ON THE COHOMOLOGY OF THE LIE ALGEBRA L_{2}

Alice Fialowski

We compute the $0-, 1$-, and 2-dimensional homology of the vector field Lie algebra L_{2} with coefficients in the modules $\mathcal{F}_{\lambda, \mu}$, and conjecture that the higher dimensional homology for any λ and μ is zero. We completely compute the 0 - and 1-dimensional homology with coefficients in the more complicated modules $F_{\lambda, \mu}$. We also give a conjecture on this homology in any dimension for generic λ and μ.

Introduction.

Let us consider the infinite dimensional Lie algebra W_{1}^{pol} of polynomial vector fields $f(x) d / d x$ on \mathbb{C}. It is a dense subalgebra of W_{1}, the Lie algebra of formal vector fields on \mathbb{C}. We will compute the homology of the polynomial Lie algebra, and will use the notation $W_{1}^{\text {pol }}=W_{1}$. The Lie algebra W_{1} has an additive algebraic basis consisting of the vector fields $e_{k}=x^{k+1} d / d x$, $k \geq-1$, in which the bracket is described by

$$
\left[e_{k}, e_{l}\right]=(l-k) e_{k+l}
$$

Consider the subalgebras $L_{k}, k \geq 0$ of W_{1}, consisting of the fields such that they and their first k derivatives vanish at the origin. The Lie algebra L_{k} is generated by the basis elements $\left\{e_{k}, e_{k+1}, \ldots\right\}$. The algebras W_{1} and L_{k} are naturally graded by $\operatorname{deg} e_{i}=i$. Obviously the infinite dimensional subalgebras L_{k} of W_{1} are nilpotent for $k \geq 1$.

The cohomology rings $H^{*}\left(L_{k}\right), k \geq 0$ with trivial coefficients are known, there exist several different methods for the computation (see $[\mathbf{G}, \mathbf{G F F}$, FF2, FR, V]). The result is the following:

$$
\operatorname{dim} H^{q}\left(L_{k}\right)=\binom{q+k-1}{k-1}+\binom{q+k-2}{k-2} \quad \text { for } \quad k \geq 1
$$

Not much is known about the cohomology with nontrivial coefficients for the Lie algebra $L_{k}, k>1$. Among the known results, we mention the results on $L_{k}, k \geq 1$ on the cohomology $H^{*}\left(L_{k} ; L_{s}\right)$ with any $s \geq 1$, see $[\mathbf{F}]$, and on L_{k}, $k \leq 3$ on the cohomology with coefficients in highest weight modules over the Virasoro algebra, see [FF2] and [FF3].

Let F_{λ} denote the W_{1}-module of the tensor fields of the form $f(z) d z^{-\lambda}$, where $f(z)$ is a polynomial in z and λ is a complex number; the action of W_{1} on F_{λ} is given by the formula

$$
(g d / d x) f d x^{-\lambda}=\left(g f^{\prime}-\lambda f g^{\prime}\right) d x^{-\lambda}
$$

The module F_{λ} has an additive basis $\left\{f_{j} ; j=0,1, \ldots\right\}$ where $f_{j}=x^{j} d x^{-\lambda}$ and the action on the basis elements is

$$
e_{i} f_{j}=(j-(i+1) \lambda) f_{i+j}
$$

Denote by \mathcal{F}_{λ} the W_{1}-module which is defined in the same way, except that the index j runs over all integers. The W_{1}-modules F_{λ} with $\lambda \neq 0$ are irreducible, but as $L_{0^{-}}$-modules, they are reducible. For getting an $L_{0^{-}}$ submodule of F_{λ}, it is enough to take its subspace, generated by $f_{j}, j \geq \mu$, where μ is a positive integer. Denote the obtained L_{0}-module by $F_{\lambda, \mu}$.

More general, let us define the L_{0}-module $F_{\lambda, \mu}$ for arbitrary complex number μ, as the space, generated - like F_{λ} - by the elements $f_{j}, j=0,1, \ldots$, on which L_{0} acts by

$$
e_{i} f_{j}=(j+\mu-(i+1) \lambda) f_{i+j}
$$

Finally define the modules $\mathcal{F}_{\lambda, \mu}$ over W_{1} as $F_{\lambda, \mu}$ above, without requiring the positivity of j.

The homology of the Lie algebra L_{1} with coefficients in $\mathcal{F}_{\lambda, \mu}$ and $F_{\lambda, \mu}$ are computed in [FF1]. We consider everywhere homology rather than cohomology, but the calculations are more or less equivalent. In the case of $\mathcal{F}_{\lambda, \mu}$ one can use the equality

$$
\left(\mathcal{F}_{\lambda, \mu}\right)^{\prime}=\mathcal{F}_{-1-\lambda,-\mu}
$$

which implies that

$$
H^{q}\left(L_{k} ; \mathcal{F}_{\lambda, \mu}\right)^{\prime}=H_{q}\left(L_{k} ; \mathcal{F}_{-1-\lambda,-\mu}\right)
$$

In the case of $F_{\lambda, \mu}$ one can use the equality

$$
\left(F_{\lambda, \mu}\right)^{\prime}=\left(\mathcal{F}_{-1-\lambda,-\mu}\right) / F_{-1-\lambda,-\mu}
$$

(see [FF1] for details).
Let us recall the results of [FF1]. Set $e(t)=\left(3 t^{2}+t\right) / 2$ and define the k-th parabola $(k=0,1,2, \ldots)$ as a curve on the complex plane with the parametric equation

$$
\lambda=e(t)-1
$$

$$
m-k=e(t)+e(t+k)-1
$$

For $k_{1}, k_{2} \in \mathbb{Z}$ we set

$$
P\left(k_{1}, k_{2}\right)=\left(e\left(k_{1}\right)-1, e\left(k_{1}\right)+e\left(k_{1}\right)-1\right)
$$

and let $\mathbf{P}=\left\{P\left(k_{1}, k_{2}\right): k_{1}, k_{2} \in \mathbb{Z}\right\}$. For a point P of \mathbf{P} let us introduce

$$
k(P)=\left|k_{2}-k_{1}\right|
$$

and

$$
K(P)=\left|k_{1}\right|+\left|k_{2}\right|
$$

If $P \in \mathbf{P}$, then $K(P) \geq k(P), K(P)=k(P) \bmod 2$ and P lies in the $k(P)$ th parabola. For $k \neq 0$ all the points of the k-th parabola with integer coefficients belong to \mathbf{P}. On the 0 -th parabola there is one point from \mathbf{P} with $K=0$, and two points with $K=2$, two points with $K=4$, and in general, two points with every even number K. For $k \geq 0$ on the k-th parabola lie $2 k+2$ points from \mathbf{P} with $K=k$ and four points with $K=k+2$, four with $k+4$, and in general, four with $K=k+2 i$.

Theorem [FF1, Theorem 4.1].

$$
\operatorname{dim} H_{q}^{(m)}\left(L_{1} ; \mathcal{F}_{\lambda, \mu}\right)= \begin{cases}2 & \text { if }(\lambda, \mu+m) \in \mathbf{P} \text { and } K(\lambda, \mu+m)<q \\ 1 & \text { if }(\lambda, \mu+m) \in \mathbf{P} \text { and } K(\lambda, \mu+m)=q \\ 0 & \text { otherwise }\end{cases}
$$

Corollary. If λ is not of the form $e(k)-1$ with $k \in \mathbb{Z}$ and if $\mu \in \mathbb{Z}$, then

$$
H_{*}\left(L_{1} ; \mathcal{F}_{\lambda, \mu}\right)=0
$$

The homology $H_{q}\left(L_{1} ; F_{\lambda, \mu}\right)$ is also computed in [FF1]. We will not formulate the result in details, only some important for us facts.

Theorem (Modification of Theorem 4.2, [FF1]).

1) If (λ, μ) is a generic point so that $(\lambda, \mu+m)$ does not lie on any of the parabolas for any integer m, then

$$
H_{*}\left(L_{1} ; F_{\lambda, \mu}\right)=H_{*}\left(L_{2}\right)
$$

2) If $(\lambda, \mu+j)$ lies on the parabola for some j, then $H_{q}\left(L_{1} ; F_{\lambda, \mu}\right)$ is bigger than $H_{1}\left(L_{2}\right)$ at least for some q.
3) In all cases

$$
H_{q}\left(L_{2}\right)=2 q+1 \leq \operatorname{dim} H_{q}\left(L_{1} ; F_{\lambda, \mu}\right) \leq 4 q+1
$$

and the boundaries are reached.
The next problem is to compute homology of L_{2} with coefficients in the modules $\mathcal{F}_{\lambda, \mu}$ and $F_{\lambda, \mu}$. That is the aim of this paper. The results are the following.

Theorem 1.

$$
H_{0}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)= \begin{cases}\mathbb{C} & \text { if } \lambda=-1, m+\mu=-1 \\ 0 & \text { otherwise } .\end{cases}
$$

Theorem 2.

$$
\operatorname{dim} H_{1}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=\left\{\begin{array}{ll}
2 & \text { if } \lambda=m+\mu=-1 \\
1 & \text { if } \lambda=-1, m+\mu=1,2,3 \\
\text { or } \lambda=0 \text { and } m+\mu=0
\end{array}\right\} \begin{aligned}
& \text { or } \lambda=1 \text { and } m+\mu=1
\end{aligned}
$$

These results are analogous to the ones in [FF1] and one can expect that the picture will be similar for higher homology as well. With this in mind, the following result is a surprise.

Theorem 3.

$$
\operatorname{dim} H_{2}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=\left\{\begin{array}{cc}
1 \quad \text { if } \quad \lambda=-1, m+\mu=-1,1,2,3 \\
& \text { or } \lambda=0 \text { and } m+\mu=0 \\
\text { or } \lambda=1 \text { and } m+\mu=1
\end{array} \quad \begin{array}{ll}
\text { otherwise } .
\end{array}\right.
$$

That means that the singular values of the parameters for the two-dimensional homology are the same, as the ones for the one-dimensional homology, which is not the case for the homology of L_{1}. Moreover, some partial computational results make the following conjecture plausible.

Conjecture 1. $H_{q}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=0$ for every λ, μ for $q>2$.
Let us try to explain the behavior of this homology. The main difference of the L_{2} case from the L_{1} case is that $H_{q}\left(L_{1} ; \mathcal{F}_{\lambda, \mu}\right)=0$ for generic λ and μ,
while $H_{q}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=0$ for all λ and μ (if $q>2$). This might have the following explanation. By the Shapiro Lemma (see [CE, Ch. XIII/4, Prop. 4.2]),

$$
H_{q}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=H_{q}\left(L_{1} ; \operatorname{Ind}_{L_{2}}^{L_{1}} \mathcal{F}_{\lambda, \mu}\right)
$$

and $\operatorname{Ind}_{L_{2}}^{L_{1}} \mathcal{F}_{\lambda, \mu}$ may be regarded as a limit case of the tensor product of modules of the type $F_{\lambda^{\prime}, \mu^{\prime}} \otimes \mathcal{F}_{\lambda, \mu}$. Namely, $\operatorname{Ind}_{L_{2}}^{L_{1}} \mathcal{F}_{\lambda, \mu}=F \otimes \mathcal{F}_{\lambda, \mu}$ where F is the L_{1}-module spanned by $g_{j}, j \geq 0$, with the L_{1}-action $e_{1} g_{j}=g_{j+1}, e_{i} g_{j}=0$ for $i>1$; the isomorphism is defined by the formula

$$
e_{1}^{k} f_{j} \rightarrow \sum_{m=0}^{k}\binom{k}{m} g_{m} \otimes e_{1}^{k-m} f_{j}
$$

(on the left hand side $e_{1}^{k} f_{j}$ means the action of $e_{1} \operatorname{in} \operatorname{Ind}_{L_{2}}^{L_{1}} \mathcal{F}_{\lambda, \mu}$, on the right hand side $e_{1}^{k-m} f_{j}$ means the action of e_{1} in $\left.\mathcal{F}_{\lambda, \mu}\right)$. On the other hand, $F=\lim _{\lambda \rightarrow \infty} F_{\lambda, a \lambda}$ for any $a \neq 2$: put

$$
g_{j}(\lambda)=(a-2) \lambda((a-2) \lambda+1) \ldots((a-2) \lambda+j-1) f_{j} \in F_{\lambda, a \lambda} ;
$$

then

$$
e_{i} g_{j}(\lambda)=\frac{((a-i-1) \lambda+j) g_{i+j}(\lambda)}{((a-2) \lambda+j) \ldots((a-2) \lambda+j+i-1)}
$$

which tends to the action of L_{1} in F when $\lambda \rightarrow \infty$.
Perhaps the homology

$$
H_{q}\left(L_{1} ; F_{\lambda^{\prime}, \mu^{\prime}} \otimes \mathcal{F}_{\lambda, \mu}\right)
$$

depending not on two but on four parameters, has singular values for some $\lambda, \mu, \lambda^{\prime}, \mu^{\prime}$ for each q. The problem of computing the cohomology $H_{q}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$ is the two-parameter limit version of the previous problem, and it is not surprising that the singular solutions of the first problem have effect on the second problem only for small q values.

Our calculation yields also some results for $H_{*}\left(L_{2} ; F_{\lambda, \mu}\right)$. We will formulate them in Section 3, Theorem 4 and 5.

From Theorem 4 it follows that for generic λ, μ,

$$
\operatorname{dim} H_{0}\left(L_{2} ; F_{\lambda, \mu}\right)=2
$$

and for singular values of $\lambda, \mu, \operatorname{dim} H_{0}\left(L_{2} ; F_{\lambda, \mu}\right)>2$.
From Theorem 5 it follows that for generic λ, μ,

$$
\operatorname{dim} H_{1}\left(L_{2} ; F_{\lambda, \mu}\right)=8,
$$

and for singular values of $\lambda, \mu, \operatorname{dim} H_{1}\left(L_{2} ; F_{\lambda, \mu}\right)>8$.
Conjecture 2. For generic λ, μ,

$$
\operatorname{dim} H_{q}\left(L_{2} ; F_{\lambda, \mu}\right)=2(q+1)^{2}
$$

or in more details,

$$
H_{q}^{(m)}\left(L_{2} ; F_{\lambda, \mu}\right) \simeq H_{q}^{(m)}\left(L_{3}\right) \oplus H_{q}^{(m-1)}\left(L_{3}\right)
$$

This conjecture is motivated by the following observation. By the Shapiro Lemma,

$$
H_{q}^{(m)}\left(L_{3}\right)=H_{q}^{(m)}\left(L_{2} ; \operatorname{Ind}_{L_{3}}^{L_{2}} \mathbb{C}\right)
$$

The module $\operatorname{Ind}_{L_{3}}^{L_{2}} \mathbb{C}$ is spanned by $h_{j}(j \geq 0)$ with L_{2}-action $e_{2} h_{j}=h_{j+1}$, $e_{i} h_{j}=0$ for $i>2$; the grading in this module is $\operatorname{deg} h_{j}=2 j$. Hence

$$
H_{q}^{(m)}\left(L_{3}\right)=H_{q}^{(m)}\left(L_{2} ; \operatorname{Ind}_{L_{3}}^{L_{2}} \mathbb{C}+\Sigma \operatorname{Ind}_{L_{3}}^{L_{2}} \mathbb{C}\right)
$$

where Σ stands for the shift of grading by one. On other words,

$$
H_{q}^{(m)}\left(L_{3}\right) \oplus H_{q}^{(m-1)}\left(L_{3}\right)=H_{q}^{(m)}\left(L_{2} ; F\right)
$$

where F is spanned by $g_{j}, j \geq 0$, with the L_{2}-action $e_{2} g_{j}=g_{j+2}, e_{i} g_{j}=0$ for $i>2$. As above, $F=\lim _{\lambda \rightarrow \infty} F_{\lambda, a \lambda}$ (now $a \neq 3$), which suggests that

$$
H_{q}^{(m)}\left(L_{2} ; F\right)=H_{q}^{(m)}\left(L_{2} ; F_{\lambda, \mu}\right)
$$

for generic λ, μ.
Similarly one can expect that for generic λ, μ

$$
H_{q}^{(m)}\left(L_{k} ; F_{\lambda, \mu}\right)=H_{q}^{(m)}\left(L_{k+1}\right) \oplus H_{q}^{(m-1)}\left(L_{k+1}\right) \oplus \cdots \oplus H_{q}^{(m-k+1)}\left(L_{k+1}\right)
$$

Remark, that if it is true that generically $H_{q}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=0$ then generically

$$
H^{q}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=H_{q-1}\left(L_{2} ; F_{-1-\lambda,-\mu}\right)
$$

$\left(H^{q}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=H_{q}\left(L_{2} ; F_{\lambda, \mu}^{\prime}\right)=H_{q}\left(L_{2} ; \mathcal{F}_{-1-\lambda,-\mu} / F_{-1-\lambda,-\mu}\right)\right.$, and the homology exact sequence associated with the short coefficient exact sequence

$$
0 \rightarrow F_{-1-\lambda,-\mu} \rightarrow \mathcal{F}_{-1-\lambda,-\mu} \rightarrow \mathcal{F}_{-1-\lambda,-\mu} / F_{-1-\lambda,-\mu} \rightarrow 0
$$

provides the above isomorphism). In particular, if the L_{2}-module $L_{2}^{\prime}=$ $F_{-2,-3}$ is "generic", then Conjecture 2 implies

$$
\operatorname{dim} H^{2}\left(L_{2} ; L_{2}\right)=\operatorname{dim} H_{1}\left(L_{2} ; F_{-2,-3}\right)=8
$$

Similarly for L_{k} we have the hypothetical result

$$
H^{2}\left(L_{k} ; L_{k}\right)=k(k+2)
$$

The paper by Yu. Kochetkov and G. Post [KP] contains the announcement of the equality

$$
\operatorname{dim} H^{2}\left(L_{2} ; L_{2}\right)=8
$$

as well as some further computations, including explicit formulas for 8 generating cocycles, which imply the description of infinitesimal deformations of the Lie algebra L_{2}.

I. Spectral sequence.

Let us compute the homology $H_{q}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$. Define a spectral sequence with respect to the filtration in the cochain complex $C_{*}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$. The space $C_{q}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$ is generated by the chains

$$
e_{i_{1}} \wedge \ldots \wedge e_{i_{q}} \otimes f_{j}
$$

where $2 \leq i_{1}<\ldots<i_{q}, j \in \mathbb{Z}$ and $i_{1}+\ldots i_{q}+j=m$. Define the filtration by $i_{1}+\ldots+i_{q}=p$. Denote by $F_{p} C_{q}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$ the subspace of $C_{q}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$, generated by monomials of the above form with $i_{1}+\ldots+i_{q} \leq p$. Obviously, $\left\{F_{p} C_{q}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)\right\}_{p}$ is an increasing filtration in the chain complex. The differential acts by the rule

$$
\begin{aligned}
& d\left(e_{i_{1}} \wedge \ldots \wedge e_{i_{q}} \otimes f_{j}\right) \\
& \quad=d\left(e_{i_{1}} \wedge \ldots \wedge e_{i_{q}}\right) \otimes f_{j}-\sum_{s=1}^{q}(-1)^{s} e_{i_{1}} \wedge \ldots \hat{e}_{i_{s}} \wedge \ldots \wedge \ldots e_{i_{q}} \otimes e_{i_{s}} f_{j}
\end{aligned}
$$

As m is fixed, the filtration in bounded.
Denote the spectral sequence, corresponding to this filtration by $E(\lambda, \mu, m)$. Then we have

$$
E_{0}^{p}=C_{*}^{(p)}\left(L_{2} ; \mathbb{C}\right)
$$

and d_{0}^{p} is the differential $\delta_{p}: C_{*}^{(p)}\left(L_{2} ; \mathbb{C}\right) \rightarrow C_{*-1}\left(L_{2} ; \mathbb{C}\right)$. The first term of the spectral sequence is

$$
E_{1}^{p}=H_{*}^{(p)}\left(L_{2} ; \mathbb{C}\right)
$$

The homology of L_{2} with trivial coefficients is known (see [G]):

$$
H_{q}^{(p)}\left(L_{2}\right)= \begin{cases}\mathbb{C} & \text { if } \frac{3 q^{2}+q}{2} \leq p \leq \frac{3(q+1)^{2}-(q+1)}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Hence the E_{1} term of our spectral sequence looks as follows:

where all the spaces $H_{q}^{(p)}$ shown in this diagram are one dimensional.
The spaces E_{1}^{p} do not depend on λ and μ, but the differentials of the spectral sequence do. Let us introduce the notation

$$
e_{q}^{ \pm}=\frac{3 q^{2} \pm q}{2}
$$

The differentials

$$
d_{p-r}^{p}: E_{p-r}^{p} \rightarrow E_{p-r}^{r} \quad\left(e_{q}^{+} \leq p<e_{q+1}^{-}, e_{q-1}^{+} \leq r<e_{q}^{-}\right)
$$

form a partial multi-valued mapping $\tilde{\delta}_{q}: H_{q}\left(L_{2}\right) \rightarrow H_{q-1}\left(L_{2}\right)$. We shall define a usual linear operator $\delta_{q}: H_{q}\left(L_{2}\right) \rightarrow H_{q_{-1}}\left(L_{2}\right)$ such that (1) if $\tilde{\delta}_{q}(\alpha)$ is defined for some $\alpha \in H_{q}\left(L_{2}\right)$ then $\delta_{q}(\alpha) \in \tilde{\delta}_{q}(\alpha) ;(2) \delta_{q-1} \circ \delta_{q}=0$. (Certainly, the mapping δ_{q} will depend on λ, μ, m.) Then the limit term of the spectral sequence $E(\lambda, \mu, m)$, that is $H_{*}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$ will coincide with the homology of the complex

$$
H_{0}\left(L_{2}\right) \stackrel{\delta_{1}}{\leftarrow} H_{1}\left(L_{2}\right) \stackrel{\delta_{2}}{\leftarrow} H_{2}\left(L_{2}\right) \stackrel{\delta_{3}}{\leftarrow} \ldots
$$

To define $\delta_{1}, \delta_{2}, \ldots$ we fix for any q and any $p, E_{q}^{+} \leq p<e_{q+1}^{-}$, a cycle $c_{q}^{p} \in C_{q}^{(p)}\left(L_{2}\right)$ which represents the generator of $H_{q}^{(p)}\left(L_{2}\right)$.

It is evident that for each c_{q}^{p} there exist chains

$$
\begin{array}{ll}
b_{q}^{p-u} \in C_{q}^{(p-u)}\left(L_{2}\right), & u \geq 1 \\
g_{q-1}^{v} \in C_{q-1}^{(v)}\left(L_{2}\right), & v<e_{q-1}^{+}
\end{array}
$$

such that

$$
\begin{aligned}
d\left(c_{q}^{p} \otimes f_{m-p}-\sum_{u \geq 1} b_{q}^{p-u} \otimes\right. & \left.f_{m-p+u}\right) \\
& =\sum_{r=e_{q-1}^{+}}^{e_{q}^{-}-1} \alpha_{p, r} c_{q-1}^{r} \otimes f_{m-r}+\sum_{v<e_{q-1}^{+}} g_{q-1}^{v} \otimes f_{m-v}
\end{aligned}
$$

where $\alpha_{p, r}$ are complex numbers depending on λ, μ, m. These numbers compose the matrix of some linear mapping $H_{q}\left(L_{2}\right) \rightarrow H_{q-1}\left(L_{2}\right)$, and this mapping is our δ_{q}.

The chains $b_{q}^{p, u}$ and g_{q-1}^{v} may be chosen in the following way. Since $d c_{q}^{p}=0$, the differential $d\left(c_{q}^{p} \otimes f_{m-p}\right)$ has the form $\sum_{w<p} h_{q-1}^{w} \otimes f_{m-w}$ with $h_{q-1}^{w} \in C_{q-1}^{(w)}\left(L_{2}\right)$. Here the leading term h_{q-1}^{p-1} is a cycle, $d h_{q-1}^{p-1}=0$. Since $H_{q-1}^{p-1}\left(L_{2}\right)=0$, we have $h_{q-1}^{p-1}=d b_{q}^{p-1}$ with $b_{q}^{p-1} \in C_{q}^{(p-1)}\left(L_{2}\right)$. Now, the leading term of $d\left(c_{q}^{p} \otimes f_{m-p}-b_{q}^{p-1} \otimes f_{m-p+1}\right)$. belongs to $C_{q-1}^{(p-1)}\left(L_{2}\right)$ and it is again a cycle. We apply to it the same procedure and do it until the leading term of $d\left(c_{q}^{p} \otimes f_{m-p}-\sum b_{q}^{p-i} \otimes f_{m-p+i}\right)$ belongs to $C_{q-1}^{\left(e_{q}^{-}-1\right)}\left(L_{2}\right)$. This is still a cycle, but it is not necessarily a boundary, for $H_{q-1}^{e_{q}^{-}-1}\left(L_{2}\right) \neq 0$. Now we choose $b_{q}^{e_{q}^{-}-1} \in C_{q}^{\left(e_{q}^{-}-1\right)}\left(L_{2}\right)$ such that $d b_{q}^{e_{q}^{-}-1}$ is our leading term up to some multiple of $c_{q-1}^{e_{q}^{-}-1}$. Then we do the same for $C_{q-1}^{\left(e_{q}^{-}-2\right)}\left(L_{2}\right)$, and so on until we reach $C_{q-1}^{e_{q-1}^{+}-1}\left(L_{2}\right)$.

The matrix $\left|\alpha_{p, r}\right|$ depends on the choice of the cycles c_{q}^{p}. It depends also on the particular choice of the chains b_{q}^{p-u}, but only up to a triangular transformation. In particular, the kernels and the images of the mappings δ_{q}, and hence the homology $\operatorname{Ker} \delta_{q} / \operatorname{Im} \delta_{q+1}$, are determined by the cycles c_{q}^{p}.

Remark that $\operatorname{dim} H_{q}\left(L_{2}\right)=2 q+1$ and hence the matrix of δ_{q} is a $(2 q-$ 1) $\times(2 q+1)$-matrix depending on λ, μ, m. We get

$$
\begin{equation*}
\operatorname{dim} H_{q}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=2 q+1-\operatorname{rank} \delta_{q}-\operatorname{rank} \delta_{q-1} \tag{*}
\end{equation*}
$$

II. Computations of $H_{q}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$.

1. The space $H_{0}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$.

As the action of W_{1} on $\mathcal{F}_{\lambda, \mu}$ is

$$
e_{i} \otimes f_{j} \rightarrow[j+\mu-\lambda(i+1)] f_{i+j}
$$

and the nontrivial cycles of $H_{1}\left(L_{2}\right)$ are $c_{1}^{2}=e_{2}, c_{1}^{3}=e_{3}, c_{1}^{4}=e_{4}$, the differentials are the following:

$$
\begin{aligned}
& e_{2} \otimes f_{m-2} \rightarrow(m-2+\mu-3 \lambda) f_{m} \\
& e_{3} \otimes f_{m-3} \rightarrow(m-3+\mu-4 \lambda) f_{m} \\
& e_{4} \otimes f_{m-4} \rightarrow(m-4+\mu-5 \lambda) f_{m}
\end{aligned}
$$

The coefficients in the right hand sides depend on λ and $m+\mu$, which is natural, because the whole complex $C_{*}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$ depends only on λ and $m+\mu$. On the other hand, there is an isomorphism $\mathcal{F}_{\lambda, \mu}=\mathcal{F}_{\lambda, \mu+1}, f_{j} \rightarrow f_{j+1}$ with the shift of grading by 1 . Therefore we may put $m=0$ and the differential matrix $\delta_{1}: H_{1}\left(L_{2}\right) \rightarrow H_{0}\left(L_{2}\right)$ has the form

$$
(\mu-2-3 \lambda|\mu-3-4 \lambda| \mu-4-5 \lambda)
$$

The rank of the matrix is 0 if $\lambda=m=-1$ and 1 in all the other cases. From this it follows

Theorem 1.

$$
\operatorname{dim} H_{0}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)= \begin{cases}1 & \text { if } \lambda=-1, m+\mu=-1 \\ 0 & \text { otherwise } .\end{cases}
$$

2. The space $H_{1}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$.

The nontrivial cycles of $C_{2}\left(L_{2} ; \mathbb{C}\right)$ are

$$
\begin{aligned}
c_{2}^{7} & =e_{2} \wedge e_{5}-3 e_{3} \wedge e_{4} \\
c_{2}^{8} & =e_{2} \wedge e_{6}-2 e_{3} \wedge e_{5} \\
c_{2}^{9} & =3 e_{2} \wedge e_{7}-5 e_{3} \wedge e_{6} \\
c_{2}^{10} & =e_{2} \wedge e_{8}-3 e_{4} \wedge e_{6} \\
c_{2}^{11} & =5 e_{2} \wedge e_{9}-7 e_{3} \wedge e_{8}
\end{aligned}
$$

of weight $7,8,9,10,11$.
Let us put $\mu-k \lambda-1=A(k, 1)$. Direct calculation shows that

$$
\begin{aligned}
d\left(\left(e_{2} \wedge e_{5}\right.\right. & \left.\left.-3 e_{3} \wedge e_{4}\right) \otimes f_{-7}-A(3,7) e_{2} \wedge e_{3} \otimes f_{-5}\right) \\
= & -3 A(4,7) e_{4} \otimes f_{-4} \\
& +[3 A(5,7)-A(3,7) A(3,5)] e_{3} \otimes f_{-3} \\
& +[-A(6,7)+A(3,7) A(4,5)] e_{2} \otimes f_{-2}
\end{aligned}
$$

hence

$$
\begin{aligned}
\delta_{2}\left(c_{2}^{7}\right)= & {[-A(6,7)+A(3,7) A(4,5)] c_{1} 1^{2} } \\
& +[3 A(5,7)-A(3,7) A(3,5)] c_{1}^{3}-3 A(4,7) c_{1}^{4}
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \alpha_{7,2}=-A(6,7)+A(3,7) A(4,5) \\
& \alpha_{7,3}=3 A(5,7)-A(3,7) A(3,5) \\
& \alpha_{7,4}=-3 A(4,7)
\end{aligned}
$$

In the same way we calculate $\alpha_{p, r}$ for $p=8,9,10,11$ and $r=2,3,4$. We get
the following 5×3-matrix:

$A(3,7) A(4,5)$ $-A(6,7)$	$-A(3,7) A(3,5)$ $+3 A(5,7)$	$-3 A(4,7)$
$1 / 2 A(3,8) A(5,6)$ $-2 A(4,8) A(4,5)$ $-A(7,8)$	$2 A(4,8) A(3,5)$ $+2 A(6,8)$	$-1 / 2 A(3,8) A(3,6)$
$-5 / 2 A(4,9) A(5,6)$ $-3 A(8,9)$	$3 A(3,9) A(5,7)$ $+5 A(7,9)$	$-3 A(3,9) A(4,7)$ $+5 / 2 A(4,9) A(3,6)$
$-1 / 2 A(3,10) A(4,8) A(4,5)$ $-3 / 2 A(5,10) A(5,6)$ $-A(9,10)$	$1 / 2 A(3,10) A(4,8) A(3,5)$ $+1 / 2 A(3,10) A(6,8)$	$3 / 2 A(5,10) A(3,6)$ $+3 A(7,10)$
$7 / 2 A(4,11) A(4,8) A(4,5)$ $+A(3,11) A(8,9)$ $-5 A(10,11)$	$-7 / 3,11) A(3,9) A(5,7)$ $-7 / 2 A(4,11) A(4,8) A(3,5)$ $+7 A(9,11)$	$A(3,11) A(3,9) A(4,7)$

We have to compute the rank of the matrix $\left(\delta_{2}\right)$. It is clear that the rank can not be bigger than 2. Direct computation shows that $\operatorname{rk}\left(\delta_{2}\right)=1$ if and only if $\lambda=-1, \mu=-1,1,2,3 ; \lambda=\mu=0 ; \lambda=\mu=1$. From this, using formula (*), it follows

Theorem 2.

$$
\operatorname{dim} H_{1}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=\left\{\begin{array}{ll}
2 & \text { if } \lambda=m+\mu=-1 \\
1 & \text { if } \lambda=-1, m+\mu=1,2,3 \\
\quad \text { or } \lambda=0 \text { and } m+\mu=0
\end{array} \quad \begin{array}{l}
\text { or } \lambda=1 \text { and } m+\mu=1 \\
0 \quad \text { otherwise } .
\end{array}\right.
$$

3. The spaces $H_{q}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$ for $q \geq 2$.

The next differential δ_{3} is a 5×7-matrix. Its rank can not be bigger than 3 for any λ and μ. On the other hand, computation shows that $\operatorname{rk}\left(\delta_{3}\right)=3$ for every λ, μ; namely, the first three rows of the matrix are linearly independent for every λ, μ. From this it follows that the dimension of the space $H_{2}^{(m)}\left(L_{2} ; F_{\lambda, \mu}\right)$ drops only if the rank of the previous matrix $\left(\delta_{2}\right)$ does. This proves

Theorem 3.

$$
\operatorname{dim} H_{2}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=\left\{\begin{array}{cc}
1 \quad \text { if } \lambda=-1, m+\mu=-1,1,2,3 \\
\quad \text { or } \lambda=0 \text { and } m+\mu=0 \\
\text { or } \lambda=1 \text { and } m+\mu=1
\end{array} \quad \begin{array}{l}
\text { otherwise } .
\end{array}\right.
$$

By this theorem, for generic $\lambda, \mu, \operatorname{dim} H_{2}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=0$.
It seems very likely that the next differential matrices $\left(\delta_{k}\right), k \geq 4$, have the same rank for every λ and $\mu\left(\operatorname{rk}\left(\delta_{k}\right)=q\right)$ which would imply our

Conjecture 1. $H_{q}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)=0$ for every λ, μ for $q>2$.
III. Computations of $H_{q}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)$.

Recall that the L_{0}-modules $F_{\lambda, \mu}$ differ from the W_{1}-modules $\mathcal{F}_{\lambda, \mu}$ only in requiring the non-negativity of j for the generators f_{j}. Consequently the spectral sequence is basically the same, only it is truncated as follows:

$$
E_{r}^{p}(\lambda, \mu, m)=0 \quad \text { if } \quad m-p<0
$$

The space $C_{q}^{(m)}\left(L_{2} ; F_{\lambda, \mu}\right)$ is generated by the chains

$$
e_{i_{1}} \wedge \ldots \wedge e_{i_{q}} \otimes f_{j}
$$

with $2 \leq i_{1} \leq \ldots \leq i_{q}, j \geq 0$ and $i_{1}+\ldots+i_{q}=m$. This way, for computing homology, we have to compute the rank of truncated matrices, consisting of some of the upper rows of the previous matrices.

Let us compute the space $H_{0}\left(L_{2} ; F_{\lambda, \mu}\right)$. Obviously,

$$
H_{0}^{(0)}\left(L_{2} ; F_{\lambda, \mu}\right)=H_{0}^{(1)}\left(L_{2} ; F_{\lambda, \mu}\right)=\mathbb{C} .
$$

For $m=2$ the differential is the following:

$$
e_{2} \otimes f_{0} \rightarrow(\mu-3 \lambda) f_{2}
$$

which shows that if $\mu=3 \lambda$, then $\operatorname{dim} H_{0}^{(2)}=1$, otherwise $H_{0}^{(2)}\left(L_{2} ; F_{\lambda, \mu}\right)=0$.
For $m>2$

$$
\operatorname{dim} H_{0}^{(m)}\left(L_{2} ; F_{\lambda, \mu}\right)= \begin{cases}1 & \text { if } \lambda=-1 \text { and } m+\mu=-1 \\ 0 & \text { otherwise }\end{cases}
$$

So we get

Theorem 4.

$$
H_{0}^{(m)}\left(L_{2} ; F_{\lambda, \mu}\right)= \begin{cases}\mathbb{C} & \text { if } m=0,1 \\ \text { or } m=2 \text { and } \mu=3 \lambda \\ \text { or } \lambda=-1 \text { and } m+\mu=-1 \\ \text { otherwise. }\end{cases}
$$

Corollary. For generic $\lambda, \mu \quad H_{0}\left(L_{2} ; F_{\lambda, \mu}\right)=2$.
Direct computation proves the result for the space $H_{1}^{(m)}\left(L_{2} ; F_{\lambda, \mu}\right)$.

Theorem 5.

$$
\begin{aligned}
& \operatorname{dim} H_{1}^{(2)}\left(L_{2} ; F_{\lambda, \mu}\right)= \begin{cases}1 & \text { if } \mu=3 \lambda \\
0 & \text { otherwise },\end{cases} \\
& \operatorname{dim} H_{1}^{(3)}\left(L_{2} ; F_{\lambda, \mu}\right)= \begin{cases}2 & \text { for } \lambda=-1, \mu=-4 \\
1 & \text { otherwise, }\end{cases} \\
& \operatorname{dim} H_{1}^{(4)}\left(L_{2} ; F_{\lambda, \mu}\right)=\operatorname{dim} H_{1}^{(5)}\left(L_{2} ; F_{\lambda, \mu}\right)=\operatorname{dim} H_{1}^{(6)}\left(L_{2} ; F_{\lambda, \mu}\right) \\
& = \begin{cases}3 & \text { for } \mu=-4, \lambda=-1 \\
2 & \text { otherwise, }\end{cases} \\
& \operatorname{dim} H_{1}^{(7)}\left(L_{2} ; F_{\lambda, \mu}\right)= \begin{cases}2 & \text { if } \mu=-8, \lambda=-1 \text { or } \mu=0, \lambda=0 \\
1 & \text { otherwise, }\end{cases} \\
& \operatorname{dim} H_{1}^{(8)}\left(L_{2} ; F_{\lambda, \mu}\right)=\left\{\begin{array}{ll}
2 & \text { if } \mu=-9, \lambda=-1 \\
1 & \text { for } \lambda \text { and } \mu \text { lying on the curve } \\
-36 \lambda+147 \lambda^{2}-27 \lambda^{3}+8 \mu-72 \lambda \mu+27 \lambda^{2} \mu \\
& +9 \mu^{2}-9 \lambda \mu^{2}+\mu^{3}=0
\end{array}\right] \begin{array}{ll}
\text { otherwise } ;
\end{array}
\end{aligned}
$$

for $m>8, \quad \operatorname{dim} H_{1}^{(m)}\left(L_{2} ; F_{\lambda, \mu}\right)=\operatorname{dim} H_{1}^{(m)}\left(L_{2} ; \mathcal{F}_{\lambda, \mu}\right)($ see Theorem 2).
Corollary. For generic $\lambda, \mu, \operatorname{dim} H_{1}\left(L_{2} ; F_{\lambda, \mu}\right)=8$.
Conjecture 2. For generic λ, μ,

$$
\operatorname{dim} H_{q}\left(L_{2} ; F_{\lambda, \mu}\right)=2(q+1)^{2}
$$

or, in more details,

$$
H_{q}^{(m)}\left(L_{2} ; F_{\lambda, \mu}\right) \simeq H_{q}^{(m)}\left(L_{3} ; \mathbb{C}\right) \otimes H_{q}^{(m-1)}\left(L_{3} ; \mathbb{C}\right)
$$

References

[CE] H. Cartan and S. Eilenberg, Homological Algebra, Ch. XIII/4, Prop. 4.2., Princeton Univ. Press, 1956.
[F] A. Fialowski, On the comology $H^{*}\left(L_{k} ; L_{s}\right)$, Studia Sci Math. Hung., 27 (1992), 189-200.
[FF1] B.L. Feigin and D.B. Fuchs, Homology of the Lie algebra of vector fields on the line, Funct. Anal. \& Appl., 14 (1980), No. 3, 201-212.
[FF2] , Verma modules over the Virasoro algebra, in Lect. Notes in Math., 1060 (1984), 230-245.
[FF3] , Cohomology of some nilpotent subalgebras of the Virasoro and Kac-Moody Lie algebras, J. Geom. and Phys., 5 (1988), No. 2.
[FR] B.L. Feigin and V.S. Retach, On the cohomology of some algebras and superalgebras of vector fields, Uspechi Mat. Nauk, 37 (1982), No. 2, 233-234.
[G] L. Goncharowa, The cohomologies of Lie algebras of formal vector fields on the line, Funct. Anal. \& Appl., 17 (1973), No. 2, 91-97.
[GFF] I.M. Gelfand, B.L. Feigin and D.B. Fuchs, Cohomology of infinite dimensional Lie algebras and the Laplace operator, Funct. Anal. \& Appl., 12 (1978), No. 4, 1-5.
[KP] Yu.Yu. Kochetkov and G.F. Post, Deformations of the infinite dimensional nilpotent Lie algebra L_{2}, Funct. Anal. \& Appl., 126 (1992), No. 4, 90-92 (in Russian).
[V] F.V. Veinstein, Filtering bases, cohomology of infinite-dimensional Lie algebras and Laplace operator, Funct. Anal. \& Appl., 119 (1985), No. 4, 11-22.

Received January 20, 1993 and revised May 22, 1993.
University of California
Davis, CA 95616-8633
E-mail address: fialowsk@math.ucdavis.edu.

