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STABLE RELATIONS II:
CORONA SEMIPROJECTIVITY AND DIMENSION-DROP

C*-ALGEBRAS

TERRY A. LORING

We prove that the relations in any presentation of the
dimension-drop interval are stable, meaning there is a per-
turbation of all approximate representations into exact rep-
resentations. The dimension-drop interval is the algebra of all
Mn-valued continuous function on the interval that are zero at
one end-point and scalar at the other. This has applications
to mod-p if-theory, lifting problems and classification prob-
lems in C*-algebras. For many applications, the perturbation
must respect precise functorial conditions. To make this pos-
sible, we develop a matricial version of Kasparov's technical
theorem.

1. Introduction.

Suppose Ίl is a finite set of relations on a finite set G of generators so that

C*(G\1Z) is isomorphic to the dimension-drop interval

ίn={/eC[θ,i]|/(θ),/(i)eCί}.

For simplicity, we assume the relations are of the form p(gι,>- ,gn) — 0
for some *-polynomial p. Weak stability means that an approximate rep-
resentation ( # ! , . . . , £ n ) , meaning an n-tuple of elements in a C*-algebra A
such that each p(xι,... , # n ) is close zero, can be perturbed slightly within
A to an actual representation (x1,... , έ n ) . That this (and a little more)
can be done was shown in [8], but only for one specific set of relations.
The relations 71 are stable if the pertubation can be done so that whenever
there is a *-homomorphism φ : A -» B which sends (xu . . . , xn) to an exact
representation, then φ(ϊj) = φ{xj)>

There are several advantages to stability over weak stability. It is far more
useful when dealing with extensions of C*-algebras and it depends only on
the universal C*-algebra, not the choice of relations for that C*-algebra.
The reason for our focus on the dimension-drop interval is primarily that
this is the most complicated building block used in the inductive limits,
called AD algebras, that appeared in Elliott's first classification paper [7].
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462 TERRY A. LORING

See [5] for an application of stable relations to the extension problem for AD
algebras. See [4] for a discussion of the role of the dimension-drop interval
in mod-p K-theory. Our results will be stated in the more general context
of dimension-drop graphs, but certainly the dimension-drop interval is the
most important case.

In §2 we give a characterization, in terms of lifting properties, of the uni-
versal C*-algebras for stable relations. Since this property, called semipro-
jectivity, depends only on the C*-algebra, this frees us from having to specify
generators and relations in many cases. We have a third, equivalent prop-
erty involving corona algebras. This characterization formalizes some of the
ideas used by Olsen and Pedersen [11] to show that nilpotents always lift.

For any C*-algebra A we let M(A) denote the multiplier algebra of A and
C(A) denote the corona algebra M(A)/A.

By a dimension-drop graph, we mean a C*-algebra of the form

{/ e C{X:Mn) I f(υ) e CI for all vertices υ}

where X is the underlying topological space for a graph and n is a positive
integer. We call this a dimension-drop interval in the special case where X
is the unit interval with 0 and 1 as vertices.

To handle these algebras we need several generalizations of Kasparov's
Technical Theorem. The purpose of these results is to show that, inside
of a corona algebra, one can find good substitutes for elements that would
exist if only the corona algebra were a von Neumann algebra. For example,
there is an acceptable substitute for the logarithm of a unitary with full
spectrum. Also, if Mn(A) sits inside the corona algebra, there are elements
that function just like matrix units in the way they multiply against Mn(A),
even if A is not unital but only σ-unital.

These technical lemmas are very similar to the second splitting lemma in
BDF [3, Lemma 7.3]. The basic form of these results is to show that every
φ : A -> C{E) factors through some injection A -> Aλ. In the BDF case, A
and Aι are commutative and C(E) is the Calkin algebra.

Once we have shown that a dimension-drop graph is universal for a stable
set of relations, a host of perturbation, lifting and homotopy results follow
regarding homomorphisms (and asymptotic morphisms) out of dimension-
drop C*-algebras. For most of these we refer the reader to [8] but we will
mention one of these, [8, Theorem 3.8]. If a separable C*-algebra A has the
property that any finite set of its elements can be approximated by elements
of a C*-subalgebra isomorphic to a quotient of a dimension-drop graph, then
A is the inductive limit of dimension-drop graphs.

A C*-algebra that will figure prominently in all this the cone CMn =
Mn(Co(0,1]). By [8, Theorem 4.9] we know that CMn is projective. This is
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a very useful fact as there are many copies of C Mn inside of a dimension-drop
graph.

The author is grateful to Gert Pedersen for discussions which lead to much
simplified proofs in Section four.

2. A characterizat ion of stability.

We begin with a characterization of projectivity in terms of corona algebras
that is suggested by [11]. This then generalizes to give a characterization of
semiprojectivity and of stability for relations. One consequence is that two
finite sets of relations that determine isomorphic universal C*-algebras are
either both stable, or both not.

All our definitions are with respect to the full category of not-necessarily-
unital C*-algebras and *-homomorphisms.

Definition 2.1. A C*-algebra A is projectiυe if, for every surjection
π : B —» C and every *-homomorphism ψ : A —>• C, there exists a *-
homomorphism φ : A —>> B such that π o φ = ψ. We call A corona projectiυe
if this holds only in the special case where C — C{E) for some σ-unital
C*-algebra E.

Theorem 2.2. Let A be a separable C* -algebra. Then A is projectiυe if and

only if A is corona projectiυe.

Proof. The forward implication is trivial. Suppose that A is corona projec-

tive and that φ : A -> C and a surjection π : B —>• C are given. Replacing B,

if necessary, by the closed span of a lift of a dense sequence in φ(A) reduces

the problem to the case where B is separable.

Let / = ker(π) and let IL denote the annihilator of / in B. As IΠ I1^ — 0

and / + I1- is an essential ideal in β, we have the following commutative

diagram with the left square a pull-back.

B > B/I1- —^->

A —φ—+ B/I

By the corona projectivity of A, we have

which is a lift of the composition of the bottom row:

We now claim that π2"
1(im(^2)) <Ξ im(^x). Suppose b G π^1(im(^2)) Thus

π2(b) — L2(c) for some c. But c = π3 (a) for some α, so

) = L2(C) = π2(6).
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This implies

ιλ(a) -be ker(π2) = ±

and hence b G Ίm(iι).

By the claim, we may regard φ as a map into B/I^. The pull-back
property now shows that φ and φ together determine the desired lifting
to B. D

Following Blackadar [1] we define semiprojectivity as a lifting property.
This turns out to have better closure properties than the version of semipro-
jectivity due to Effros and Kaminker [6], which is better suited to some
homotopy calculations.

Definition 2.3. A C*-algebra A is called semiprojectiυe if, for every *-homo-
morphism ψ : A -+ B/\J Jn, where the In are increasing ideals in J5, and with
π m : B/Im —> B/\J In the natural quotient map, there exists, for some ra, a
*-homomorphism φ : A —> B/Im such that π m o φ = φ. We call A corona
semiprojective if this holds only in the special case where B/[j In = C(E)
for some σ-unital C*-algebra E. D

Theorem 2.4. Let A be a separable C* -algebra. Then A is semiprojectiυe
if and only if A is corona semiprojectiυe.

Proof. The proof is similar to that of Theorem 2.2 except that one uses the
following diagram, with / = (J In.

B/In

I-
B/I

Notice that (J In + IL — I + / x , so corona semiprojectivity applies, and the
left square is still a pull-back since / Π (In + I2-) = In. D

If A is unital, then it is easy to see that one need only check the corona
semiprojectivity condition in the special case φ(l) = 1.

We now recall the definition of stability from [8]. We shall assume that
G — {pi,... , gι} is a finite set of generators and ΊZ = {pu . . . ,p&} is a finite
set of *-polynomials with zero constant terms. By C*(<7|7£), we denote the
universal (not-necessarily-unital) C*-algebra generated by ^i, . . . ,#/ subject
to

llg ll < 1 and Pi(gu... ,gι) = 0 .
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By C*(G\TZ), we denote the universal unital C*-algebra generated by gu ... ,gt

subject to

\\gά\\<l + e a n d \\pi(gu... ,<?/) | | < e.

Sometimes, to be more explicit, we will denote the generators of C*(G\7Z)
by g\,... ,g\. We let Pe denote the surjection

Pe :C:(

which sends g^ to g^.

If, for every η > 0, there exists e > 0 and a *-homomorphism

σe :C*(G\π) ->CΪ(G\π)

such that

I k ( f t ) - 5 ] | | < ί 7 , j = i,...,ι

and Peo σe — id, then R is stable.

Theorem 2.5. For α finitely presented C*-algebra C*(G\1Z), the following
conditions are equivalent:

(1) U is stable.

(2) C*(G\R) is semiprojectiυe.

(3) C*(G\R) is corona semiprojective.

Proof. The implication (1) => (2) follows from [8, Theorem 3.2] while (2) O
(3) is a special case of Theorem 2.4. For (2) => (1), applying semiprojectivity
to the identity map immediately gives a map σ> : C*(G\1Z) —>C?(G\TZ) with
P- o σ f = id. Let σe equal the composition of σz with the natural surjection
of Ce*(G|π) onto C*(G\7i) for e sufficiently small, 0 < e < e. D

3. Generalizations of Kasparov's Technical Theorem.

Using the techniques of [8] and [11] we derive several generalizations of
Kasparov's Technical Theorem (KTT). Our goal is to find the closest possible
thing to matrix units inside a corona algebra for C*-subalgebras of the form
A ® F where A is σ-unital and F is finite-dimensional.

All our theorems involve a subset D with which these ersatz matrix units
are to commute. Easier proofs exist if one ignores D and sticks with the
separable case. Indeed, one may use the projectivity of C M n , or 0 Co(0,1],
and [12, Proposition 3.12.1] along the lines of an observation of Cuntz de-
scribed in [2, §12.4]. We will discuss this further in recent joint work with
Gert Pedersen [10].
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In this section, E will always denote a σ-unital C*-algebra and C(E) its
corona algebra.

Theorem 3.1. Suppose -Ai,... ,An are σ-unital C*-subalgebras of C(E).
Let D be a separable, unital C*-subalgebra of C(E) such that

AjDAk = 0, jφ k.

There exist # i , . . . ,gn in C(E) Π D' such that

0<gά<l, j = l , . . . , n ,

9j9k = 0, j φ k,

= agj = α, Vα G A.

Proof. For n = 2 this is equivalent to KTT. Indeed, it is very close to

the equivalent result [11, Theorem 3.7]. An induction argument gives the

general case. D

Notice that AχA2 = 0 implies that the C*-algebra generated by A± U A2

is isomorphic to Aλ φ i 2 . Therefore, Kasparov's Technical Theorem implic-
itly involves a *-homomorphism Aγ Θ A2 —> C{E). A natural setting for
generalization is Mn(A) -> C(E).

Theorem 3.2. Suppose A is a σ-unital C*-algebra, φ is a *-homomorphism

ψ : Mn(A) -+ C(E)

and Ίm(φ) commutes with a separable subset D of C(E). There exists a *-

homomorphism

such that, setting q^ —^{t® e^ ),

{a ® ekι) = δjkφ(a <8>eu), \/a e A.

Proof. Without loss of generality, D may be assumed to be a unital C*-

algebra. Applying Theorem 3.1 to

D, φ(A ® e n ) , . . . , φ(A ® enn)

we obtain g 1 } . . . , # n in C(E) Π Df such that
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gjφ(a®en) = φ{a®ejj).

Let / i b e a completely positive element of A. Since, for any a in A,

giψ(hah ® ejk) = gιgjψ{h ® ejj)φ(ah ® ejk)

— δijψ(hah ® ejk)

we conclude

(1) g{φ{a ® ejk) = δτjφ(a ® e i Λ)

for all i , j , A; and all a E A.

Let x = φ(h <S> w) where

0
1 0

w — 1 ' • •

• . o

1 0

Since x is normal and both x and \x\ = φ(h ® /) commute with J9, we may
apply [11, Theorem 4.4]. Thus, there exists u in C(E) Π D', with ||ix|| < 1,
such that x = u\x\ and x* — u*\x\*

Multiplying x — u\x\ by φ(ah ® e^ ) yields

uφ(hah ® e^ ) = φ(hah ® e i + 1 j ) .

(Addition taken mod n.) Therefore, by this and a similar calculation based

on x* = u*\x\,

(2) uφ(a ® e^ ) = </?(α ® e ί + l j ) and u*φ(a ® ei<7 ) = <p(α ® ez_1>i7-),

for all j , A: and all a £ A.
We now make a first approximation on what shall be the images, under

Ψ, of the generators t® βjλ of C Mn. Let

fln = gnu
n~lgu

and then for j = n — 1,... ,2,

Clearly a3 £ D' and

(3) < |α 3 | < < | α n | <
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By induction, α, E gjC(E)gχ. This forces some of the relations determining
C M n (as in [8, Proposition 2.7]) to hold, namely

= 0 , j,k = 2,... ,n,

(4) α>=0, jφk.

We claim that, for all b G A and all i, j , fc,

(5) α^(6 ® ejΊb) = ̂ -^(6 ® eik) and α*<̂ (& ® e ifc) = £#

For i = n this follows directly from (1) and (2). But then

\an\φ(b ® eiJk) = δlάφ(b ® eiJb)

so one may handle the case i = n — 1, et cetera.

As done in the proof of [8, Lemma 4.8], for j = 2,... , n we define

By the calculations done in the proof of [8, Lemma 4.8] we conclude that
setting ψ(t ® en) = ά{ defines a homomorphism

ψ:CMn-+C(E)nD'.

For every b £ A, (5) implies

(6) άiψ(b ® eifc) = iijv(6 ® e iΛ) and αj^(6 ® ejk) = ί<j^(6 ® eljfe)

whence

^ ( * ® eij)<p(6 ® ekl) = δjkφ(b ® e^).

D

4. Interval stretching in corona algebras.

We continue in this section to assume C(E) is the corona algebra of some

σ-unital C*-algebra.

Let us consider a simple case of Kasparov's Technical Theorem. Given

Λi,/*2 in C(E) such that

(7) 0 < hi < 1 (t = 1,2) and hxh2 = 0,
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the conclusion is there exists an additional element so that now

0 < z< 1, 0 < hi < 1 (ί = 1,2),

(8) hxz = 0, h2z = h2 and /ii/z2 = 0.

The universal C*-algebra for these relations are as follows:

C*{huh2 I (7) holds ) £* C0([-1,0) U (0,1])

and
C*(huh2iz I (8) holds ) ^C 0([-1,0) U(0,2]).

For this reason, we think of Kasparov's Technical Theorem as a device for
stretching an interval algebra at a point.

We introduce some notation to be used for the rest of this section.
Let X C C denote the union of the unit circle and the interval [—2, — 1],

Let
An = {/ € C(X,Mn) I / ( -2 ) is scalar}

and let a : Mn(Co(0,1))~ -» An denote the inclusion of the subalgebra of
functions in C(X, Mn) that are constant and scalar on [—2, —1].

Lemma 4.1. Let B denote any separable, unital C*-algebra. Given a *-
homomorphism

whose image commutes with a separable subset D C C(E), there exists *-
homomorphism

φ:An®B^ C(E)

such that φ o (a <8> Ίdβ) = φ and whose image commutes with D.

Proof. Since An and Mn(Co(0,1))~ are nuclear there is no ambiguity in the
tensor product. As the tensor products involve unital C*-algebras they are
characterized as the universal C*-algebras containing commuting copies of
the two factors. By altering the subset D one easily shows that it suffices to
prove this result only when B — C.

Proposition 2.8 of [8] shows that Mn(Co(0,1))~ is the universal unital
C*-algebra generated by x, α2, α 3 , . . . , an subject to the relations

dk =0, 2<j,k< n ,

a*ak = 0 , j Φ fc,
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CLjdj — X X,

χ*χ = xx* = —x —

Similarly, one may show that An is the universal unital C*-algebra generated
by x, &2, &3, , K subject to the relations

(b*jbj-l)(xx*+x*x)=09

/ y o r * •••••• ιι Ύ * O / * »••'•••• ^ ^ ^ ' Ύ * i O / *

and the inclusion a corresponds to the *-homomorphism determined by the
assignment x κ->* X^CLJ I-> 6J |^ | . Working with the same relations, but in
nonunital category, one sees that this is a special case of Theorem 3.2.

D

Lemma 4.2. Suppose J is an ideal in A and A is a sub-C*-algebra of B.
Let Jβ denote the ideal of B generated by J. There is an isomorphism

Φ : B/JB -> B *A (A/J)

defined by Φ(b + JB) = b.

We will need to prove technical results regarding maps from general di-
mension-drop graphs into corona algebras. For clarity we will concentrate
on the most important case, that of the dimension-drop intervals, ϊ n . Recall

this being the unital version of the dimension-drop interval.
Although isomorphic to ϊ n we also consider

Jn = {/ e C[-l,2] I / ( - I ) and /(2) are scalar}.

Let i : ln -> J n denote the inclusion that extends a function to be constant
on [-1,0] and on [1,2].

Theorem 4.3. Suppose ψ : ϊ n —> C(E) is a *-homomorphism whose image
commutes with a separable subset D. Then there exists a *-homomorphism
φ : Sn -> C(E) Π D' such that φ o ι — φ.
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Proof. Consider Mn(Co(0,1))~ ® C[0,1] which we identify with

Cn = {/ 6 C([0,l]2,Mn) I /(0,t) - /(l,ί) E CJ, Vt}.

Restriction to the diagonal gives us a surjection

p:Mn(Co(0,l))~®C[0,l]^ίn.

One can check that by the last lemma we have the commutative diagram

(An ® C[0,1]) * C n ln -^-+ Sn

T t
(α<g)id)*id t

Cn *C n ίn —^-> In

and so this result thus follows from Lemma 4.1. D

Remark. The generalization of Theorem 4.3 to the case of extending maps
of dimension-drop graphs into corona algebras follows by the same methods,
but the notation is significantly worse.

5. Stability for dimension-drop graphs.

Suppose X is a graph. We denote the associated dimension-drop C*-algebra

by

Cv ert(^,Mn) = {/ E C(X,Mn) I f(v) e CI for all vertices v}.

Theorem 5.1. For every graph X, and every positive integer n, the C*-
algebra Cvert(X, Mn) is universal for a stable set of relations.

Proof. We may reduce to the case of X connected using Proposition 3.10
and [8, Theorem 5.1]. For connected graphs, the proof is by induction on
the number of vertices. If there is but one vertex then

Cveτt(X,Mn)^ ίφMn(C0(0,l))

where J is the number of edges. This has stable relations by [8, Theorem 5.1].
Now suppose X has at least two vertices, v0 and vλ. We will need an

auxiliary space, X, which is obtained from X by stretching all edges attached
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to v0 or Vι. Topologically, X will be a copy of X. We shall use v0 and υλ to
denote the appropriate vertices in X.

Choose a function
ho : X-+[-1,2]

such that h>Ql([-~ 1,0]) consists of the union of half-closed subintervals, con-
taining υ0, of each edge adjacent to v0. We may assume a similar statement

holds for / ^ ( [ M ] ) a n d υ i
We will identify X with the quotient of X obtained by collapsing

/ι̂ "1([—1,0]) to a point and /ι^"1([l,2]) to a different point. We will also
consider two copies of the graph obtained from X by collapsing the two des-
ignated vertices together. We let Ϋ denote the quotient of X obtained by
identifying v0 with V\ and Y denote the quotient of X obtained by collapsing
h^d-l.O]) U h^([1,2]) to a point.

Accordingly, we will be making identifications of the various dimension-
drop algebras with subalgebras of C(X, Mn). Of course, Cvert(^> Mn) is de-
fined as such a subalgebra. The remaining identifications are:

Cvert(X,Mn) = {/ I /Or) = /K) if ho(x) < 0

and f(x) = f(Vl) if ho(x) > 1},

Cveτt(Y,Mn) = {/ I f(x) = f(υ0) if ho(x) < 0 or ho(x) > 1}

Cvert(Ϋ,Mn) = {f \ f(v0) =

Our strategy is based on the observation that Cvert(X,Mn) is generated
by the subalgebra Cveτt(Y,Mn) and the element

h = hi ® / where hι(x) — max(min(/ιo(^), l)?0).

A way to express the relation between h and Cvert(i^ Mn) is that

By Theorem 2.6, our task is reduced to proving corona semiprojectivity
for Cvert(X, Mn) while assuming it for Cveτt(Ϋ, Mn). So suppose that we are
given a unital *-homomorphism

ψ : Cv e r t(X,Mn) -

By Theorem 4.3 and the remark following, there is an extension of ψ to

φ:Cveτt(X,Mn)->C(E).

By the induction hypothesis, the restriction of φ to Cvertί^j^π) can be
lifted to
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for some m. This leads to the following commutative diagram:

C v e r t(Ϋ,M n) B/In

Cvett(X,Mn) C(E)

Let H be any lift of φ(h) to B/Im such that 0 < H < 1. Now define

H = φ(l(h0) <g> /) + φ{m{h0f'
2 ® I)Hψ{m{hQy'* ® I)

where Z and m are the functions

( 0, ί < 0 , Γ -ί, ί < 0 ,

ΐ, 0 < t < 1, m(ί) = < 0, 0 < t < 1,
2 - ί , l < ΐ < 2 , [ ί - 1 , l < ί < 2 .

These are denned so that I + mh2 = h2 where h2 is the function
fθ, ί<0,

h2(t) = < t, 0 < < < 1,

[l, 1 <t<2.
Notice also that h2(h0) = hi.

Clearly H is selfadjoint. In fact, it is also a lift of φ{h) since

= φ(l(h0) ® /) + φ(m{h0) ® I)φ(h2(h0) ® J)

For any / ® T € Cvert(y, Mn)

T)H = Hψ{f

By replacing H by h2(H), we have found a lift of < (̂/ι), with 0 < H < 1, and
a lift of ^Ίcvert(v,Mn) that commute.

Expressing this conclusion differently, we have shown that given a unital
map



474 TERRY A. LORING

we can find an m and a map making the diagram commute where D is the
universal unital C*-algebra generated by a copy of Cveτt(Y, Mn) and a central
element h such that 0 < h < 1. I.e.,

We have no further need for X so v0 and vλ again denote the specified
vertices in X. We regard Y as the quotient of X, with quotient map η : X ->
Y which collapses v0 and vλ to a single vertex we call w0.

Let us identify D with

{g e C{Y x [0,1], Mn) I ρ(w,t) G d for all vertices}.

The copy of CveTt(Y,Mn) and the extra element h appear as functions in D
constant in one variable or the other. There is a sort of diagonal map

Δ : X -> Y x [0,1], A(x) = {η(x), hλ (x))

which induces a surjection β : D -» CVert(X5 Λίn).
We need also a quotient of D where the relation (9) holds approximately.

Consider

Zδ - {(τ/(x),t) G r x [0,1] I |e 2 π ί / l l ( a ; ) - e 2 π ί ί | < δ},

where δ is a small number to be named later, and let

Dδ = {g e C(Z,Mn) I g(υ,t) G C/ for all vertices}.

Since Δ maps into Z it induces

By increasing m we may assume that the map D —> B/Im factors through
ZV Therefore, we are done if we exhibit a right-inverse to β0. This exists
because there is a retraction of Zδ onto im(Δ) which sends {v,t) to {v,t')
for every vertex v. To be able to describe this retraction we break up Zδ as
Zδ = Zi U Z2 U Z3 where

,t) I |Λχ(x) - ί| < 1/4,0 < t < 1},

The retraction sends Z2 to (wo,l) and Z3 to (wo,0). Each point (r (a ), ί)
in Z\ is sent to (η(x),s) where 5 is the unique number in (0,1) such that
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e2ms _ e2πι/ii(x) gy choosing δ sufficiently small, we ensure that (y,t) g

Z2 U Z3 for any vertex υ except for v = w0. Therefore this is the desired

retraction. •
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