,. . . , n. Then / is constant.

We proceed by induction on n > 1. For n = 1 it is obvious. Assume (2.9)
holds for n > 2. Then

so

and by the induction hypothesis we are done.
(i)=»(ii): Suppose (ii) does not hold. Let σ(z) = e~iθτb(z), θ eR, be

Since

Lr 0 z — α 0

( Γ T d7

-6 • Ind(Γ0, a o, + ( 1 - |(,R g , - / — - i f (,) _
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it is clear that the non holomorphic function f(z) = z satisfies (2.3).

SECOND STEP: NOW we are going to show that if (ii) does not hold then

a0 E Ωo.
By Stokes theorem our assumption is equivalent to:

(2.10) / — — H(z) dm(z) = 0 for every n > 0.
JΩo Z — a0

If α0 G D \ Ωo, the function H(z)/(z — α0) is holomorphic on Ωo, and
Runge's theorem shows that it is the uniform limit on Ωo of a sequence {Pn}
of holomorphic polynomials. Thus using (2.10) we obtain

ί j ^ j

which clearly is a contradiction.

THIRD STEP: NOW assume that α0 £ Ωo and (ii) does not hold.
First we are going to check that

(2.11)

I H(z)-— — u(a0), for every u E C(Ω0) harmonic on Ωo.
r0 z - α0 2πi

The assumption implies that (2.11) is satisfied by u{z) — z71, n — 0 , 1 , . . . ,

and also by u(z) = zn, n — 0 , 1 , . . . , using Cauchy's integral formula. So it

is enough to check that any continuous function w on Ωo, which is harmonic

on Ωo, can be uniformly approximated on Ωo by real parts of holomorphic

polynomials.

By a theorem of Keldysh [19, Thm. 5.15, p. 33] u is the uniform limit

on Ωo of a sequence {un} of harmonic functions on Ωo. Since Ωo is a

Jordan domain, un = Re / n , where fn is a holomorphic function on Ωo.

Again by Runge's theorem there is a holomorphic polynomial Pn such that
S U P Ω \fn{z) ~~ Pn{z)\ < Vn? a n d taking real parts we are done.

Next we see that (2.11) implies that Γ is an Euclidean circle with center
at α.

Suppose first X = D. So H = 1, Γo = Γ and α0 = α. Then (2.11) shows
that

Γ(s) ds
Γ(s) - α 2πϊ

coincides with the harmonic measure of Ω at a. (Here s denotes arc length.)

In particular, —i SΫ}a > 0, for every 5. And if Γ(s) = £i(s) 4- ix2(s) and
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a = αi + ia2 we have that the following differential equation

x[(xι -aλ) +x'2{x2 - α 2 ) = 0

is satisfied, and that shows Γ is an Euclidean circle centered at α.
Now consider the last case left, X = U. Undoing the change of variables

made below the statement of the lemma, it follows from (2.11) that

/ —— : = u(α), for every u E C(Ω), which is harmonic in Ω,
JY Z — a 2m

and the above argument shows that Γ is an Euclidean circle centered at
a. D

2.2. Recall that we have reformulated our problem so that (1.2) is equiva-
lent to (2.3), so we only deal with X = C and X = D. In the first case we
put G = M(2), while in the second one G = Aut (D).

Then using the projection π : G -» X given by π(g) = g(0) we may iden-
tify X as the homogeneous space G/K, where K = 50(2) is the subgroup
of the rotations.

We will follow the notations of [6], so we just remind briefly the main
ones, referring the reader to the above reference for more details.

We identify locally integrable functions with distributions on X by means
of the measure dμ(z) = dm(z) for X = C, and dμ(z) = dm(z)/(l - \z\2)2 for
X = D, where m is the Lebesgue measure on C. The lifting dg of dμ by π is
a Haar measure on G, which is bi-invariant under the action of K. We use
that measure dg to identify locally integrable functions with distributions on
G.

We denote by dk the normalized Haar measure on K, which considered
as a distribution will be denoted as δκ.

If φ is a function on G, φ(g) = φ(g~ι), for g G G. Similarly, is defined
T, for T G T>(G). Recall that the space E'Q(G) of compactly supported bi-
invariant (under K) distributions on G is a topological convolution algebra.

f denotes the lifting to G of the distribution (or function) T on X, while
Sπ denotes the projection to X of the distribution (function) S on G. The
operator r is a bijection from the usual spaces of distributions (functions) on
X onto the corresponding spaces of right-invariant (under K) distributions
(resp., functions) on G, with inverse π .

Let Δ o be either the Euclidean Laplacian Δ for X = C, or the hyperbolic
Laplacian ΔΛ = (1 - |*Γ)2Δ for X = D.

2.3. Now we will sketch the general group approach introduced by Beren-
stein and Zalcman [6] (see also [2]) which we will use to prove our results.
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Recall that we have rewritten (1.2) as (2.3), for any case. Now (2.3) means
that the following convolution equation on G holds:

(2.12) / * T = 0,

where T = TΓθ)αo is the compactly supported Radon measure on X given by

(2.13) Tφ= f -^-H(z) ^ - Ind(Γ0, α0) φ(a0) (φ G C(X)).

Let J be the closed convolution ideal in S'0(G) generated by all the dis-

tributions of the form T * 5, for

where δ0 is the Dirac measure at the origin.
Recall that a spherical function o n l = G/K is a radial eigenfunction of

Δ o such that φ(0) = 1.
For every λ G C there is only one spherical function φ\ such that Aoφχ =

-p{λ)φx, where p{\) = λ2 for X - C and p(λ) = 1 + λ2 for X = D.
The spherical Fourier transform of R G S'0{G) is given by

(^Λ)(λ) = (Λ*ψλ)(e) ( λ € Q .

A theorem of Paley-Wiener-Schwarz type shows that T is an algebra
isomorphism between the convolution algebra £Q(G) and the multiplication
algebra E' of all even entire functions (of one complex variable) of exponential
type which have polynomial growth on R So the spherical Fourier transform
transports the topology of 6'0(G) to E' (see [6, pp. 606-608]). Then / = JF{J)
is a closed ideal of E'. It is easy to check that every zero λ0 of p(λ) is also a
common zero of the functions in /. In fact, φχQ is a radial harmonic function
on X, so it is constant and then so is (S * φ\0)π, for every 5 G ί(C). Thus

(2.14) T(T*S)(\)=τ((S*φx)π)

vanishes at λ = λ0, since the constants obviously satisfy the Cauchy integral
formula.

Using the Schwartz spectral synthesis theorem and a classical division
theorem for entire functions in [2, §3] it is proved that condition (2.12)
implies / is harmonic if and only if the zeros of p(λ) are the only common
zeroes of the functions in the closed ideal / of E', and their "common"
multiplicities in / coincide with their multiplicity in p(λ).
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2.4. Finally we state a regularity result for a free boundary problem which
is just an application of a general theorem [18, Thm. VI.3.3], and which will
be a fundamental tool in the proofs of the "general" theorems.

Lemma 2.3. Let Ω CC C be a C2>ε Jordan domain. Let Γ = dίl. Let
z° be a point on Γ and U an open neighborhood of z0. Assume there are
C2y£ real-valued functions, υ and w, which are solutions to the following free
boundary problem:

(2.15)

Av + cv — dw

Aw + cw + dv

v = w = 0

where c, d, g and h are {real-valued) real-analytic functions on U, and g2 +
h2 > 0 on Γ.

Then Γ admits a real analytic parametrization in a neighborhood of z0.

Proof. The proof is similar to the one given in [2, 4.11], so we will only
sketch the main differences. We will follow the same notations used there,
in particular, a semicolon and subscripts will denote partial derivatives.

Without loss of generality we may assume z° = 0. Moreover, the last
two boundary conditions and the hypothesis on g and h imply that some
first order derivative of v or w is different from zero at the origin. Hence,
after a simple change of variables we also may assume that v;2(0) = 1.
The zeroth hodograph transformation, y\ = rr l5 y2 = v gives a local C2'ε

change of variables at the origin. Then Γ, which is described by the equation
v(xι,x2) = 0 in the rr-coordinates, is given by y2 = 0 in the y-coordinates,
in a neighborhood of 0. Then x2 = φ(yu 2/2)5 where ψ is a function of class
C 2 > ε in a neighborhood of the origin.

Since the higher order terms of our system in the new variables are essen-
tially the same as in [2], the ellipticity with weights sx = s2 = 0, tx = t2 = 2,
follows in the same way. We only recall for later use that, after linearization,
the principal symbols associated with those weights are: 2/n(y, ξ) — P(y, £),
L'AυΛ) = 0, L'21(y,ξ) = P ( y , « W;2, and L'22(y,ξ) = - P ( y , 0 ^ 2 , where

Here we are using the notations of [18].
The first boundary conditions of (2.15) in the new coordinates are: W = 0

and Gψ;2 + ψ i — W.2 = 0; where G(y) = g{yi^{y))-> and they hold around
the origin on y2 = 0.
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Thus we have Bn(y,ξ) = 0, B12(y,ξ) = 1, B21(y,ξ) = t(& +ξ2 G(y)), and
#22(2/? 0 = — i& Taking the weights 7*1 = —2 and r2 = — 1, the "principal
symbol" £?^ of BΛj coincides with i?Λj , for every h,j = 1,2. And let us
prove the coerciveness of the system with respect the given weights. This
will be done by checking that the system of equations

+ L'Ji(0,D)V = 0 inK».,j = l,2,

+ B'j2(0,D)V = 0 on y2 = 0, j = 1,2,

admits no nontrivial bounded exponential solutions of the form:

U(y) = e^Ofe), V(y) = ei^φ(y2)1 with ζ G R \ {0}.

In fact, if the above functions are solutions to that system then both φ
and φ satisfy the differential equation

i ± ^ g"(t) - 2iψ-ξg'(t) - ?g(y) = 0,
Ψ

with boundary conditions: φ(0) = 0 and φ'(0) = iξφ(O) + G(yi,l
The general bounded solution to that equation is g(t) = c eoί, c being an

arbitrary constant and

l e i , . .</>;,

Thus the boundary conditions on φ and </? imply that ψ = 0 and 0(0) (iξ +
G(yi, 0) α) = 0. But since G is real-valued it is easy to see, using the defini-
tion of α, that iξ + G(yi,0) a never vanishes. Hence φ = 0.

Finally, applying the regularity theorem [18, Thm. VI.3.3], we obtain
that both φ and W are real analytic in some neighborhood of the origin.
In particular, v is also real analytic in some neighborhood of z°. Thus the
proof is complete. D

3. The planar case.

3.1. Before carrying out the proof of the planar theorems, we study different
examples of admissible and singular points.

Proposition 3.1. Let Ω CC C be a piecewise C1 Jordan domain, Γ = dΩ
and let a G C\ Ω. Assume there is a straight line separating a and Ω. Then
a is an admissible point for Γ.
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Proof. Note that by the Stokes theorem a point o G C \ Γ is admissible for
Γ if and only if

dm(z) 0ίΩ z - a

Assume α G C\Ω is separated by a line from Ω. Without loss of generality
we may assume the separating line is the imaginary axis and Re a > 0. Then
it is clear that the above integral has negative real part, so a is admisssi-
ble. D

Corollary 3.2. All the points not lying in the convex hull of a Jordan curve
are admissible. In particular, all the exterior points of a convex Jordan curve
are admissible.

The following examples give ways to construct interior admissible and
singular points.

Example 1. Let Γ be a piecewise C1 Jordan curve which is invariant under
a rotation of angle 2π/n, for some integer n > 2, around a point α. Then a
is singular for Γ.

In fact it is clearly enough to consider the case a = 0. Now let Γo be the
arc of Γ lying on the sector 0 < Arg z < ^ . Then

π - l

1 = } e n l 0 ,

and

n-l

Jr z 2πi ^ Λ^Γo z 2πi \f^β ) Ur0 z 2πi)
£ — - ίy" e2^} ( ί - —λ = 0

Example 2. Assume Γ is a piecewise C1 curve which is the boundary of
a bounded starlike region Ω with respect to a point a E C. Suppose the
following condition holds:

There exists a straight line ί passing through a such that it divides Ω in
two parts, Ωx and Ω2, and the image of Ωi by the symmetry with respect to
ί is strictly included in Ω2.

Then a is an admissible point for Γ.

Without loss of generality, using the invariance of the problem we may
assume that ί is the real axis, and Ωι is in the upper half-plane. Since Ω
is starlike with respect to α, we can parametrize Γ as T(θ) = a + r(θ)eιθ,
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—π < θ < π. Then the hypotheses show that there exists a non-empty open
set / in [O,τr] such that r(θ) < r(-0), for θ e J, and r(θ) = r(-0), for
θ G [0, π] \ /. Now

z - a d z Γ β , ,,~, . . , Λ * x d θ

-a 2πi 7_π

 v v ' v " 2πi

= Γ ({r(θ)cosθ-rt(θ)smθ)-i{r(θ)sinθ + r'(e/^^// Λ .
J-π 7̂Γ

Thus

Im ( ί ^^-—) =- Γ (r{θ)sinθ + r'(θ)cosθ)^-
\Jr z — a 2m J 7_π 2π

= - / r(0)sin0—,
7-τr 7Γ

since

" = 0 .
2π

Therefore

f z-a dz\ Γ . d0
Im / — - - / r(0)sm0—

\Jr z-a 2mJ Λ_π π
= / (r(-0)-r(0))sin0—= /(r(-0) - r(0))sin0—> 0.

JO π Ji 7Γ

Remark. There are many curves Γ and points α under the conditions of
the above example. For instance:

(i) Any boundary Γ of a regular polygonal region and any interior point
a different from its barycenter.

(ii) Any ellipse Γ and any interior point different from its center.
(iii) Any boundary Γ of a curvilinear triangle satisfying that its three sides

are equal arcs of Euclidean circles and the center of each one is the opposite
corner ( the so called Reuleaux triangle), and any interior point different
from its barycenter.

Our next result will give examples of Jordan curves Γ without rotation
invariance which, nevertheless, have singular interior points. It also somehow^
shows the difficulty to characterize the interior singular points for general
Jordan curves.

Example 3. Let r be a piecewise C1 function on R which is positive and
2π-periodic. Let Γ be the Jordan curve parametrized by r(θ)eiθ, 0 < θ < 2π.
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Now it is clear from the previous example that

z dz

JT z 2m π

So the origin is singular for Γ if and only if the Fourier coefficient r( l )
vanishes.

Moreover, we can construct Γ such that the origin is singular, but the
curve does not have the rotation invariance of Example 1, for any n. In fact,
that invariance means that the Fourier coefficients f(k) satisfy the equation
r(k)(l — e2πik/n) = 0, i.e. f(k) = 0 for any k which is not a multiple of n.

For instance, r(θ) = 5 + 2cos(20) + 2cos(30) is a positive function such
that for any n > 2 there exists a fc, not multiple of n, and r(k) Φ 0. Since
r( l ) = 0 the corresponding curve Γ has the required properties.

Remark. Note that choosing r conveniently it is possible to construct
examples of non real analytic curves Γ which the boundary of a Jordan C 2 ' ε

domain Ω and such that 0 G Ω is an admissible point.

Example 4. If Γ is the circle \z - c\ = r and a G C \ (Γ U {c}), then a is
admissible for Γ.

In fact, parametrizating the circle Γ in polar coordinates we obtain that

interior to Γf z dz J cφ a if a is interi
JT z- a 2m \ ^ φ 0, otherwise.

3.2. In this subsection we are going to prove Theorem 1.1 for X = C
Let Γ = dD(c, r) and a G C\Γ, a φ c. As we have just seen in Example 4,

a is admissible for Γ and, by Lemma 2.1, we must show that any / G C(C)
satisfying (1.2), for any σ G M(2), is harmonic.

Using the invariance of the problem we may assume that c = 0, and we
denote D = D(0, r). Then consider the Radon measure T = Tr,α given
by (2.13), and the associated closed ideal / in E'. By 2.2 we only have to
prove that 0 is the only common zero of the functions in /, and its common

multiplicity equals 2.
Recall that the spherical functions on C = M(2)/SΌ(2) are given by

r2

(3.1) φx(z)= /
Jo

where as usual Jo is the Bessel function of order 0 (see [16, p. 404]).
Now we compute the generators of /.
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By the change of variables t = f — θ from (3.1) we get

Next recall the generating function of the Bessel functions Jn of integer order:

(3.2) e

where cn(z) = Jn{z), if n > 0, and cn(z) = (—l)nJ^n(z), if n < 0 (see
[20, p.100-1, (5.2.10-11)]). Using that, we have

where Gn,z is the even entire function given by:

Thus using (2.14) we get:

TIT* IF)) ( λ ) = (~Y) {CίnGn'ΛX) ~ a-Gn,aW)

where

an = [ -^— — = Ind(&D(O, r),a)an, and
J\z\-r z — a 2πi

βn= ί -?-l?-.
J\z\=r z — a 2πi

Evaluating βn by straightforward calculations we obtain that

ί 1 if \a\ < r) ί° if |α| < r
A = \ 0 i f | α | > r ) ***>«* n>l, βn = |

Thus we have to consider the even entire functions

Fnjλ) = (λ | * | ) n J n (λ |* | )
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and distinguish two cases:

Case 1: \a\ < r. Then α0 = βo = 1, α n — &n a n d βn = 0, for n > 1. Since
α / 0, by hypothesis, it follows that the closed ideal / is generated by the
functions F0 > r — i*o,α? F n r and -Fn?α, n > 1.

2: |α| > r. Then α n = /?n = 0, for n > 0, and /?n 7̂  0, for π > 1.
Therefore the functions F n r , n > 1, generate /.

Since in any case the functions Fn, r, n > 1, are between the considered
generators of /, to finish the proof we only have to check that the functions
Fn(z) = znJn(z), n > 1, have no common zeroes except 0, and its common
multiplicity equals 2.

Taking into account (3.2) we deduce that if z0 φ 0 is a common zero of
all the Fn, n > 1, then cn(z0) — 0, for n φ 0, and so we get a contradiction.

Since Jλ has a simple zero at the origin, F\ has a double zero at that
point, so the common multiplicity equals 2.

3.3. In order to prove Theorem 1.4, observe, following Berenstein and Zal-
cman [6, §9], that there is a common zero λ G C \ {0} of the functions in
/ if and only if there exists a E C \ {0} such that the Euclidean Fourier
transform T of T, given by

vanishes on the complex circle Ma = {z eC2 : z\ + z\ — a}.
Indeed that equivalence comes from the following relationship between the

spherical Fourier transform on C = M(2)/SO(2) and the Euclidean Fourier
transform:

T{T * S)(ξ) = / f(-eiθξ) S(eiθξ) dθ.
Jo

Now it is not difficult to adapt the argument in [8] to show that, under
the hypothesis of (i), for every a G C \ {0} there is a curve za(t), t > 0, in
Ma such that \T(za(t))\ grows exponentially to +00, as t —• +00, and that
gives the first part of Theorem 1.4.

3.4. In order to prove the second part of Theorem 1.4, assume that (ii)
holds but there is some / G C(C) satisfying (1.2), for every σ G M(2), which
is not harmonic. Then the above argument shows there is some a φ 0 such
that T vanishes on M^.
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As was remarked by Brown, Schreiber and Taylor (see [21, Thm. 1]) using
Euclidean Fourier transforms, that fact means that there exists a solution
S £ £'(C) to the partial differential equation

(3.3) AS + aS = -T.

Since Δ + α is an elliptic operator and T is supported on ΓU{α}, S coincides
with a real analytic function on C \ (Γ U {a}). Moreover, the fact that S
is compactly supported gives by analytic continuation that S vanishes on
C\(Ωϋ{α}).

Let λίa be the fundamental solution of Δ + a given by

where y/a is either square root of a and No is the Neumann function of order
0.

Then S = ~(λfa * Γ), because S e £'(C). Hence S is given by the locally
integrable function

(3.4) u(z)= I Mf ~ 0 f, - Ind(Γ, a) λfa(z - a).

The right hand side of (3.4) is continuous as a function of z on C \ {a}.
Indeed, that can be proved essentially as in [2], taking into account that
NQ(Z) = A(\z\) log \z\ + B(\z\), where A and B are entire functions. In
particular, u is a continuous function on a neiborhood of Γ which vanishes
on C \ Ω, so u — 0 on Γ. Furthermore, (3.3) means that u satisfies the
equation Au + an — —T, which gives that An + au — 0 in Ω \ {α}, so u
is real analytic on Ω \ {a}. We will obtain more boundary conditions on
u using the second Green formula. First observe that, by the regularity
theorem [14, Thm. 6.19], u is of class C2"ε on Ω since so is Ω by hypothesis.
Now let φ E V(C \ {a}). Then

- / ~ ^ = -(T, φ) - (Au + au, φ)
Jr z - a 2m

— / u(z)(Aφ(z) + aφ(z)) dm(z)

= / (Au(z) + au(z))φ(z) dm(z)
JΩε -

f ( dφ du\ J f ( dφ ' du\ _
+ / ujZ- - φ— ds- ujf- - φ— ds

Jr \ on on) JdD(a,ε) V on on)
du

d
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where n is the outward normal to Ωε = Ω \ D(α,ε), and ε > 0 is small
enough. Therefore, if T(s) is the arc length parametrization of Γ, the above
identity gives that

(3.5) *ί(Γ(. ) )= - ί I " W

2π(Γ(s)-a)

Now let u — υ + iw, a = ax + ^2 and T(s) — Xι(s) + ix2{s). Then
n — x'2 — ix\ and therefore, since υ and w vanish on Γ, (3.5) is equivalent to

dv x'2(xi ~ aι) — ̂ 1(^2 ~ ^2) ^2

dx\ [x\ — d\)2 + (x2 — d2)
2 2τr

dv x2{
χι — a\) ~ χ[{χ2 — CL2) i~χΊ)

dx2 (x\ — a>ι)2 + (x2 — a2)
2 2π

dw x[(xι — OΊ) + £2{x2 — ^2) X2

dx\ (x\ — α i) 2 + {x2 — % ) 2 2 π '

dw x[(xι — tti) + #2(^2 ~ #2) ("~^ί)

5x2 (rci — αi) 2 + (x2 ~ ^ 2 ) 2 2π

Since (^(θ)) 2 + (rr2(θ))2 = 1, we easily deduce that

dv dw 1 XΛ — αi „

^ — + ^ - ^ ^ " 7 ^ V X2 o n Γ

αXi UX2 Alt \X\ — ΛiJ -r {X2 ~~ 0*2)

dv dw 1 x2 — a2 ^
Λ ^ ~ = ^~7 ^~Γ? ^¥ o n Γ

0x2 ox\ 2π [Xi — axγ 4- \Xi — a2)
Hence v and w are solutions to the following boundary value problem:

Av + θί\V — a2w = 0 in Ω \ {a}.

Aw + α 2 ^ + <^i^ = 0 in Ω \ {α}.
v — w — 0 on Γ

|2L + gL = ^ on Γ

p . - fi = h on Γ,

(3.6)

where

Finally, applying Lemma 2.3 to (3.6) we conclude that Γ is real-analytic
which is a contradiction. Hence part (ii) of Theorem 1.4 is proved.

3.5. The proofs of the remaining parts of Theorem 1.4 are just a conse-

quence of the methods used by Williams [21, 22] in order to deal with the

Pompeiu problem.

σ(2r) = —- Re ( ] and Λ(j2r) = — Im ( )
^ v ; 2π \z-aj κ ' 2π \z-aj
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First observe that we may assume, by regularization, that our function /
is C°°. Then (1.2) can be written by Stokes' theorem as follows:

(3.7) / -δs dm(z) = 0, for every σ e M(2).
Jςi Z — a

(Here it is essential that the derivative of an holomorphic Euclidean motion
is constant.)
Thus it is clear that (3.7) can be written as the convolution equation

Using the above arguments (see 2.2, 2.3 and 3.3) it is not difficult to see
that (3.8) implies / is entire if and only if the Euclidean Fourier transform
F of the function XQ(Z)/(Z — a) does not vanish at the origin and also it is
not identically zero on any Mα, a φ 0.

Since a is an admissible point for Γ, F(0) φ 0. Hence, if there exists some
non entire function / 6 C°°(C) satisfying (1.2), there is a Φ 0 such that
F = 0 on Ma. Then it follows that the equation

(3.9) AS + aS=-
z — a

has a solution S G £'(C).
Now the proof of [21, Thm. 3] under the hypothesis of (iii) works. Just

observe that the problem is localized near Γ and the main requirement on
the data of the partial differential equation (3.9) is that it does not vanish on
Γ. Moreover the Cauchy-Kowalewsky and Holmgrem's uniqueness theorems
are also true for non-characteristic systems of elliptic equations. Thus the
third part of Theorem 1.4 is proved. Finally, the hypothesis of (iv) and the
second Green formula gives that a is real, and it is not difficult to adapt the
arguments in [22] (who used the deep regularity methods of Caffarelli [9])
to obtain the desired conclusion, which completes the proof of Theorem 1.4.

Remark. Note that in part (ii) of Theorem 1.4 we could have considered
instead of (1.2) the equivalent Pompeiu-type condition (3.7). Proceeding
similarly with the proof of 3.4 we would have obtained a different kind of
boundary value problem. Then in order to obtain the real-analyticity of its
solutions using the method of the proof of Lemma 2.3, we would have to use
a first hodograph transformation. But the lowest regularity required for Ω
to apply [18, Thm. VI.3.3] would then have been C 4 ε .
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4. The unit disk and upper half-plane cases.

4.1. In this subsection we will prove Theorem 1.1 when X is either D or U.
Let Γ CC X be the circle dD(c,r). As we saw in Section 2 condition (1.2)
is equivalent to (2.3), so we are dealing with the circle Γo = dD(co,ro).

For computational reasons it is convenient to rewrite (2.3) as an integral
over an Euclidean circle centered at the origin. Let ΔD(6,p) be the closed
pseudohyperbolic disk which coincides with the closed Euclidean disk D —
D(cOiro) (see (2.5)). Then it is clear that in (2.3) we can replace σ by σoτ6,
where τb is given by (2.8).

Making the change of variables z = rb(w), we obtain that

(/oσor,-1)^) dz _ 1 1 - |fe[2 f (/oσ)H dw
O z-a0

 K ' 2πi 2πi 1 - aob JΓι w-d { b{ ' 'l + bw'

where d = τ^{a0), and Γ\ = τ^(Γ0) = dAD(0,p) = dD(0,p).
Thus we observe that condition (2.3) can be written as the convolution

equation (2.12) in the group G = Aut (D), where now T is defined by

and
= H(τb(z)) = H(b)

' 1 + bz 1 + wz

with w = b if H = 1, and w = γ^| otherwise.

4.2. Recall that the spherical functions on D = Aut (D)/5O(2) are given
by

F(a,β;/y;z) being the classical hypergeometric function.
As we discuss in Section 2 we have to show that ±i are the only common

zeroes of the functions in / and its common multiplicity equals 1. So let us
compute the generators of the ideal I in the present case. First observe that

(see [2, 3.7]) where

ζ=-MV(i-Wa)
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Then using (2.14) we get that

where

l-ba0 \J\Z\=P z-d V β2m) (1 - pψ

Ind(&D(O,p),d)

!n 1 - ba0 \J\z\=p z-d w 2πiJ ( 1 - p 2 ) " '

Now it is clear that

On the other hand, by a straightforward (and tedious) calculation one ob-
tains that

,p),d) - (-wd)"} {j

(Here we have to note that d = 0 means b — α0.)
Now we have to distinguish three cases:

Case 1: |d| > p. Then θίn—βn — 0, for n > 0, 70 = 0 and ηn = 1, for n > 1.

Therefore the functions Fn ? / 9, n > 1, generate the closed ideal /.

Case 2: d = 0. Then α 0 = A) — 7o — 1? ^n — βn — 0, for n > 1. Moreover,
for n > 1, 7 n = 0 if and only if w = 0, which only happens when X — D,
Γ = dD(0,r) and α = 0. But this case is excluded in the hypothesis. Thus
7 n φ 0, for n > 1. Therefore the functions F 0 ) P — 1 and F n p , n > 1, are
generators of /.

Case 3: |rf| < p. Then

,v 7? ^ " 1 7 | 9 ' ''•» -9\TΪ vv v ) ) \ r ) v I I / / / »

In Pn
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since \w\ < 1 and \d\ < p < 1. Therefore the functions Fn,p and F n ? d , n > 1,
generate /.

In any case the functions FHjP, n > 1, are between the considered gen-
erators of /. And the argument of [2, 3.8] based in the hypergeometric
equation shows that those functions only have ±i as common zeroes with
common multiplicity equal to 1. So the proof of Theorem 1.1 is complete.

Remark. If Γ = dD(c,r) CC U and a = c then (1.2) is just (1.3) so
following carefully the above proof we obtain the Corollary 1.2.

4.1. The general case for D and U.

Recall that in Section 2 we have rewritten the problems in D and U in a
unified way.

Now we are going to rewrite (2.3) in a more convenient way for our pur-
poses. Roughly speaking, we change the role of a by the origin. By making
the change of variables z = ταo (w) we obtain

ώL= I (/oσ)M A,
2TΓΪ J w ( l + aEw) v o V " 2m'

where I\ = r_αo(Γo). Note that 0 £ I\ and, when H(z) = ^ ^ ,

ff(τQ») = l_

1 + αjty 1 + f^w'

Thus (2.3) is equivalent to

^ ° σψ} — = Ind(Γ1? 0)/(σ(0)) for every σ G Aut (D),
z(l + 6̂ r) 2πι

where b is either α0 (X = D) or (α0 — 1)/(1 — α0) (X = U). Note that in any
case |6| < 1.

Consider the compactly supported Radon measure T = TTl given by

= I ,fZl x ̂  ~ Ind(Γ l5 0)^(0) (φ G C(D)).
7ri ^(1 + 02:) ^TΓΪ

Then (2.3) can be rewritten as the convolution equation (2.12) in the group
Aut(D).

Let J be the closed ideal in £'(Aut(D)) generated by the distributions
T*5, S G £'(D), and let / be the image under the spherical Fourier transform
ofj.
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Now assume there is a non harmonic function / on D satisfying the above
convolution equation. Then the argument given in Section 2 shows that
there are two posibilities:

(a) ±i are common zeros of the functions in / with common multiplicity
bigger than 1.

(b) There exists a common zero λ0 φ ±i of the functions in /.
Our next goal will be to prove that (a) cannot happen and furthermore,

that the λ0 of (b) is different from i(l + 2fc), for any k G Z+, i.e. it is a
non-simple point (see [16, p. 46, Prop. 4.8]). That will be done by showing
that the function h = JΓ(Γ * δ0) G / does not vanish at λ = i(l + 2k), for
any k G Z+, and has a zero of multiplicity equal to 1 at λ = i.

By Stokes' theorem we have that

Tφ = 2iί f { Z l dm(z) (φ g 8(D)),
JΩ1 z(l-h bz)

where Ωi is the interior of IV So h(\) = — (z/2)(l + λ2) /io(λ), where

with F0(\x) = F((3 4- iλ)/2, (3 - iλ)/2;2;x). And we have to show that
Λo(i(l + 2*)) 7̂  0, for every k G Z+.

Since (1 + 6^)(1 — | ^ | 2 ) 2 has positive real part for z G D, the above fact
will follow as soon as we prove that F0(i(l + 2k), x) > 0, for every x < 0 and
keZ+. Indeed, Fo(*, x) = 1/(1 - x) > 0, for x < 0, and

for every x < 0 and A; > 1.

The fact that the common zero λ0 of / is a non-simple point implies that
the Helgason Fourier Transform of T vanishes at (±λ0, ζ), for every ζ e 3D.
Then using a division theorem due to Helgason [17, Thm. 8.5] one obtains
that there exists S G £'(B) such that AhS - aS = Γ, where a = -(1 + λ2)
(see [2, 4.5, 4.6]). Now consider the fundamental solution Nα of Δh — α in
D given by

NM) QΛcosh(2r)) Q

where α = u(u+1) and Q^ is the Legendre function of degree v of the second
kind.
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Then we can write S as (T * Na)π. And it follows that S coincides with
the locally integrable function

/ A i \ / \ I w f tι-w,ιw; QiW

w(\ + bw)

where

is the Green function of Ah — a. Now note that the right hand side of (4.1)
defines a continuous function on D \ {0}. An argument like the one given in
the planar case shows that

(4.2) Ahu-au = 0 in Ω^

(4.3) u = 0 o n l \ a n d -^(Γx(θ)) =

where s denotes arc length. Moreover, a general regularity theorem

[14, Thm. 6.19] shows that (4.2) u is of class C2>ε on Ωi, since so is Ωχ

Prom (4.3) we deduce that if z = X\ + 1x2 and u = v + iw, then

(4.4)

(4.5)

where

9i*) =

Note that (4

(4.6)

(4.7)

27Γ 1

.2) is

r t e i ••'•

equivalent

Ahυ-

Ahw-

dv

dv

dx2

to

Oί\V +

a2v —

dw

dw

and

a2w -

= 9,

= Λ,

h(z) =

= 0

= 0

1

2π

in Ωχ

in Ωχ

Finally, (4.6), (4.7), (4.5) and (4.5) together with v = w = 0 on Γi mean
that the real valued C2 > ε functions v and w satisfy (2.15) with

Since g2(z) + h2(z) > 0 on I\, by lemma 2.3, we deduce that I\ is real-
analytic, so Γ is also real-analytic, and the proof of Theorem 1.3 is com-
plete. D
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