THE QUASI-LINEARITY PROBLEM FOR C*-ALGEBRAS

L.J. BUNCE AND J.D. MAITLAND WRIGHT

Let \mathcal{A} be a C^* -algebra with no quotient isomorphic to the algebra of all two-by-two matrices. Let μ be a quasi-linear functional on \mathcal{A} . Then μ is linear if, and only if, the restriction of μ to the closed unit ball of \mathcal{A} is uniformly weakly continuous.

Introduction.

Throughout this paper, \mathcal{A} will be a C^* -algebra and \mathcal{A} will be the real Banach space of self-adjoint elements of \mathcal{A} . The unit ball of \mathcal{A} is \mathcal{A}_1 and the unit ball of \mathcal{A} is \mathcal{A}_1 . We do not assume the existence of a unit in \mathcal{A} .

Definition. A quasi-linear functional on A is a function $\mu : A \to \mathbb{R}$ such that, whenever B is an abelian subalgebra of A, the restriction of μ to B is linear. Furthermore μ is required to be bounded on the closed unit ball of A.

Given any quasi-linear functional μ on A we may extend it to A by defining

$$\tilde{\mu}(x+iy) = \mu(x) + i\mu(y)$$

whenever $x \in A$ and $y \in A$. Then $\tilde{\mu}$ will be linear on each maximal abelian *-subalgebra of \mathcal{A} . We shall abuse our notation by writing ' μ ' instead of ' $\tilde{\mu}$ '.

When $\mathcal{A} = M_2(\mathbb{C})$, the C^* -algebra of all two-by-two matrices over \mathbb{C} , there exist examples of quasi-linear functionals on \mathcal{A} which are not linear.

Definition. A local quasi-linear functional on A is a function $\mu : A \to \mathbb{R}$ such that, for each x in A, μ is linear on the smallest norm closed subalgebra of A containing x. Furthermore μ is required to be bounded on the closed unit ball of A.

Clearly each quasi-linear functional on A is a local quasi-linear functional. Surprisingly, the converse is false, even when A is abelian (see Aarnes [2]). However when A has a rich supply of projections (e.g. when A is a von Neumann algebra) each local quasi-linear functional is quasi-linear [3].

The solution of the Mackey-Gleason Problem shows that every quasi-linear functional on a von Neumann algebra \mathcal{M} , where \mathcal{M} has no direct summand of Type I_2 , is linear [4, 5, 6]. This was first established for positive quasi-linear functionals by the conjunction of the work of Christensen [7] and

Yeadon [11], and for σ -finite factors by the work of Paschciewicz [10]. All build on the fundamental theorem of Gleason [8].

Although quasi-linear functionals on general C^* -algebras seem much harder to tackle than the von Neumann algebra problem, we can apply the von Neumann results to make progress. In particular, we prove:

Let \mathcal{A} be a C^* -algebra with no quotient isomorphic to $M_2(\mathbb{C})$. Let μ be a (local) quasi-linear functional on A. Then μ is linear if, and only if, the restriction of μ to A_1 , is uniformly weakly continuous.

1. Preliminaries: Uniform Continuity.

Let X be a real or complex vector space. Let \mathcal{F} be a locally convex topology for X. Let V be a \mathcal{F} -open neighbourhood of 0. We call V symmetric if V is convex and, whenever $x \in V$ then $-x \in V$.

Let B be a subset of X. A scalar valued function on X, μ , is said to be *uniformly continuous* on B, with respect to the \mathcal{F} -topology, if, given any $\epsilon > 0$, there exists an open symmetric neighbourhood of 0, V, such that whenever $x \in B$, $y \in B$ and $x - y \in V$ then

$$|\mu(x) - \mu(y)| < \epsilon.$$

Lemma 1.1. Let X be a Banach space and let \mathcal{F} be any locally convex topology for X which is stronger than the weak topology. Let μ be any bounded linear functional on X. Then μ is uniformly \mathcal{F} -continuous on X.

Proof. Choose $\epsilon > 0$. Let

$$V = \{ x \in X : |\mu(x)| < \epsilon \}$$
$$= \mu^{-1} \{ \lambda : |\lambda| < \epsilon \}.$$

Then V is open in the weak topology of X. Hence V is a symmetric \mathcal{F} -open neighbourhood of o such that $x - y \in V$ implies

$$|\mu(x) - \mu(y)| = |\mu(x - y)| < \epsilon.$$

Lemma 1.2. Let X be a subspace of a Banach space Y. Let \mathcal{G} be a locally convex topology for Y which is weaker than the norm topology. Let \mathcal{F} be the relative topology induced on X by \mathcal{G} . Let B be a subset of X and let C be the closure of B in Y, with respect to the \mathcal{G} -topology. Let $\mu : B \to \mathbb{C}$ be uniformly continuous on B with respect to the \mathcal{F} -topology. Then there exists

a function $\overline{\mu} : C \to \mathbb{C}$ which extends μ and which is uniformly \mathcal{G} -continuous. Furthermore, if μ is bounded on B then $\overline{\mu}$ is bounded on C.

Proof. Since \mathcal{F} is the relative topology induced by \mathcal{G} , μ is uniformly \mathcal{G} continuous on B. Let K be the closure of $\mu[B]$ in \mathbb{C} . Then K is a complete
metric space. So, see [9, page 125], μ has a unique extension to $\overline{\mu} : C \to K$ where $\overline{\mu}$ is uniformly \mathcal{G} -continuous.

If μ is bounded on B then K is bounded and so $\overline{\mu}$ is bounded on C.

Lemma 1.3. Let X be a Banach space. Let X_1 be the closed unit ball of X and let X_1^{**} be closed unit ball of X^{**} . Let $\mu : X_1 \to \mathbb{C}$ be a bounded function which is uniformly weakly continuous. Then μ has a unique extension to $\overline{\mu} : X_1^{**} \to \mathbb{C}$ where $\overline{\mu}$ is bounded and uniformly weak*-continuous.

Proof. Let \mathcal{G} be the weak*-topology on X^{**} . For each $\phi \in X^*$

$$X \cap \{x \in X^{**} : |\phi(x)| < 1\} = \{x \in X : |\phi(x)| < 1\}.$$

So \mathcal{G} induces the weak topology on X. So μ is uniformly \mathcal{G} -continuous on X_1 . Since X_1 is dense in X_1^{**} , with respect to the \mathcal{G} -topology, it follows from Lemma 1.2 that $\overline{\mu}$ exists and has the required properties.

2. Algebraic Preliminaries.

Lemma 2.1. Let \mathcal{B} be a non-abelian C^* -subalgebra of a von Neumann algebra \mathcal{M} , where \mathcal{M} is of Type I_2 . Then \mathcal{B} has a surjective homomorphism onto $M_2(\mathbb{C})$, the algebra of all two-by-two complex matrices.

Proof. We have $\mathcal{M} = M_2(\mathbb{C}) \otimes C(S)$ where S is hyperstonian. For each $s \in S$ there is a homomorphism π_S from \mathcal{M} onto $M_2(\mathbb{C})$ defined by

$$\pi_{S} \left\{ \begin{aligned} x_{11} & x_{12} \\ x_{21} & x_{22} \end{aligned} \right\} = \left\{ \begin{aligned} x_{11}(s) & x_{12}(s) \\ x_{21}(s) & x_{22}(s) \end{aligned} \right\}.$$

Clearly, if $\pi_S[\mathcal{B}]$ is abelian for every s then \mathcal{B} is abelian. So, for some s, $\pi_S[\mathcal{B}]$ is a non-abelian^{*}-subalgebra of $M_2(\mathbb{C})$ and so equals $M_2(\mathbb{C})$.

Lemma 2.2. Let π be a representation of a C^{*}-algebra \mathcal{A} on a Hilbert space H. Let $\mathcal{M} = \pi[\mathcal{A}]''$ where the von Neumann algebra \mathcal{M} has a direct summand of Type I_2 . Then \mathcal{A} has a surjective homomorphism onto $M_2(\mathbb{C})$.

Proof. Let e be a central projection of \mathcal{M} such that $e\mathcal{M}$ is of Type I_2 . Since $\pi[\mathcal{A}]$ is dense in \mathcal{M} in the strong operator topology, $e\pi[\mathcal{A}]$ is dense in $e\mathcal{M}$. Since $e\mathcal{M}$ is not abelian neither is $e\pi[\mathcal{A}]$. So, by the preceding lemma, $e\pi[\mathcal{A}]$, and hence \mathcal{A} , has a surjective homomorphism onto $M_2(\mathbb{C})$.

3. Linearity.

We now come to our basic theorem.

Theorem 3.1. Let \mathcal{A} be a C^* -algebra which has no quotient isomorphic to $M_2(\mathbb{C})$. Let π be a representation of \mathcal{A} on a Hilbert space H. Let \mathcal{M} be the closure of \mathcal{A} in the strong operator-topology of L(H). Let μ be a local quasi-linear functional on $\pi[A]$, which is uniformly continuous on the closed unit ball of $\pi[A]$ with respect to the topology induced on $\pi[A]$ by the strong operator topology of L(H). Then μ is linear.

Proof. We may suppose, by restricting to a closed subspace of H if necessary, that $\pi[\mathcal{A}]$ has an upward directed net converging, in the strong operator topology to the identity of H. Clearly $\pi[\mathcal{A}]$ has no quotient isomorphic to $M_2(\mathbb{C})$ for, otherwise, $M_2(\mathbb{C})$ would be a quotient of \mathcal{A} .

So, to simplify our notation we shall suppose that $\mathcal{A} = \pi[\mathcal{A}] \subset L(H)$.

Let \mathcal{M} be the double commutant of \mathcal{A} in L(H). Let M_1 be the set of all self-adjoint elements in the unit ball of \mathcal{M} . Then, by the Kaplansky Density Theorem, A_1 is dense in M_1 with respect to the strong operator-topology of L(H).

Then, by Lemma 1.2, there exists $\overline{\mu} : M_1 \to \mathbb{C}$ such that $\overline{\mu}$ is an extension of $\mu \mid A_1$ and such that $\overline{\mu}$ is continuous with respect to the strong operator topology. Since $\mu[A_1]$ is bounded so, also, is $\overline{\mu}[M_1]$.

We know that for each $a \in A_1$ and each $t \in \mathbb{R}$,

$$\mu(ta) = t\mu(a).$$

We extend the definition of $\overline{\mu}$ to the whole of M by defining

$$\overline{\mu}(x) = \|x\|\overline{\mu}\left(\frac{1}{\|x\|}x\right)$$

whenever $x \in M$ with ||x|| > 1. It is then easy to verify that if (a_{λ}) is a bounded net in A which converges to x in the strong operator topology of L(H) then

$$\mu(a_{\lambda}) \to \overline{\mu}(x).$$

Also, whenever $(x_n)(n = 1, 2..)$ is a bounded sequence in M, converging to x in the strong operator topology, then

$$\overline{\mu}(x_n) \to \overline{\mu}(x)$$

Let x be a fixed element of M and let (a_{λ}) be a bounded net in A which converges to x in the strong operator topology. Then, for each positive whole number $n, a_{\lambda}^n \to x^n$ in the strong operator topology. So $\mu(a_{\lambda}^n) \to \overline{\mu}(x^n)$. Let ϕ_1, ϕ_2 be polynomials with real coefficients and zero constant term. Then, since μ is a local quasi-linear functional,

$$\mu \{\phi_1(a_{\lambda})\} + \mu \{\phi_2(a_{\lambda})\} = \mu \{(\phi_1 + \phi_2)(a_{\lambda})\}.$$

Now

$$\phi_1(a_\lambda) \to \phi_1(x), \phi_2(a_\lambda) \to \phi_2(x).$$

and

$$(\phi_1 + \phi_2)(a_\lambda) \rightarrow (\phi_1 + \phi_2)(x)$$

in the strong operator topology. So

$$\overline{\mu}\left\{\phi_1(x)\right\} + \overline{\mu}\left\{\phi_2(x)\right\} = \overline{\mu}\left\{\phi_1(x) + \phi_2(x)\right\}.$$

Let N(x) be the norm-closure of the set of all elements of the form $\phi(x)$, where ϕ is a polynomial with real coefficients and zero constant term. Then, since each norm convergent sequence is bounded and strongly convergent, $\overline{\mu}$ is linear on N(x).

Let $p_1, p_2, \dots p_n$ be orthogonal projections in M. Let

$$x = p_1 + \frac{1}{2}p_2 + \ldots + \frac{1}{2^{n-1}}p_n + \frac{1}{2^n} \left\{ 1 - p_1 - p_2 - \ldots - p_n \right\}.$$

Then $(x^k)(k = 1, 2, ...)$ converges in norm to p_1 . So p_1 is in N(x). Then

$$\{(2x-2p_1)^k\} (k=1,2,...)$$

converges in norm to p_2 . Similarly, $p_3, p_4, \dots p_n$ and $1 - p_1 - p_2 - \dots - p_n$ are all in N(x).

Let $\nu(p) = \overline{\mu}(p)$ for each projection p in M. Then ν is a bounded finitely additive measure on the projections of M.

Since \mathcal{A} has no quotient isomorphic to $M_2(\mathbb{C})$, it follows from Lemma 2.2 that \mathcal{M} has no direct summand of Type I_2 . Hence, by Theorem A of [4] or [6], ν extends to a bounded linear functional on \mathcal{M} , which we again denote by ν . From the argument of the preceding paragraph, $\overline{\mu}$ and ν coincide on finite (real) linear combinations of orthogonal projections. Hence by normcontinuity and spectral theory, $\overline{\mu}(x) = \nu(x)$ for each $x \in \mathcal{M}$. Thus μ is linear.

As an application of the above theorem, we shall see that when a quasilinear functional μ has a "control functional", it is forced to be linear. We need a definition. **Definition.** Let ϕ be a positive linear functional in \mathcal{A} and let μ be a quasilinear functional on \mathcal{A} . Then μ is said to be uniformly absolutely continuous with respect to ϕ if, given any $\epsilon > 0$ there can be found $\delta > 0$ such that, whenever $b \in A_1$ and $c \in A_1$ and $\phi((b-c)^2) < \delta$, then $|\mu(b) - \mu(c)| < \epsilon$.

Corollary 3.2. Let \mathcal{A} be a C^* -algebra which has no quotient isomorphic to $M_2(\mathbb{C})$. Let μ be a local quasi-linear functional on \mathcal{A} which is uniformly absolutly continuous with respect to ϕ , where ϕ is a positive linear functional in \mathcal{A}^* . Then μ is linear.

Proof. Let (π, H) be the universal representation of \mathcal{A} on its universal representation space H. We identify \mathcal{A} with its image under π and identify $\pi[\mathcal{A}]''$ with \mathcal{A}^{**} .

Let ξ be a vector in H which induces ϕ , that is,

$$\phi(a) = \langle a\xi, \xi \rangle$$
 for each $a \in \mathcal{A}$.

Choose $\epsilon > 0$. Then, by hypothesis, there exists $\delta > 0$ such that, whenever $b \in A_1$ and $c \in A_1$ with

$$\|(b-c)\xi\|^2 < \delta$$

then

$$|\mu(b) - \mu(c)| < \epsilon.$$

So μ is uniformly continuous on A_1 , with respect to the strong operator topology of L(H). Hence, by the preceding theorem μ is linear.

Theorem 3.3. Let \mathcal{A} be a C^* -algebra with no quotient isomorphic to $M_2(\mathbb{C})$. Let μ be a (local) quasi-linear functional on A. Then μ is a bounded linear functional if, and only if, μ is uniformly weakly continuous on the unit ball of A.

Proof. By Lemma 1.1 each bounded linear functional on A is uniformly weakly continuous. We now assume that μ is uniformly weakly continuous on A_1 . Let (π, H) be the universal representation of A. Let $\mathcal{M} = \pi[\mathcal{A}]''$. Then A^{**} can be identified with \mathcal{M} and A^{**} with M.

By Lemma 1.3 there exists a function $\overline{\mu} : M_1 \to \mathbb{C}$ which is uniformly continuous with respect to the weak*-topology on M_1 and such that $\overline{\mu}|A_1$ coincides with $\mu|A_1$.

The weak*-topology on M_1 coincides with the weak-operator topology of L(H), restricted to M_1 . This is weaker than the strong operator-topology restricted to M_1 . So $\overline{\mu}$ is uniformly continuous on M_1 with respect to the strong operator topology of L(H). Thus μ is uniformly continuous on A_1

with respect to the strong operator topology of L(H). Then, by Theorem 3.1, μ is linear.

References

- J.F. Aarnes, Quasi-states on C^{*}-algebras, Trans. Amer. Math. Soc., 149 (1970), 601-625.
- [2] J.F. Aarnes, (pre-print).
- C.A. Akemann and S.M. Newberger, *Physical states on a C^{*}-algebra*, Proc. Amer. Math. Soc., 40 (1973), 500.
- [4] L.J. Bunce and J.D.M. Wright, The Mackey-Gleason Problem, Bull. Amer. Math. Soc., 26 (1992), 288-293.
- [5] L.J. Bunce and J.D.M. Wright, Complex Mesures on Projections in von Neumann Algebras, J. London. Math. Soc., 46 (1992), 269-279.
- [6] L.J. Bunce and J.D.M. Wright, The Mackey-Gleason Problem for Vector Measures on Projections in Von Neumann Algebras, J. London. Math. Soc., 49 (1994), 131-149.
- [7] E. Christensen, Measures on Projections and Physical states, Comm. Math. Phys., 86 (1982), 529-538.
- [8] A.M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech., 6 (1957), 885-893.
- [9] J.L. Kelley, General Topology, Van Nostrand, (1953).
- [10] A. Paszkiewicz, Measures on Projections in W^{*}-factors, J. Funct. Anal., 62 (1985), 295-311.
- F.W. Yeadon, Finitely additive measures on Projections in finite W*-algebras, Bull. London Math. Soc., 16 (1984), 145-150.

Received June 25, 1993.

THE UNIVERSITY OF READING READING RG6 2AX, ENGLAND

AND

ISAAC NEWTON INSTITUTE FOR MATHEMATICAL SCIENCES 20 Clarkson Road Cambridge, U.K.