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ON THE COHOMOLOGY OF THE LIE ALGEBRA L2

ALICE FIALOWSKI

We compute the 0-, 1-, and 2-dimensional homology of the
vector field Lie algebra L2 with coefficients in the modules
JFλ μ, and conjecture that the higher dimensional homology
for any λ and μ is zero. We completely compute the 0- and
1-dimensional homology with coefficients in the more compli-
cated modules F\^μ. We also give a conjecture on this homol-
ogy in any dimension for generic λ and μ.

Introduction.

Let us consider the infinite dimensional Lie algebra Wι°ι of polynomial vector
fields f(x)d/dx on C. It is a dense subalgebra of VFi, the Lie algebra of
formal vector fields on C. We will compute the homology of the polynomial
Lie algebra, and will use the notation Wfoλ = Wι. The Lie algebra W\ has
an additive algebraic basis consisting of the vector fields ek — xk+ιd/dx,
k > — 1, in which the bracket is described by

ht,e,] = (/ -k)ek+ι.

Consider the subalgebras Lk, k > 0 of Wγ, consisting of the fields such
that they and their first k derivatives vanish at the origin. The Lie algebra
Lk is generated by the basis elements {efc, e^+i,... } . The algebras W\ and
Lk are naturally graded by dege^ = i. Obviously the infinite dimensional
subalgebras Lk of W\ are nilpotent for k > 1.

The cohomology rings H* {Lk), k > 0 with trivial coefficients are known,
there exist several different methods for the computation (see [G, GFF,
FF2, FR, V]). The result is the following:

Not much is known about the cohomology with nontrivial coefficients for the
Lie algebra Lk, k > 1. Among the known results, we mention the results on
Lki k > 1 on the cohomology H* (Lk\ Ls) with any 5 > 1, see [F], and on Lk,
k < 3 on the cohomology with coefficients in highest weight modules over
the Virasoro algebra, see [FF2] and [FF3].
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Let Fx denote the ̂ -module of the tensor fields of the form f(z)dz~x,
where f(z) is a polynomial in z and λ is a complex number; the action of
Wι on Fχ is given by the formula

-\(gd/dx)fdx~x = (gf - \fg')dχ

The module Fλ has an additive basis {/,; j = 0,1,... } where fj = xjdx~x

and the action on the basis elements is

Denote by T\ the W\-module which is defined in the same way, except
that the index j runs over all integers. The Wi-modules F\ with λ φ 0
are irreducible, but as L0-modules, they are reducible. For getting an Lo-
submodule of F λ , it is enough to take its subspace, generated by /,, j > μ,
where μ is a positive integer. Denote the obtained L0Ίaodnle by F\iμ.

More general, let us define the L0-module FXyμ for arbitrary complex num-
ber μ, as the space, generated - like F\ - by the elements fj, j = 0,1,... ,
on which Lo acts by

Finally define the modules T\,μ over Wλ as F λ > μ above, without requiring
the positivity of j .

The homology of the Lie algebra L\ with coefficients in T\^μ and Fχtβ are
computed in [FF1]. We consider everywhere homology rather than coho-
mology, but the calculations are more or less equivalent. In the case of T\%μ

one can use the equality

which implies that

In the case of Fχ,μ one can use the equality

(see [FF1] for details).
Let us recall the results of [FP1]. Set e(t) = (3ί2 + £)/2 and define the

fc-th parabola (k = 0,1,2,...) as a curve on the complex plane with the
parametric equation

λ = e{t) - 1
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m-k = e(t) + e(t + k) - 1.

For kι, fc2 G Z we set

P(*i,*2) = (e(fci) - 1, e(fcθ +e(fc1) - 1)

and let P = {P (ki,k2) : klΊk2 € Z}. For a point P of P let us introduce

and

I f P E P , then ίΓ(P) > k{P),K[P) = fc(P) mod 2 and P lies in the k(P)-
th parabola. For fc Φ 0 all the points of the A -th parabola with integer
coefficients belong to P. On the 0-th parabola there is one point from P
with K — 0, and two points with K — 2, two points with K = 4, and
in general, two points with every even number K. For k > 0 on the A -th
parabola lie 2A;+2 points from P with K — k and four points with ϋf = fc + 2,
four with k + 4, and in general, four with K = k + 2i.

Theorem [FF1, Theorem 4.1].

{2 i/ (λ,μ + ra) E P andK{\,μ + m) <q

1 i/ (λ,μ + m) GPαnoίίί(λ,μ + m) =q

0 otherwise.

Corollary. // λ is not of the form e(k) — 1 with k G Z and i/μ G Z, ίften

The homology Hq(Lι;F\iμ) is also computed in [FF1], We will not for-
mulate the result in details, only some important for us facts.

Theorem (Modification of Theorem 4.2, [FF1]).
1) // (λ, μ) is a generic point so that (λ, μ + m) does not lie on any of the

parabolas for any integer m, then

2) If (λ,μ + j) lies on the parabola for some j , then Hq(Li;FXjfl) is bigger
than Hι(L2) at least for some q.
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3) In all cases

Hq{L2) =2q+l< di

and the boundaries are reached.

The next problem is to compute homology of L2 with coefficients in the
modules T\φ and Fχ^μ. That is the aim of this paper. The results are the
following.

Theorem 1.

Am)
rC if λ = —1,7Π + μ — —1

0 otherwise.

Theorem 2.

m)

2 if \ = rn + μ — — 1

1 i/ λ = - l , m + μ = 1,2,3

or λ = 0 and m + μ = 0

or λ = 1 anc? m + μ = 1

0 otherwise.

These results are analogous to the ones in [FFl] and one can expect that
the picture will be similar for higher homology as well. With this in mind,
the following result is a surprise.

Theorem 3.

m)

1 if λ = - l , m + μ =-1,1,2,3

or λ = 0 and m + μ = 0

or λ = 1 and m + μ = 1

0 otherwise.

That means that the singular values of the parameters for the two-dimen-
sional homology are the same, as the ones for the one-dimensional homology,
which is not the case for the homology of Lλ. Moreover, some partial com-
putational results make the following conjecture plausible.

Conjecture 1. Hq (L2\ = 0 for every λ, μ for q > 2.

Let us try to explain the behavior of this homology. The main difference
of the L2 case from the Lx case is that Hq (L1;J

Γ

x,μ) = 0 for generic λ and μ,
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while Hq (L2; T\,μ) — 0 for all λ and μ (if q > 2). This might have the follow-
ing explanation. By the Shapiro Lemma (see [CE, Ch. XIII/4, Prop. 4.2]),

nq \L2,j-\,μ) — ϊiq

and Ind^^λ,μ m^y be regarded as a limit case of the tensor product of
modules of the type F\>y ®T\,μ. Namely, Ind^^λ,μ — F ®T\^μ where F is
the Li-module spanned by gj,j > 0, with the Inaction βiQj — g^+i, β^j = 0
for i > 1; the isomorphism is defined by the formula

m = 0

ion the left hand side e\fj means the action of eλ in

right hand side eι~πιfj means the action of eλ in T\Λ. On the other hand,

F = limλ^oo Fχ,aX for any aφ2\ put

ft.(λ) = (o - 2)λ((α - 2)λ + 1)... ((α - 2)λ + j

then
) ^ ( )

which tends to the action of Lλ in F when λ —)* oo.
Perhaps the homology

depending not on two but on four parameters, has singular values for some
λ, μ, λ;, μ' for each q. The problem of computing the cohomology Hq[L2\ ^λ,μ)
is the two-parameter limit version of the previous problem, and it is not sur-
prising that the singular solutions of the first problem have effect on the
second problem only for small q values.

Our calculation yields also some results for H*(L2] F\tμ). We will formulate
them in Section 3, Theorem 4 and 5.

From Theorem 4 it follows that for generic λ, μ,

dimHo {L2 FKμ) - 2 ,

and for singular values of λ, μ, dimίfo {L2] F\^μ) > 2.
From Theorem 5 it follows that for generic λ,μ,

dimJϊ 1 (L 2 ; J P λ ι μ )=8,
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and for singular values of λ, μ, dim Hi (L2; i*λ,μ) > 8.

Conjecture 2. For generic λ, μ,

or in more details,

H™ (L2;FKμ) ~ H [ ^

This conjecture is motivated by the following observation. By the Shapiro
Lemma,

The module Ind^ C is spanned by hj (j > 0) with L2-action e2hj — hj+1,
dhj = 0 for i > 2; the grading in this module is deghj — 2j. Hence

HM(L3) = HM (L2; Ίndίl C + Σ Ind^ c)

where Σ stands for the shift of grading by one. On other words,

2; F)

where F is spanned by Qj, j > 0, with the L2-action e2gj = 9j+2i ̂ %9j — 0
for % > 2. As above, F = limλ->oo Fχ,a\ (now a φ 3), which suggests that

for generic λ, μ.
Similarly one can expect that for generic λ, μ

Fx,μ) = H£»\Lk+1) θ H^(Lk+1) φ φ H^

Remark, that if it is true that generically Hq(L2;J
:χ,μ) = 0 then generically

«{L2]FXφ) = Hq{L2;F Kμ) = HάWiΓ-i-x^lF-^-r), and the homol-

ogy exact sequence associated with the short coefficient exact sequence

provides the above isomorphism]. In particular, if the L2-module L'2 =

F_2,_3 is "generic", then Conjecture 2 implies

dimH2{L2;L2) = dim#1(L2;F_2,_3) = 8.
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Similarly for Lk we have the hypothetical result

The paper by Yu. Kochetkov and G. Post [KP] contains the announce-
ment of the equality

as well as some further computations, including explicit formulas for 8 gen-
erating cocycles, which imply the description of infinitesimal deformations
of the Lie algebra L2.

I. Spectral sequence.

Let us compute the homology H^(L2; ^λ,μ) Define a spectral sequence
with respect to the filtration in the cochain complex C[m\L2\J::x^). The
space C^n){L2'1T\^μ) is generated by the chains

eh Λ . . . Λ eiq ® j ά

where 2 < iλ < ... < iq, j G Z and iλ + . . . iq +j — m. Define the filtration by

iχ + m.m + iq = p . Denote by FpC
{

q

m) (L2-, fXifl) the subspace of C<m>(£2; T\ , μ ) ,

generated by monomials of the above form with i\ + . . . + iq < p. Obviously,

JFpC^m )(L2;^ :λ,μ)} is an increasing filtration in the chain complex. The

differential acts by the rule

d {eh Λ . . . Λ e i q ® fά)
q

= d {eh Λ . . . Λ eiq) ® /,- - ^ ( - l ) s

e i l Λ . . . eis A ... Λ . . . eiq <g> eimfj.
s=l

As m is fixed, the filtration in bounded.
Denote the spectral sequence, corresponding to this filtration by i£(λ, μ, m).

Then we have

and dp

0 is the differential δp : Cip)(L2;C) -> C*_i(L2;C). The first term of

the spectral sequence is

The homology of L2 with trivial coefficients is known (see [G]):

C i f ^

0 otherwise.
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Hence the E\ term of our spectral sequence looks as follows:

Λ2) H ( 3 ) AS) A9) Ail) Hi15* Hi

where all the spaces H^ shown in this diagram are one dimensional.
The spaces Ep do not depend on λ and μ, but the differentials of the

spectral sequence do. Let us introduce the notation

The differentials

_ r : Eζ_r Eτ

p_r < p

form a partial multi-valued mapping δq : Hq(L2) —> Hq_ι(L2). We shall
define a usual linear operator δq : Hq(L2) —> Hq_ι(L2) such that (1) if
δq(a) is defined for some a G Hq(L2) then δq(a) G δq(a); (2) $9_i o δq — 0.
(Certainly, the mapping Jg will depend on λ,μ,ra.) Then the limit term of
the spectral sequence £?(λ,μ,ra), that is H^m\L2;T\^μ) will coincide with
the homology of the complex

To define £i,<$2> we fix for any q and any p, E+ < p < e~+1, a cycle
c£ G (7^(L 2 ) which represents the generator of H^(L2).

It is evident that for each cp there exist chains

v < eq-l

such that

< - i

where αP ) Γ are complex numbers depending on λ, μ, m. These numbers com-
pose the matrix of some linear mapping Hq(L2) —> ί ί α _i(L 2 ) , and this map-
ping is our δq.
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The chains b^u and gv

q_ι may be chosen in the following way. Since

dcp

q = 0, the differential d (cp

q ® /m_p) has the form Σw<p K-ι ® fm-w with

/ι̂ _! E ^ { ( L a ) . Here the leading term hv~_\ is a cycle, dhPqZ\ = 0. Since

Hp

qZl(L2) = 0, we have ΛjlJ - d^" 1 with 6J-1 e C^(L2). Now, the

leading term of d (cp

q ® /m_p - b^Γ1 ® / m _ p +i) . belongs to C^\L2) and it

is again a cycle. We apply to it the same procedure and do it until the lead-

ing term of d (cp

q ® /m_p - Σ &P ® /m-P+<) belongs to c J V ^ L a ) . This is

still a cycle, but it is not necessarily a boundary, for Hq

q_γ (L2) φ 0. Now

we choose be

q

q G Cq q {L2) such that dbe

q

q is our leading term up to

some multiple of cq_λ . Then we do the same for GqJΊ \L2), and so on
e+_ - 1

until we reach Cq

q_ι (L2)
The matrix |ap, r | depends on the choice of the cycles cv

q. It depends also
on the particular choice of the chains bP~u, but only up to a triangular
transformation. In particular, the kernels and the images of the mappings
δq, and hence the homology Ker^/Im5 ί + 1 , are determined by the cycles cv

q.
Remark that dimHq(L2) = 2q + 1 and hence the matrix of δq is a (2q —

1) x (2q + l)-matrix depending on \μ,m. We get

(*) άimH{

q

m\L2',Tx^) = 2ρ + 1 - rankί, - rank^_i

II. Computations of iϊ^m )(L2; J ^ ) .

1. The space ^ m ) ( L 2 ; ^ μ ) .

As the action of W\ on T\φ is

βi ® /j -^ [i + μ - λ(i + l ) ]/ i + i

and the nontrivial cycles of Hγ(L2) are c\ = e2, ĉ  = e3, ĉ  — e4, the
differentials are the following:

e2 ® /m-2 -> (m - 2 + /i - 3λ)/m,

e3 ® /m-3 -> (m - 3 + μ - 4λ)/m,

e4 ® /m-4 - ^ ( m - 4 + μ - 5λ)/m.

The coefficients in the right hand sides depend on λ and m + μ, which is
natural, because the whole complex C(frl\L2]Tx^) depends only on λ and
m + μ. On the other hand, there is an isomorphism T\^μ = ^λ,μ+iί f3 ~+ fj+\
with the shift of grading by 1. Therefore we may put m = 0 and the
differential matrix δι : Hι(L2) -> H0(L2) has the form

( μ - 2 - 3 λ | μ - 3 - 4 λ | μ - 4 - 5λ).
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The rank of the matrix is 0 if λ = ra = — 1 and 1 in all the other cases. From
this it follows

Theorem 1.

[θ otherwise.

2. The space #ί m ) (L 2 ; .F λ ι μ ) .

The nontrivial cycles of C2(L2; C) are

4 = e 2 Λ 65 - 3 e 3 Λ e 4

c\ = e 2 Λ e 6 — 2 e 3 Λ e 5

C2 = 3 e 2 Λ e 7 - 5 e 3 Λ e 6

c^0 = e 2 Λ e§ — 3 e 4 Λ e^

4 1 = ^e2 Λ e 9 - 7e3 Λ e8

of weight 7,8,9,10,11.
Let us put μ — A λ — 1 = 4(A;, 1). Direct calculation shows that

d ((e2 Λ e5 - 3e3 Λ e4) ® /_7 - A(3,7)e2 Λ e3 ® /

= -3i4(4,7)e4 ® f-4

+ [3A(5,7) - A(3,7)A(3,5)]e3 0 /- 3

+ [-^1(6,7) + i4(3,7)4(4,5)]e2 ® /_

hence

δ2 (d) = [-A(6,7) + 4(3,7)4(4,5)]Cl I
2

+ [34(5,7) - 4(3,7)4(3,5)]c? - 34(4,7)cJ.

Thus we have

α7,2 = -4(6,7)+4(3,7)4(4,5)

α 7 , 3 =34(5,7)-4(3,7)4(3,5)

In the same way we calculate aPiΓ for p — 8,9,10,11 and r = 2,3,4. We get
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the following 5 x 3-matrix:

Λ(3,7)Λ(4,5)
-Λ(6,7)

1/2.4(3,8)4(5,6)
-24(4,8)4(4,5)

-4(7,8)

-5/24(4,9)4(5,6)
-34(8,9)

-1/24(3,10)4(4,8)4(4,5)
-3/24(5,10)4(5,6)

-4(9,10)

7/24(4,11)4(4,8)4(4,5)
+4(3,11)4(8,9)

-54(10,11)

-4(3,7)4(3,5)
+34(5,7)

24(4,8)4(3,5)
+24(6,8)

34(3,9)4(5,7)
+54(7,9)

1/24(3,10)4(4,8)4(3,5)
+1/24(3,10)4(6,8)

-Λ(3,11)A(3,9)A(5,7)
-7/2A(4,11)A(4,8)Λ(3,5)

-7/2^(4,11)^(6,8)
4-7^(9,11)

-3A(4,7)

-1/2A(3,8)Λ(3,6)

-3Λ(3,9)A(4,7)
+5/2A(4,9)Λ(3,6)

3/2A(5,10)A(3,6)
+3A(7,10)

A(3,11)A(3,9)A(4,7)

We have to compute the rank of the matrix ( ί 2 ) . It is clear that the rank

can not be bigger than 2. Direct computation shows that rk(52) — 1 if and

only if λ = —1, μ = —1,1,2,3; λ = μ = 0;λ = μ = l. From this, using

formula (*), it follows

Theorem 2.

2 if \ — m-\- μ = — 1

1 i/ λ = - 1 , m + μ = 1,2,3

or λ = 0 and m + μ = 0

or λ = 1 αncί m + // = 1

0 otherwise.

3. The spaces H(m)(L2; Fχ,μ) for q > 2.

The next differential £3 is a 5 x 7-matrix. Its rank can not be bigger than

3 for any λ and μ. On the other hand, computation shows that rk(<53) = 3

for every λ, μ; namely, the first three rows of the matrix are linearly inde-

pendent for every λ, μ. From this it follows that the dimension of the space

H2 (L2;FχΛμ) drops only if the rank of the previous matrix (δ2) does. This

proves
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Theorem 3.

1 if λ = - l , m + μ = -l,1,2,3

or λ = 1 and m + μ — 1

0 otherwise.

By this theorem, for generic λ,μ, dimJEΓ^ {L2\TXφ) = 0.
It seems very likely that the next differential matrices (δk), k > 4, have

the same rank for every λ and μ (rk(<$*.) = q) which would imply our

Conjecture 1. Hq (L2]J7χtμ) = 0 for every λ, μ for q > 2.

III. Computations of H^{L2\TXiμ).

Recall that the L0-modules Fx^μ differ from the W^-modules JF\^μ only in
requiring the non-negativity of j for the generators fj. Consequently the
spectral sequence is basically the same, only it is truncated as follows:

££(λ,μ,m)=0 if m-p<0.

The space C^m\L2\ Fχ^μ) is generated by the chains

eh A ... Λ eiq ® /̂

with 2 < iι < ... < iq, j > 0 and iι 4-... + iq = m. This way, for computing
homology, we have to compute the rank of truncated matrices, consisting of
some of the upper rows of the previous matrices.

Let us compute the space H0(L2]F\,μ). Obviously,

For m = 2 the differential is the following:

e2®fo-*{μ- 3λ)/2

which shows that if μ = 3λ, then dimiϊ^2) = 1, otherwise H^2\L2; FKμ) = 0.
For m > 2

( m )

ί l ifλ = - l a n d m + /i = -

0 otherwise.

So we get
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Theorem 4.

C ifm = 0,1

or m = 2 and μ = 3λ

or λ — —1 and ra + μ

0 otherwise.

Corollary. For generic X,μ H0(L2; Fχφ) = 2.

Direct computation proves the result for the space H{

Theorem 5.

Ί ifμ = 3λ

1

dimi/1

(2)(L2;Fλ,μ) =

(3)dimiϊ1

( 3 )(L2;Fλ,μ) =

0 otherwise,

1 otherwise,

= -4,λ = - 1

2 otherwise,

2 ifμ = -8,λ = -1 orμ - 0, λ = 0

1 otherwise,

2 ΐ//i = -9,λ = - l

1 /or λ and μ /ying on the curve

-36λ + 147λ2 - 27λ3 + 8μ - 72λμ + 27λ2μ

+9μ 2 - 9λμ2 + μ3 = 0

0 otherwise-,

for m>8, dimH[m)(L2;FXiμ) - dimH[m)(L2\Tχtμ) (see Theorem 2).

Corollary. For generic X,μ, άiτn.Hλ(L2] FXμ) — 8.

Conjecture 2. For generic λ,μ,

or, in more details,
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