THE QUASI-LINEARITY PROBLEM FOR C^{*}-ALGEBRAS

L.J. Bunce and J.D. Maitland Wright

Abstract

Let \mathcal{A} be a C^{*}-algebra with no quotient isomorphic to the algebra of all two-by-two matrices. Let μ be a quasi-linear functional on \mathcal{A}. Then μ is linear if, and only if, the restriction of μ to the closed unit ball of \mathcal{A} is uniformly weakly continuous.

Introduction.

Throughout this paper, \mathcal{A} will be a C^{*}-algebra and A will be the real Banach space of self-adjoint elements of \mathcal{A}. The unit ball of A is A_{1} and the unit ball of \mathcal{A} is \mathcal{A}_{1}. We do not assume the existence of a unit in \mathcal{A}.
Definition. A quasi-linear functional on A is a function $\mu: A \rightarrow \mathbb{R}$ such that, whenever B is an abelian subalgebra of A, the restriction of μ to B is linear. Furthermore μ is required to be bounded on the closed unit ball of A.

Given any quasi-linear functional μ on A we may extend it to \mathcal{A} by defining

$$
\tilde{\mu}(x+i y)=\mu(x)+i \mu(y)
$$

whenever $x \in A$ and $y \in A$. Then $\tilde{\mu}$ will be linear on each maximal abelian *-subalgebra of \mathcal{A}. We shall abuse our notation by writing ' μ ' instead of ' $\tilde{\text { ' }}$.

When $\mathcal{A}=\mathrm{M}_{2}(\mathbb{C})$, the C^{*}-algebra of all two-by-two matrices over \mathbb{C}, there exist examples of quasi-linear functionals on \mathcal{A} which are not linear.
Definition. A local quasi-linear functional on A is a function $\mu: A \rightarrow \mathbb{R}$ such that, for each x in A, μ is linear on the smallest norm closed subalgebra of A containing x. Furthermore μ is required to be bounded on the closed unit ball of A.

Clearly each quasi-linear functional on A is a local quasi-linear functional. Surprisingly, the converse is false, even when A is abelian (see Aarnes [2]). However when A has a rich supply of projections (e.g. when \mathcal{A} is a von Neumann algebra) each local quasi-linear functional is quasi-linear [3].

The solution of the Mackey-Gleason Problem shows that every quasi-linear functional on a von Neumann algebra \mathcal{M}, where \mathcal{M} has no direct summand of Type I_{2}, is linear $[\mathbf{4}, \mathbf{5}, \mathbf{6}]$. This was first established for positive quasilinear functionals by the conjunction of the work of Christensen [7] and

Yeadon [11], and for σ-finite factors by the work of Paschciewicz [10]. All build on the fundamental theorem of Gleason [8].

Although quasi-linear functionals on general C^{*}-algebras seem much harder to tackle than the von Neumann algebra problem, we can apply the von Neumann results to make progress. In particular, we prove:

Let \mathcal{A} be a C^{*}-algebra with no quotient isomorphic to $\mathrm{M}_{2}(\mathbb{C})$. Let μ be a (local) quasi-linear functional on A. Then μ is linear if, and only if, the restriction of μ to A_{1}, is uniformly weakly continuous.

1. Preliminaries: Uniform Continuity.

Let X be a real or complex vector space. Let \mathcal{F} be a locally convex topology for X. Let V be a \mathcal{F}-open neighbourhood of 0 . We call V symmetric if V is convex and, whenever $x \in V$ then $-x \in V$.

Let B be a subset of X. A scalar valued function on X, μ, is said to be uniformly continuous on B, with respect to the \mathcal{F}-topology, if, given any $\epsilon>0$, there exists an open symmetric neighbourhood of $0, V$, such that whenever $x \in B, y \in B$ and $x-y \in V$ then

$$
|\mu(x)-\mu(y)|<\epsilon .
$$

Lemma 1.1. Let X be a Banach space and let \mathcal{F} be any locally convex topology for X which is stronger than the weak topology. Let μ be any bounded linear functional on X. Then μ is uniformly \mathcal{F}-continuous on X.

Proof. Choose $\epsilon>0$. Let

$$
\begin{aligned}
V & =\{x \in X:|\mu(x)|<\epsilon\} \\
& =\mu^{-1}\{\lambda:|\lambda|<\epsilon\} .
\end{aligned}
$$

Then V is open in the weak topology of X. Hence V is a symmetric \mathcal{F}-open neighbourhood of o such that $x-y \in V$ implies

$$
|\mu(x)-\mu(y)|=|\mu(x-y)|<\epsilon
$$

Lemma 1.2. Let X be a subspace of a Banach space Y. Let \mathcal{G} be a locally convex topology for Y which is weaker than the norm topology. Let \mathcal{F} be the relative topology induced on X by \mathcal{G}. Let B be a subset of X and let C be the closure of B in Y, with respect to the \mathcal{G}-topology. Let $\mu: B \rightarrow \mathbb{C}$ be uniformly continuous on B with respect to the \mathcal{F}-topology. Then there exists
a function $\bar{\mu}: C \rightarrow \mathbb{C}$ which extends μ and which is uniformly \mathcal{G}-continuous. Furthermore, if μ is bounded on B then $\bar{\mu}$ is bounded on C.

Proof. Since \mathcal{F} is the relative topology induced by \mathcal{G}, μ is uniformly \mathcal{G} continuous on B. Let K be the closure of $\mu[B]$ in \mathbb{C}. Then K is a complete metric space. So, see [9, page 125], μ has a unique extension to $\bar{\mu}: C \rightarrow K$ where $\bar{\mu}$ is uniformly \mathcal{G}-continuous.

If μ is bounded on B then K is bounded and so $\bar{\mu}$ is bounded on C.
Lemma 1.3. Let X be a Banach space. Let X_{1} be the closed unit ball of X and let $X_{1}^{* *}$ be closed unit ball of $X^{* *}$. Let $\mu: X_{1} \rightarrow \mathbb{C}$ be a bounded function which is uniformly weakly continuous. Then μ has a unique extension to $\bar{\mu}: X_{1}^{* *} \rightarrow \mathbb{C}$ where $\bar{\mu}$ is bounded and uniformly weak ${ }^{*}$-continuous.

Proof. Let \mathcal{G} be the weak*-topology on $X^{* *}$. For each $\phi \in X^{*}$

$$
X \cap\left\{x \in X^{* *}:|\phi(x)|<1\right\}=\{x \in X:|\phi(x)|<1\}
$$

So \mathcal{G} induces the weak topology on X. So μ is uniformly \mathcal{G}-continuous on X_{1}. Since X_{1} is dense in $X_{1}^{* *}$, with respect to the \mathcal{G}-topology, it follows from Lemma 1.2 that $\bar{\mu}$ exists and has the required properties.

2. Algebraic Preliminaries.

Lemma 2.1. Let \mathcal{B} be a non-abelian C^{*}-subalgebra of a von Neumann algebra \mathcal{M}, where \mathcal{M} is of Type I_{2}. Then \mathcal{B} has a surjective homomorphism onto $\mathrm{M}_{2}(\mathbb{C})$, the algebra of all two-by-two complex matrices.

Proof. We have $\mathcal{M}=\mathrm{M}_{2}(\mathbb{C}) \bar{\otimes} C(S)$ where S is hyperstonian. For each $s \in S$ there is a homomorphism π_{S} from \mathcal{M} onto $\mathrm{M}_{2}(\mathbb{C})$ defined by

$$
\pi_{S}\left\{\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right\}=\left\{\begin{array}{l}
x_{11}(s) \\
x_{12}(s) \\
x_{21}(s) \\
x_{22}(s)
\end{array}\right\}
$$

Clearly, if $\pi_{S}[\mathcal{B}]$ is abelian for every s then \mathcal{B} is abelian. So, for some s, $\pi_{S}[\mathcal{B}]$ is a non-abelian*-subalgebra of $\mathrm{M}_{2}(\mathbb{C})$ and so equals $\mathrm{M}_{2}(\mathbb{C})$.

Lemma 2.2. Let π be a representation of a C^{*}-algebra \mathcal{A} on a Hilbert space H. Let $\mathcal{M}=\pi[\mathcal{A}]^{\prime \prime}$ where the von Neumann algebra \mathcal{M} has a direct summand of Type I_{2}. Then \mathcal{A} has a surjective homomorphism onto $\mathrm{M}_{2}(\mathbb{C})$.

Proof. Let e be a central projection of \mathcal{M} such that $e \mathcal{M}$ is of Type I_{2}. Since $\pi[\mathcal{A}]$ is dense in \mathcal{M} in the strong operator topology, $e \pi[\mathcal{A}]$ is dense in $e \mathcal{M}$. Since $e \mathcal{M}$ is not abelian neither is $e \pi[\mathcal{A}]$. So, by the preceding lemma, $e \pi[\mathcal{A}]$, and hence \mathcal{A}, has a surjective homomorphism onto $\mathrm{M}_{2}(\mathbb{C})$.

3. Linearity.

We now come to our basic theorem.
Theorem 3.1. Let \mathcal{A} be a C^{*}-algebra which has no quotient isomorphic to $\mathrm{M}_{2}(\mathbb{C})$. Let π be a representation of \mathcal{A} on a Hilbert space H. Let \mathcal{M} be the closure of \mathcal{A} in the strong operator-topology of $L(H)$. Let μ be a local quasi-linear functional on $\pi[A]$, which is uniformly continuous on the closed unit ball of $\pi[A]$ with respect to the topology induced on $\pi[A]$ by the strong operator topology of $L(H)$. Then μ is linear.

Proof. We may suppose, by restricting to a closed subspace of H if necessary, that $\pi[\mathcal{A}]$ has an upward directed net converging, in the strong operator topology to the identity of H. Clearly $\pi[\mathcal{A}]$ has no quotient isomorphic to $\mathrm{M}_{2}(\mathbb{C})$ for, otherwise, $\mathrm{M}_{2}(\mathbb{C})$ would be a quotient of \mathcal{A}.

So, to simplify our notation we shall suppose that $\mathcal{A}=\pi[\mathcal{A}] \subset \mathrm{£}(H)$.
Let \mathcal{M} be the double commutant of \mathcal{A} in $\mathrm{L}(H)$. Let M_{1} be the set of all self-adjoint elements in the unit ball of M. Then, by the Kaplansky Density Theorem, A_{1} is dense in M_{1} with respect to the strong operator-topology of $\mathrm{L}(H)$.

Then, by Lemma 1.2 , there exists $\bar{\mu}: \mathrm{M}_{1} \rightarrow \mathbb{C}$ such that $\bar{\mu}$ is an extension of $\mu \mid A_{1}$ and such that $\bar{\mu}$ is continuous with respect to the strong operator topology. Since $\mu\left[A_{1}\right]$ is bounded so, also, is $\bar{\mu}\left[M_{1}\right]$.

We know that for each $a \in A_{1}$ and each $t \in \mathbb{R}$,

$$
\mu(t a)=t \mu(a)
$$

We extend the definition of $\bar{\mu}$ to the whole of M by defining

$$
\bar{\mu}(x)=\|x\| \bar{\mu}\left(\frac{1}{\|x\|} x\right)
$$

whenever $x \in M$ with $\|x\|>1$. It is then easy to verify that if $\left(a_{\lambda}\right)$ is a bounded net in A which converges to x in the strong operator topology of $\mathrm{L}(H)$ then

$$
\mu\left(a_{\lambda}\right) \rightarrow \bar{\mu}(x)
$$

Also, whenever $\left(x_{n}\right)(n=1,2 .$.$) is a bounded sequence in M$, converging to x in the strong operator topology, then

$$
\bar{\mu}\left(x_{n}\right) \rightarrow \bar{\mu}(x) .
$$

Let x be a fixed element of M and let $\left(a_{\lambda}\right)$ be a bounded net in A which converges to x in the strong operator topology. Then, for each positive whole number $n, a_{\lambda}^{n} \rightarrow x^{n}$ in the strong operator topology. So $\mu\left(a_{\lambda}^{n}\right) \rightarrow \bar{\mu}\left(x^{n}\right)$.

Let ϕ_{1}, ϕ_{2} be polynomials with real coefficients and zero constant term. Then, since μ is a local quasi-linear functional,

$$
\mu\left\{\phi_{1}\left(a_{\lambda}\right)\right\}+\mu\left\{\phi_{2}\left(a_{\lambda}\right)\right\}=\mu\left\{\left(\phi_{1}+\phi_{2}\right)\left(a_{\lambda}\right)\right\}
$$

Now

$$
\phi_{1}\left(a_{\lambda}\right) \rightarrow \phi_{1}(x), \phi_{2}\left(a_{\lambda}\right) \rightarrow \phi_{2}(x) .
$$

and

$$
\left(\phi_{1}+\phi_{2}\right)\left(a_{\lambda}\right) \rightarrow\left(\phi_{1}+\phi_{2}\right)(x)
$$

in the strong operator topology. So

$$
\bar{\mu}\left\{\phi_{1}(x)\right\}+\bar{\mu}\left\{\phi_{2}(x)\right\}=\bar{\mu}\left\{\phi_{1}(x)+\phi_{2}(x)\right\}
$$

Let $N(x)$ be the norm-closure of the set of all elements of the form $\phi(x)$, where ϕ is a polynomial with real coefficients and zero constant term. Then, since each norm convergent sequence is bounded and strongly convergent, $\bar{\mu}$ is linear on $N(x)$.

Let $p_{1}, p_{2}, \ldots p_{n}$ be orthogonal projections in M.
Let

$$
x=p_{1}+\frac{1}{2} p_{2}+\ldots+\frac{1}{2^{n-1}} p_{n}+\frac{1}{2^{n}}\left\{1-p_{1}-p_{2}-\ldots-p_{n}\right\}
$$

Then $\left(x^{k}\right)(k=1,2, \ldots)$ converges in norm to p_{1}. So p_{1} is in $N(x)$. Then

$$
\left\{\left(2 x-2 p_{1}\right)^{k}\right\}(k=1,2, \ldots)
$$

converges in norm to p_{2}. Similarly, $p_{3}, p_{4}, \ldots p_{n}$ and $1-p_{1}-p_{2}-\ldots-p_{n}$ are all in $N(x)$.

Let $\nu(p)=\bar{\mu}(p)$ for each projection p in M. Then ν is a bounded finitely additive measure on the projections of M.

Since \mathcal{A} has no quotient isomorphic to $M_{2}(\mathbb{C})$, it follows from Lemma 2.2 that \mathcal{M} has no direct summand of Type I_{2}. Hence, by Theorem A of [4] or $[6], \nu$ extends to a bounded linear functional on \mathcal{M}, which we again denote by ν. From the argument of the preceding paragraph, $\bar{\mu}$ and ν coincide on finite (real) linear combinations of orthogonal projections. Hence by normcontinuity and spectral theory, $\bar{\mu}(x)=\nu(x)$ for each $x \in M$. Thus μ is linear.

As an application of the above theorem, we shall see that when a quasilinear functional μ has a "control functional", it is forced to be linear. We need a definition.

Definition. Let ϕ be a positive linear functional in $\stackrel{*}{\mathcal{A}}$ and let μ be a quasilinear functional on \mathcal{A}. Then μ is said to be uniformly absolutely continuous with respect to ϕ if, given any $\epsilon>0$ there can be found $\delta>0$ such that, whenever $b \in A_{1}$ and $c \in A_{1}$ and $\phi\left((b-c)^{2}\right)<\delta$, then $|\mu(b)-\mu(c)|<\epsilon$.

Corollary 3.2. Let \mathcal{A} be a C^{*}-algebra which has no quotient isomorphic to $\mathrm{M}_{2}(\mathbb{C})$. Let μ be a local quasi-linear functional on \mathcal{A} which is uniformly absolutly continuous with respect to ϕ, where ϕ is a positive linear functional in \mathcal{A}^{*}. Then μ is linear.

Proof. Let (π, H) be the universal representation of \mathcal{A} on its universal representation space H. We identify \mathcal{A} with its image under π and identify $\pi[\mathcal{A}]^{\prime \prime}$ with $\mathcal{A}^{* *}$.

Let ξ be a vector in H which induces ϕ, that is,

$$
\phi(a)=\langle a \xi, \xi\rangle \text { for each } a \in \mathcal{A}
$$

Choose $\epsilon>0$. Then, by hypothesis, there exists $\delta>0$ such that, whenever $b \in A_{1}$ and $c \in A_{1}$ with

$$
\|(b-c) \xi\|^{2}<\delta
$$

then

$$
|\mu(b)-\mu(c)|<\epsilon
$$

So μ is uniformly continuous on A_{1}, with respect to the strong operator topology of $\mathrm{L}(H)$. Hence, by the preceding theorem μ is linear.

Theorem 3.3. Let \mathcal{A} be a C^{*}-algebra with no quotient isomorphic to $\mathrm{M}_{2}(\mathbb{C})$. Let μ be a (local) quasi-linear functional on A. Then μ is a bounded linear functional if, and only if, μ is uniformly weakly continuous on the unit ball of A.

Proof. By Lemma 1.1 each bounded linear functional on A is uniformly weakly continuous. We now assume that μ is uniformly weakly continuous on A_{1}. Let (π, H) be the universal representation of \mathcal{A}. Let $\mathcal{M}=\pi[\mathcal{A}]^{\prime \prime}$. Then $A^{* *}$ can be identified with \mathcal{M} and $A^{* *}$ with M.

By Lemma 1.3 there exists a function $\bar{\mu}: M_{1} \rightarrow \mathbb{C}$ which is uniformly continuous with respect to the weak*-topology on M_{1} and such that $\bar{\mu} \mid A_{1}$ coincides with $\mu \mid A_{1}$.

The weak*-topology on M_{1} coincides with the weak-operator topology of $\mathrm{L}(H)$, restricted to M_{1}. This is weaker than the strong operator-topology restricted to M_{1}. So $\bar{\mu}$ is uniformly continuous on M_{1} with respect to the strong operator topology of $\mathrm{L}(H)$. Thus μ is uniformly continuous on A_{1}
with respect to the strong operator topology of $\mathrm{L}(H)$. Then, by Theorem $3.1, \mu$ is linear.

References

[1] J.F. Aarnes, Quasi-states on C^{*}-algebras, Trans. Amer. Math. Soc., 149 (1970), 601-625.
[2] J.F. Aarnes, (pre-print).
[3] C.A. Akemann and S.M. Newberger, Physical states on a C^{*}-algebra, Proc. Amer. Math. Soc., 40 (1973), 500.
[4] L.J. Bunce and J.D.M. Wright, The Mackey-Gleason Problem, Bull. Amer. Math. Soc., 26 (1992), 288-293.
[5] L.J. Bunce and J.D.M. Wright, Complex Mesures on Projections in von Neumann Algebras, J. London. Math. Soc., 46 (1992), 269-279.
[6] L.J. Bunce and J.D.M. Wright, The Mackey-Gleason Problem for Vector Measures on Projections in Von Neumann Algebras, J. London. Math. Soc., 49 (1994), 131-149.
[7] E. Christensen, Measures on Projections and Physical states, Comm. Math. Phys., 86 (1982), 529-538.
[8] A.M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech., 6 (1957), 885-893.
[9] J.L. Kelley, General Topology, Van Nostrand, (1953).
[10] A. Paszkiewicz, Measures on Projections in W^{*}-factors, J. Funct. Anal., 62 (1985), 295-311.
[11] F.W. Yeadon, Finitely additive measures on Projections in finite W^{*}-algebras, Bull. London Math. Soc., 16 (1984), 145-150.

Received June 25, 1993.
The University of Reading
Reading RG6 2Ax, England
AND
Isaac Newton Institute for Mathematical Sciences
20 Clarkson Road
Cambridge, U.K.

