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WEYL'S LAW FOR SL(3,Z)\5X(3,R)/SO(3,R)

ERIC STADE AND D.I. WALLACE

In this paper we derive a Weyl's law, or asymptotic de-
scription of the distribution of eigenvalues of the Laplacian,
on SX(3, Z)\SX(3, E)/5O(3, K). Our main tool in this derivation
is the Selberg trace formula for the space. Our Weyl's law,
which refines the present theory for the space in question, is
also seen to coincide with known results in the case where
51/(3, Z) is replaced by a cocompact discrete subgroup.

" §1. Introduction; statement of results.

The distribution of eigenvalues of the Laplacian for a general bounded do-
main B in W1 was first studied systematically by H. Weyl [We]. There he
gave a precise asymptotic formula, of the form NB(x) ~ κ>0x

n/ί2 (κ0 a con-
stant), for the number NB(x) of eigenvalues less than x of this Laplacian. It
is now standard to refer to such a result as a "Weyl's law" for the domain
B.

Since then, many authors have considered generalizations of Weyl's law
to other kinds of Riemannian manifolds. Particular attention, in large part
because of their relevance to the theory of automorphic forms, has been given
to the spaces Γ\SIr(2,R)/5O(2,R), where Γ is a cofinite (but, usually, not
cocompact) discrete subgroup of SX(2,M). Results concerning eigenvalues
of the Laplacian on such spaces, and on products of such spaces, may be
found in [Ef, Hejl, Hej2, Hul], and [Hu-Te] (among other works).

In the present article, we wish to develop a Weyl's law in the higher-rank
setting of Γ\iϊ3, where Γ - SX(3,Z) and H3 = SX(3,R)/SΌ(3,R). Actu-
ally, what we shall count here is the number N(x) of linearly independent
cusp forms on Γ\iJ3 whose eigenvalue for the Laplacian is less than x. By
"cusp form" we mean a non-constant, square-integrable, joint eigenfunction
(on Γ\ϋΓ3) of the algebra D of all SL(3, IK)-invariant differential operators
on H3. (In higher-rank settings, the definition of "cusp form" also requires
the vanishing of certain "cuspidal integrals" of the eigenfunction. However,
in the current situation, such a definition of cusp form coincides with the
one we have given.) The cusp forms are central to harmonic analysis on
L2(Γ\iϊ3), and to the corresponding theory of automorphic forms on this
space. (Technically, our count will also include the constant functions on
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3, which have eigenvalue 0 under the Laplacian. However, note that
the result of Theorem 1 below is unaltered by the addition or exclusion of a
subspace of dimension one.)

The algebra D is known [Hel, p. 432] to have two generators. We shall
denote these by Δx and Δ 2 respectively, where Δ 2 is the Laplacian on our
space and Δ 2 is a third-order differential operator. (See §2 below for de-
tails.) Because D comprises substantially more than the Laplacian alone,
it may seem that counting joint eigenfunctions of this algebra is a problem
somewhat different than that of obtaining a Weyl's law for Γ\H3. However
the problems are in fact the same, according to the following observations:
A1 and Δ 2 commute, and any eigenspace of Ax (in L2(Γ\H3)) is finite-
dimensional. (The first statement is a consequence of [Hel, p. 432]; the
second is a general fact regarding Laplacian operators that also follows, in
the present setting, from Theorem 1 below.) So any Δi-eigenspace has a
basis consisting of finitely many eigenvectors for Δ2—such an eigenvector
is, by the above, either a cusp form or a constant. Therefore, N(x) in fact
equals the dimension of the subspace of L2(Γ\H3) spanned by functions that
are eigenvectors of Δ l 3 and have Δi-eigenvalue < x. (The above argument
was pointed out to us by David Farmer.)

To state our WeyΓs law, let us denote by vo\(T\H3) the "hyperbolic vol-
ume" (computed according to the SX(3, E)-invariant volume element given
in §2) of this space. We then have

Theorem 1. Let all notation be as above. Then

vol(Γ\iF) / 2

"(X) (4π)^T(7/2)X

as x —> oo.

Remark. The asymptotic result of our theorem is identical to the one
appearing in Weyl's law for bounded domains in 1R5, and for compact Rie-
mannian 5-manifolds (see Weyl [We] and Chavel [Ch]). Moreover, our
theorem sharpens results of Donnelly [Do], and of Huntley [Hu2] (who
consider more general situations). Specifically, Donnelly obtains the value
vol(Γ\iϊ3)/((4π)5/2 Γ(7/2)) as an upper bound for ίϊm χ-*/2N(x)\ according
to our theorem, the lim is actually a limit, and is equal to the stated upper
bound. Huntley does show that x~5^2N(x) has a finite limit, but does not
determine this limit explicitly.

We further observe that Huntley's count includes certain functions that
are square-integrable, but not cusp forms. Specifically, for the eigenfunctions
of Δi contributing to his Weyl's law, the relevant cuspidal integrals need
not vanish identically, but only outside a specified compact subset of Γ\H3.
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(Such functions are not generally eigenfunctions in the true sense, or even
in the sense of distributions, but rather in a certain L2 sense described in
[Hu2].) As our Weyl's law counts only the cusp forms, it is technically
somewhat different than his.

We now turn to the proof of Theorem 1. Our principal tool in this proof
will be the Selberg trace formula—as realized by Wallace [Wa]—for nice
functions g on the space SO(3,R)\SL(3,R)/SO(3,R). The details of this
trace formula are given below; the basic idea behind its application is as
follows. The left-hand, or "spectral," side of the trace formula may be
interpreted, for appropriate choice of #, as the Laplace transform LN(T) of
N(x). By studying the various "orbital integrals" on the right-hand side
of the trace formula, one may obtain an asymptotic equation, as T -» 0+,
for LN(T). Then, by applying a Tauberian theorem [Wi] for the Laplace
transform, information on LN(T) may be translated into the desired formula
for N(x) itself.

The arguments just described will be fleshed out in §3 below, following
a brief discussion, in §2, of harmonic analysis on H3. In §4, an inversion
formula for a certain integral transform, known as the "Helgason transform"
g (see §2), of functions g will be proved. This formula will be required in
what follows, since the trace formula relates expressions involving g to others
involving #, and moreover the particular g of interest to us will in fact be
defined as a function with a given g. In §§5-7 we will carry out the compu-
tation of Lχ{T), by considering the orbital terms on the right-hand side of
the trace formula. In the last section, we will combine this computation with
the relevant Tauberian theorem to obtain the result embodied by Theorem
1.

The authors would like to thank David Grant, Jonathan Hunt ley, and
Thomas Shemanske for many helpful conversations.

§2. Harmonic analysis on SX(3,R)/5O(3,M).

In this section, we recall some basic ideas concerning coordinate systems and
differential operators on H3 = SL(3, R)/SO(3,R).

First, using the Iwasawa decomposition for 5L(3,K), we may identify H3

with the space AN, where A consists of diagonal matrices

α = diag(α1,α2,(αiα2)~1) (α* > 0)

and N consists of upper triangular unipotents
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(xi G K). In these coordinates, the 5L(3,M)-invariant measure on H3 is
given by

(2.1) dnda = 54d#i dx2 dx3—-—-.

The factor of 54 is included to provide a measure equal to the one specified
in [Ch] and [Do].

As mentioned in §1, the algebra D of SX(3, E)-invariant differential oper-
ators on H3 has two generators: the Laplacian Δi—which, properly normal-
ized, is a positive operator (cf. [Bo])—and a third-order operator Δ 2 . The
former may be computed according to a formula in Chavel [Ch]. On the
other hand, both operators have been determined explicitly by Bump [Bu]
(using a fundamentally different coordinatization of H3). In our coordinates,
we have

Proposition 2.1.

Δ! = -l-{Hl - Hx+ Hi - H2- HλH2 + X\ + X2

2 + Z2

0)

Δ2 = ~H1 H2 + H\H2 + H1 — Ή-2 — Hi + H2

where

X2H\ — Z0Hχ + Z0H2

aγ d a2 d d d
ό oaχ ό oa2 ox2 σxs

2αχ d a2 d d d

3 dd\ 3 uQ>2 uX\ 0x2

d d d _d_

ox2 σx3 oxχ ox2

Proof. These are exactly equations (2.31) and (2.36) in Bump [Bu], except
that we have multiplied by —1/3 his definition of Δi: this normalization
yields the same Laplacian as appears in [Ch] and [Do]. We must restate
Bump's differential operators HUH2, etc. in terms of our coordinates on
H3, but this is straightforward: Bump gives us these operators as matrices
in the Lie algebra of SX(3,1R), where such a matrix X defines a differential
operator in the usual way:

t=o
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(/ E ' C ° ° ( 5 L ( 3 , R ) ) ? z E H3). In particular, we have

-XΊ — ^2,3 5 ^ 2 — -Si,2 5 Zθ — -Sl,3j

where £ ^ denotes the matrix with a one in the i,j slot and zeroes else-
where. We merely choose z to have the AiV-coordinates given above, and
our proposition follows after a few brief calculations. D

We now wish to consider integral transforms on H3. (See, for example,
[Te2] §4.2.) Let K = 50(3, R). Suppose g is a bi-K-invariant function
on SX(3,M): that is, we may consider g as a function on H3 satisfying
g(kz) = g(z) for all k E K, z E H3. Then the Helgason transform g of g is
defined, for s,f E C, by

(2.2) g{s, ί) = / ^(αn) α? β + ί α^~* dn do.

(Our definition of the Helgason transform certainly makes sense for g in-
finitely differentiate and of compact support; however it is pointed out in
[Te2] that this transform extends to an isometry on all of L2(K\G/K).)
We remark that the function H8it(aή) = a\8+ta\8"1 is an eigenfunction of
D, for any s,i; this follows, for example, from Proposition 2.1. We write
AxHgt — XH8it and A2Hst = μHs^t; then it is readily computed that

(2.3) λ = θ(l - 3) + \t{l - t); μ - (1 - 2s)(5 + t - l){s - t).
ό

(The seemingly unusual normalization of the exponents in the definition of
Hst is justified by the simple form that this provides for the inversion formula
of §4. Moreover, it may be seen that Hst has the same eigenvalues under D
as does the Eisenstein series E(z, s, t), as defined in [Wa]; therefore we may
use results from the latter work without significant modification.)

A related transform of g is the Harish-Chandra transform g, defined for
a diagonal matrix a as above by

(2.4) g(a) - / g(an) dn.
JN

Note that Mellin inversion applied to (2.2) gives us

(2 5) » ( ) 7 o W
{lπ%y jRe(v)=c2
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for appropriate C\, c2.
To state the required version of the trace formula for SX(3, Z)\H3, we will

need a convenient way of indexing eigenvalues of cusp forms on this space.
We do this in a way consistent with the notation previously introduced for
Hst. Specifically, we let {φn}™=ι denote a maximal orthonormal set of such
cusp forms, arranged in order of increasing eigenvalue for the Laplacian, and
let φ0 denote the constant function 1. Writing Δχ<pn = λnφn for all n, we
then have

0 = λ0 < λi < λ2 < λ3 < ... .

We will also write μn for the eigenvalue of ψn under Δ 2. Finally, we introduce
"eigenparameters" sn,tn in a way analogous to equation (2.3): namely, we
write

(2.6) λ n - sn{\ - sn) + | * Λ ( 1 - < n ) ; μ n = (l- 2sn){sn +tn- l)(sn - ί n ) .

It is not hard to show that, for arbitrary λn,μn, these equations may be
solved for sn,fn.

We now turn to our discussion of the trace formula for SX(3, Z)\ϋ/"3, and
of its application to Weyl's law.

§3. The trace formula and Weyl's law on
, Z)\SX(3, R)/SΌ(3, R).

It will be instructive to recall the notion of a trace formula in a quite general
setting. To this end, we begin with a noncompact real semisimple Lie group
G, a maximal compact subgroup K, and a cofinite discrete subgroup Γ. Then
G/K is a Riemannian symmetric space on which Γ acts. Let g(x) : G -> C be
a K-bi-invariant function. One constructs the kernel of an integral operator
on L2(Γ\G/K) by setting

F(z,w) =

The Selberg trace formula, introduced by Selberg in the 1950's (cf., for ex-
ample, [Sel, Se2]), equates two expressions for the trace of this opera-
tor on the discrete part of the spectrum of D. As above in the setting of
SX(3,R)/SΌ(3,R), D denotes the algebra of (^-invariant differential oper-
ators on G/K, or on T\G/K.

The two sides of the trace formula take the following forms. On the
one hand (the left-hand side of the trace formula), one may use Mercer's
Theorem for Hilbert-Schmidt operators to write this trace as a sum over
eigenvalues of D. The quantity being summed is the "Helgason" or "Selberg"
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transform g of g: g is an integral of g against an eigenfunction φ of D on
G/K. (The arguments of g will be the eigenvalues of φ under generators for
D, or certain parameters indexing these eigenvalues, as we have seen above
in the specific case of interest to us.) On the other hand (the right-hand side
of the trace formula), one can break up the sum defining F(z,w) according
to the conjugacy class of 7, and use this decomposition to break up the
integral defining the trace of F. Each of the resulting integrals is called an
"orbital integral" for g. (Care must be exercised with the contribution from
the "parabolic" orbital integrals; it is only because the "continuous" part
of the kernel F has been subtracted that this contribution is finite.) The
various orbital integrals may themselves be expressed as integrals and sums
of the Helgason transform, and the related Harish-Chandra transform, of g.

Let us now restrict our attention to the situation considered in §1: namely,
to the case G = SX(3,R); K = 50(3, R); Γ = SX(3,Z). In this setting, the
above generalities regarding a trace formula have been made explicit by
Wallace [Wa]. These results may be summarized by

Proposition 3.1. Let g e C?{SO(3,R)\SL(3,R)/SO(3,R)) (however,
see the remarks below); let all notation be as in §§ 1 and 2 above. Then

jΓg(sn,tn)=vo\(Γ\H3)g(I)

+

fa |1 - 2r-s cos0" n r ° | C 1 ( Z M ) ' ' ~ . , O V τ ^ = * * *

where:
a. I denotes the identity coset (the first term on the right-hand side of
Proposition 3.1 is called the "identity" or "central" term).

b . The sum in (εi,ε 2,ε 3) runs over all distinct real triples with \ει\ > \ε2\ >
| ε 3 | (no Si = 1), such that there is some (by definition, hyperbolic) matrix in
5L(3,Z) with eigenvalues ε i ,ε 2 ,ε 3 . Also, Reg denotes the regulator of the
order, and Cl the narrow class number. (The second term on the right-hand
side above is called the "hyperbolic" term.)

c. The sum in (r, θ) runs over all distinct pairs with r > 0 (r Φ 1) and
0 < θ < π, such that there is some (by definition, loxodromic) matrix g in
SX(3,Z) with eigenvalues r~2,reιθ,re~ιθ. Again, Cl denotes the narrow class
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number; also, r0 is such that the centralizer of g (in SX(3,Z)); which is infi-
nite cyclic, has generator conjugate (in 5£(3, C)) to diag(r^~2, roe

ίθ°, roe~ίθ°).
(The third term on the right-hand side above is called the "loxodromic"
term.)

d. Kι,K2iK3 are universal constants. (The sum of the last three terms on
the right-hand side above is called the "parabolic" term.)

Remarks on Proposition 3.1. We note that the version of the Sel-
berg trace formula that we have stated above is slightly different than that
given in [Wa, §8]. Namely, in the latter work both the hyperbolic and
loxodromic terms are broken down into sums over powers of "primitive"
conjugacy classes. The forms given above for the hyperbolic and loxodromic
terms will be more convenient for our purposes. (See §§6 and 7, below.)

We observe further that the hyperbolic term above is, as in [Wa], actually
a sum over all distinct sets of eigenvalues of hyperbolic matrices. The stip-
ulation |εi| > \ε2\ > \ε3\ precisely assures that each such set is counted only
once. Similarly, the loxodromic term is a sum over all sets of eigenvalues
of loxodromic matrices; in this case the requirements r > 0 and 0 < θ < π
assure that no set of eigenvalues occurs twice.

Finally, we make the crucial observation that the trace formula may be
extended to include a broader class of "test function" g than that stip-
ulated in the above proposition. In particular, it is straightforward to
show, using techniques analogous to those employed in [Hel, Chapter 1]
and [He2, Chapter 8], that Proposition 3.1 remains valid for smooth func-
tions g G L2(K\G/K), such that g(s,t) decays exponentially as Im(s) or
Im(t) approaches ±oo (and the corresponding real part remains bounded).
We will apply Proposition 3.1 to such a function #, as described immedi-
ately below (the class of allowable g may be made broader still, with a small
amount of additional work, but we will not require such a generalization).

The application of the above trace formula to Weyl's law will proceed as
follows. First, for T > 0, we will let g be a left if-invariant function on H3

such that

(3.1) g^(s,t) = e~ λ T - e-r[.(i—)+i(i-t)/3]β

Such a function g must exist for the following reason: we have seen that
5(1 — s) + t(l — t)/3 is the eigenvalue of Δi belonging to the eigenfunction
Hsj(z) = al^al8'*. Such an eigenvalue is invariant under the action of the
Weyl group on (s, £), as described in [Te2], Chapter 4 or [Bu], Chapter 2 (in
the respective coordinate systems). But it follows from [Te2], Theorem 1, p.
88 (after restriction to the determinant-one surface SP3), that the Helga-
son transform is an isometry from square-integrable, if-invariant functions
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on H3 onto the space of functions of (s,t) that are square-integrable with
respect to the spectral measure (cf. §4) and are invariant under this action.

We will then apply Proposition 3.1 to our function gl: on the left-hand
side we get

n=0

In particular LN(T) is a Laplace, or Laplace-Stieltjes, transform oίN(x). By
estimating each term occuring on the right-hand side of the trace formula, we
may obtain asymptotic information (as T —> 0+) regarding LN(T). Theorem
1 will then follow, by the Tauberian theorem mentioned in §1.

We now proceed with our derivation of the inversion formula for the Hel-
gason transform.

§4. Inversion of the Helgason transform on H3 = SX(3,R)/SΌ(3,R).

In this section, we will prove

Proposition 4.1. Let g be a smooth, square-integrable function on H3 that

is K = SΌ(3, R)-invariant, i.e. g(kz) — g(z) for all k £ K. Then

l r J\ . i .

r2 (7*2 — 9r^) tanhπr 2 tanhπ tanhπ dri dr2.

Proof. Our starting point for the proof of Proposition 4.1 will be the "Hel-
gason inversion formula" that appears in [Te2] (Theorem 1, p. 88). This
formula pertains to functions on the space

Vn = {positive definite, symmetric real n x n matrices},

which is a GL(n, R)-space via the action (Y,g) —> Y[g] ^gYg (Y £ Vn, g £
GL(n, R)). We will be concerned with the case n — 3. By first identifying
integrals on AN with integrals on the determinant-one surface <SP3 of P 3 ,
and then restricting the inversion formula in [Te2] to SP^, we will deduce
from Helgason inversion the required inversion formula for H3. D

We begin with

Lemma 4.1. Let f be integrable on SP^. Then, for a suitably normalized
SX(3, R)-invariant measure dW,
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wesp3

[
AN

Proof of Lemma. We begin with formula (1.39), Chapter 4 in [Te2] for
integrable functions on V3:

ί
Jγγev3

F(Y)dY = F [i dn' da1

where dY is GL(3, R)-invariant measure on V3, A' — {diag(αl5α2,α3) | α» >
0}, dn1 — dx\dx2dx3, and da' — daχda2da3/a1a2a3. We choose the SX(3, R)-
invariant measure dW on SP3 so that dY = v^dvdW, where v = det y
and y = i;1/3!^. (That such a choice of measures is possible is pointed out
in [Te2], §4.1.) Also let k be a function on R+ whose integral with respect to
the Haar measure dυ/v exists and is nonzero; put F(Y) = k(v)f(W). Then

/ Φ) — ( f(W) dW = 8 / k((aia2a3)-2)
Jv>0 v JWeSPa JA'N

dn' da'.

We substitute υ = (a1a2a3)
 2; ux = [a\/a2a3Y^] u2 = {a\/aιa3)

1^ into the
integral on the right. It is seen that, under this substitution,

So we get

\dv du\ du2

da -» .

it \ d v

k(υ) —

dn'
du2

uλu2

whence, upon replacing Ui by a{ and recalling the factor of 54 present in
(2.1), the lemma. D

Next, using Lemma 4.1, we wish to write the Helgason transform g in
terms of an analogous transform for functions on SP3. We begin by writing,
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for any Y E V3 and s = {sus2,s3) E C3, p8{Y) = ΠLi l^ | S ι where Yτ

denotes the top left-hand i x i corner of Y. Note that ps(W) is independent
of s3 for W E SP3; we will write P(Sl,S2)(W) for ps(W). We have:

L e m m a 4.2. Let g be a function on H3 whose Helgason transform (2.2)

converges absolutely; let f be the function on SP3 defined by /(/[(an)" 1]) =

g(an). Then

where, by definition,

Γ(si,s2) = ί f(W)p(suS2)(W)dW.
JWeSPa

Proof of Lemma. This follows immediately from Lemma 4.1, upon noting

that

HsAz) = dl^al8'1 = Pί-Ut-sswilKan)-1]).

D

In our next lemma, we obtain an inversion formula on SP3.

Lemma 4.3. // / is square-integrable and K-invariant on SP3, i.e.

f(W[k}) = f(W) for allkeK,W E SP3, then

f{I)—2τ:iω3 \ /*(s l 5 s2) |c3(s)|~2(is1 c?s2

where the "spectral measure77 ω3 |c3(s)|~2 is given in [Te2] Theorem 1, p. 88

(or equations (4.1), below).

Proof of Lemma. Let F be square-integrable and O(3, R)-invariant on V3.
The Helgason transform F(s) of i7*, for 5 E C3 as above, may be defined by

F{s) = I v¥ I F{v1/3W)^(W)dW ^

where r = (1/3) £ j = i jsj (cf. [Te2], p. 94). We now take F(Y) = A;
where A: is a suitable function on M+ that does not vanish at υ = 1. (Note
that / if-invariant =̂> F 0(3, R)-invariant.) For simplicity, let us in fact
take k(v) = e~v. Then

F{s)= e-υυr—
Jυ>0 V Jw
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(cf. Lemma 4.2 above). We recall the Helgason inversion formula for V3 (cf.
[Te2], Theorem 1, p. 88):

F(Y) = ω3 ί
R ( )

F(s) hs(Y) \c3(s)\~2 ds
Re(β3) = l

where hs is a "spherical function" obtained by averaging the power function
ps over the orthogonal group. For our purposes, it suffices to know that
hs(I) = 1. Also, one notes from the definition that c3(s) is independent of
s3. So the above inversion formula gives us

Re(βi)=Re(β2) = - l

Γ

f*(suS2)\c3(s)\~

ds3 ds1ds2.

J
But k(l) = 1/e, which is (2πi) λ times the value of the integral in s3 (we
are merely invoking Mellin inversion to evaluate this integral). So

/(/) =2πiω3 j f*(sus2)\c3(s)\-2 ds1ds2,

as was to be proved. D

We now put the above lemmas together to deduce our inversion formula
on H3. Let g be square-integrable and ίί-invariant on if3; let / be the
function on SP3 with g(an) = /(/[(an)"1]). Noting that / is iί-invariant
on SP3, we have by Lemma 4.3

g(I) — /(/) = 2πiω3 / f*(sχ,s2) |c3(s)|~2<i51 ds2.

We substitute Si -> — 57, to get

o / £*ί — \ I / M—2 J J

= ΔΈlίύ3 I J ("~Si, — S2) \C3[ — S i , — S2)\ aS\ CtS2,

following this with the substitution

_
s _

2s2

we get

- 3πiω3 / /* [ -t,
jRefβ)=ϊ/Re(β)=Re(t)=l/2

)=Re(t)=l/2

- 2

dsdt

C3 - ί , — r —

- 2

dsdt
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by Lemma 4.2. Let us finally substitute s = | + ir l 5 t = | + ir2. We find
from [Te2], p. 88 (and equation (3.23), p. 144 in [Tel]), that

(4.1a)

/ t - 3s
C 3 - * ,

- 2

2

= τrr2 {r\ — 9rj) tanhτrr2 tanhτr' J tanhπ-

Since our substitution takes dsdt to — dri dr2, and as

_ π Γ(j/2) _ Γ(l/2)Γ(l)Γ(3/2) _ *
V / ^^o I I */θ Λ Ί"/9 O ί(Λ '\'i *R f\C* t\

(cf. [Te2], p. 88, again), we get

• r2 (r2 — 9rl) tanhπr2 tanhπ tanhπ dvx dr2.
Δi Δι

This proves Proposition 4.1.

§5. The identity term.

The first term that contributes to the right-hand side of the trace formula,
for a given test function g, is the identity term

(cf. Proposition 3.1). For g = g having the Helgason transform given in

(3.1), we will prove

Proposition 5.1.

asT -*0+.

Proof. Recalling Proposition 4.1, we have

4. u x , 7 - 2 + 37-1 r 2 - 3 r i
• tanh πr2 tanh π tanh π drx dr2

A Δ

^2 + 3ri r2 — 3rχ
tanh πr2 tanh π tanh π dr^ dr2.

Δ Δ
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To simplify this expression, we use the trig identity

tanh(α + b) tanh(α) tanh(6) = tanh(α) + tanh(&) — tanh(α + b)

to obtain

Λ. U Γ 2 + 3 r l , 4. i. Γ 2 * 3Γi \

• I tanhπ (- tanhπ tanhπr2 I dτ\ ar2.
\ Z Z J

Into the first of the resulting three integrals we substitute p — {—rλ +
r2)/2,q — (r2 + 3rχ)/2; into the second we substitute p = (rλ + r 2)/2, g =
(r2 — 3ri)/2; and into the third, p = r l 5 g = r 2. Each of these substitutions
has Jacobian equal to one, and moreover the first and second merely negate
the quantity

(and give the new names p, q to rλ,r2 respectively). This latter phenomenon
is a consequence of a general invariance of Helgason transforms, cf. the
discussion following equation (3.1). At any rate, our substitutions yield

(5.1)

Now

pπq _ p-πg p-2πςι

(5.2) tanhπg = = 1 - 2- — - 1 + O(e~2πq)
v > eπq + e-πq J + e-2ττq

for g > 0. Since

αoo /»o

= O (Je~Tp2p2dp

= 0{T~3/2 + T'1'2) = O{T~3'2)
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as T -)• 0+, we have from (5.1) and (5.2):

(5.3)

Γ Γ "T(1+3p+?)/3 9 (9P2 - ?2) dPd1 +
e"τ(1+3p+?)/3= ^ IΎ

as Γ -> 0+.
Making the substitution

xy 3x
Ό = Q =

we get

9M =
e-T/3 /.oo

24π3 Jo Jo {y +1)5/2 ^y

The integral in y may be evaluated via the standard beta function formula

Jo y Γ(α + b)

(Re(α),Re(6) > 0), whereby

(54) a ί ί ) r 3 )
(5.4) gτ(I) - 2 % 3 ^3 Γ ( 5 / 2 ) Γ ( 5 / 2 ) J

Ύχ 5/2 ""^

-T/3 Vπ/2_ _ ^ ^ _ \ Γ(5/2)
Γ(5/2) Γ(5/2); Γ5/2 ^2%3 V Γ(5/2) Γ(5/2)y

T-5/2e-T/3

(4π)5/2

Since T" 5/ 2e- τ/ 3 = T-5/2 + O(Γ-3/2) as T -»• 0+, Proposition 5.1 clearly fol-
lows.

D

§6. The hyperbolic term.

We now wish to consider the contribution from hyperbolic conjugacy classes
to the orbital side of the trace formula. In particular we wish to prove, for
g = g as above (and all notation as in §3):
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Proposition 6.1.

^ Reg(Z[£l])Cl(Z[£l])|£?£2| _ , „
Γ ΰ Z 7 Ύ ΰ ^ I , |ε2 |, |ε3 |))

asT -)• 0+.

Proof. Let us write, for brevity, Eε = diag(|εi|, |ε2 |, |ε31). By equation (2.5),

[
Re(v)=c2

ί l|-<»*-*> |e a |-( a-') dsdt
^Re(s) = (C l+c2)/6

for suitable cuc2. Now equation (3.1) for g^ clearly allows us to take cλ —
2,c2 = 1. Then

6|εΓ ε2 |e~

Using the fact that

for ε,α > 0 (this identity amounts to the statement that f(x) = e πx is
invariant under the Fourier transform), we find that

• Q — >

£ZLe-3(log2|εi/e2|)/4T

T

! ε2

1\e~τ 3

2πΓ

The implied constant is absolute and holds for all T > 0.
Thus we find that

= /

I i(ε1-ε2)(ε1-ε3)(ε2-ε3)|
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To estimate the sum on the right-hand side of (6.1), we need the following

L e m m a 6.1. For some positive constant b,

Reg(Z[£l]) Cl(Z[εi]) = b

\(ει -ε2){ει - ε 3 ) ( ε 2 - ε 3 ) | ι '

Proof of Lemma. Let d = [(εx — ε2)(εi — ε3)(ε2 — ε 3)] 2 be the absolute value
of the discriminant of Z[εi]. It follows from [Bo-Sh], Lemma 3, p. 121, as
well as Lemmas 2 and 3, p. 127, that

Reg(Z[εχ]) Cl(Z[εi]) - O(dbl)

for some positive number b\. Therefore

Reg(Z[£ l])Cl(Z[g l])

|(εi - ε 2 ) ( ε i - ε 3 ) ( ε 2 - ε 3 ) |

= O (|(εi - ε2)(εi - ε 3)(ε 2 - ε,)] 2 6 1" 1) = O(εJ),

for b — 6bι — 3 (we have used the fact that |εi | > |ε 2 | > |ε3j). Thus our
lemma is proved. D

Now let

/ v ί distinct sets (εi,ε 2,ε 3) of eigenvalues \
/JT ( Πβ ) — / \

) of hyperbolic matrices : |ε 3 | < |ε 2 | < |ε x | < x J

Then, since π(x) = 0 for x < 1, equation (6.1) becomes

Reg(ZN)

- Π

n

But e -( 9 I °δ 2 χ )/ 4 T = 0(^- 6- 4) for x > 1 and for T bounded above, so

V
^

/

oo \

χ-4dπ(x)J ,



258 ERIC STADE AND D.I. WALLACE

for T bounded above.

To complete our proof of Proposition 6.1, we need only show the above
integral converges. We do this via

Lemma 6.2. π(x) = O(x3) for x > 1.

Proof. Consider the map

(εi,ε 2 jε 3) -> λ3 - (ε1 + ε2 + ε3)λ2 + (εiε2 + ε2ε3

This map is an injection from the set {(εχ,ε2,ε3)} figuring in the definition
of π(rr), into the set of cubic monic polynomials λ3 — vλ2 + wX — 1 E Z[x]
with

\v\ < |εχ| + |ε2 | + |ε3 | < 3x; \w\ < |εiε2 | + |ε 2ε 3 | + |εiε3 | < 3x2.

This set of polynomials clearly has cardinality O(x3), whence the lemma.

D

We now integrate the right-hand side of equation (6.2) by parts. By
Lemma 6.2, and since π(l) = 0, we find

= O (τ~ι Γ x~5 π{x) dx) = O (τ~ι Γ χ-2 dx) = 0{T~ι)

as T —> 0+. Thus Proposition 6.1 is proved. D

§7. The loxodromic and parabolic terms.

In this section we complete our study of the orbital side of the trace formula.
The calculations in this section will be brief, as the arguments regarding the
loxodromic term are quite similar to those of the previous section, and the
parabolic terms may be evaluated readily.

We begin with the loxodromic term

|lnr o |Cl(Z[r]) f f ri-.e-2gim ( t) •

y L ^ j 1 + e-™»<*>fa 1 - 2r-3 cosθ + r- |

(cf. Proposition 3.1). By pairing each summand arising from a conjugacy
class {g} in the sum with the one arising from {g'1} (and noting that r is a
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unit in Z[r]), we may write this term as

Σ

'-M-—Λ ._,;ΐmW—dsdt.

— ?r~3

r>l

The integral in t above is readily shown to be O(T ljί2). The integral in
5 may be evaluated by techniques very similar to those employed in §6. We
may thus show that

θ2(s, t) — w-r-77s ds dt

= O ( T " 1 r 1 / 2 e ~ ( l o g 2 r ) / 4 T ) .

Next, as in Lemma 6.1, and using the fact that | lnro| < | In r|, we may show
that I lnr o | Cl(Z[r]) = O(rc) for some c > 0. We therefore find that, for Γ
bounded above,

I lnrol Cl(Z[r]) f f _ ri-«e-2gim(t)

= o IT-1 y>-41 = o

where

/ x _ ί distinct pairs (r, θ) corresponding 1
I to loxodromic matrices : l < r < x , O < 0 < π j

To complete our study of the loxodromic term, we need to consider the

quantity σ(x). But minor modifications applied to Lemma 6.2 tell us that

σ(x) — O(x3): whence

(7.1)

^ |1 -2r- 3 cos(9 + r- 6 |

•/ ί g2(s,t)[ e

 n τ.,/fX dsdt

T~x \ χ-2dx\ =O(T~ι),
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as T -» 0+.
We now need only evaluate the parabolic terms in Proposition 3.1. It

follows immediately from equation (3.1) that

I-!)+*•»»(l 0 + * i S ( I - 0

and we are done.

§8. Proof of Theorem 1.

In this section, we put together previous results to obtain an asymptotic
expression for LN(T). A Tauberian theorem is finally used to derive from
this the desired formula for N(x).

We begin by combining Proposition 3.1, for g — gτ given by (3.1), with
Propositions 5.1, 6.1; equations (7.1) and (7.2). We then have

+ O{T-W + Γ-1 + 1)

(8

as

•1)

LN

T -> 0+

We now note

n = 0

that

XnT vo\(Γ\H3)

vol(Γ\H3)
(4π)5/2

LN(T)= Γ e

rp-5/2

rp-5/2
J.

-χTdl

the Laplace transform of N(x). Then a standard Tauberian theorem (see
Widder, [Wi]) yields

N(x) - x
"[X) (4π)V2Γ(7/2) ^ '

as x —> oo. This completes the proof of Theorem 1.
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