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(A2)-CONDITIONS AND CARLESON INEQUALITIES IN

BERGMAN SPACES

TAKAHIKO NAKAZI AND MASAHIRO YAMADA

Let v and μ be finite positive measures on the open unit disk
D. We say that υ and μ satisfy the (i/,μ)-Carleson inequality,
if there is a constant C > 0 such that

\f\2dv<C U^dμ
D JD

for all analytic polynomials /. In this paper, we study the
necessary and sufficient condition for the (z/, μ)-Carleson in-
equality. We establish it when v or μ is an absolutely con-
tinuous measure with respect to the Lebesgue area mesure
which satisfy the (A2)-condition. Moreover, many concrete
examples of such measures are given.

§1. Introduction.

Let D denote the open unit disk in the complex plane. For 1 < p < oo, let
Lp denote the Lebesgue space on D with respect to the normalized Lebesgue
area measure m, and || | |p represents the usual ZAnorm. For 1 < p < oo,
let Lp

a be the collection of analytic functions f on D such that | |/ | | p is finite,
which are so called the Bergman spaces. For any z in D, let φz be the Mobius
function on D, that is

f , , z — w , _λ

and put,

β(z,w) = 1/2 log(l + \φz(w)\)(l - IΦziw)])-1 (z,w e D).

For 0 < r < oo and z in D, set

be the Bergman disk with "center" z and "radius" r, and we define an
average of a finite positive measure μ on Dr(a) by

m{
M v /

r{a)) JDr(a)
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and if there exists a non-negative function u in L1 such that d μ = ud m,
then we may write it ά r, instead of μ r.

Let v and μ be finite positive measures on D, and let P be the set of
all analytic polynomials. We say that v and μ satisfy the {y, μ)-Carleson
inequality, if there is a constant C > 0 such that

\f\2du<C f \f\2dμ
D J D

for all / in P. Our purpose of this paper is to study conditions on v and
μ so that the (z/, μ)-Carleson inequality is satisfied. If v < Cμ on D, then
the (z/, μ)-Carleson inequality is true. However it is clear that this sufficient
condition for the (ẑ , μ)-Carleson inequality is too strong. A reasonable and
natural condition is the following: there exist r > 0 and 7 > 0 such that

(*) Vr(a) <7Ar(α) {aeD).

The average μr(α) are sometimes computable. If μ = ra, then μr(α) = 1 on
D. If d μ = (1 — |z | 2)αd ra for a > —1, then μr(α) is equivalent to (1 — |α | 2 ) α

o n l λ
When d μ = (1 — | ^ | 2 ) α d r a f o r α > —1, Oleinik-Pavlov [7], Hastings

[2], or Sitegenga [8] showed that υ and μ satisfy the Carleson inequality if
and only if they satisfy ( * ). In §3 of this paper, when d μ — ud m and
u satisfies the (A2 ^-condition (the definition is in §3), we obtain that the
{y, μ)-Carleson inequality is satisfied if and only if they satisfy ( * ). We
show that if both u and u~ι are in B M Od ( see [9, p. 127] ), then u
satisfies the (A2)#-condition. We give some concrete examples which satisfy
the (A2)9-condition.

When v — m and d μ ~ χod ra, where χo is a characteristic function of
a measurable subset G of D, Luecking [4] showed the equivalence between
the (z/, μ)-Carleson inequality and the condition ( * ). If we do not put any
hypotheses on μ, the problem is very difficult. The equivalence between the
(1/, μ)-Carleson inequality and the condition ( * ) is not known even if v — ra.
Luecking [5] showed the following:

(1) If there exists 7 > 0 such that rar(α) < 7μr(α) for all r > 0 and a in
JD, then the (ra, μ)-Carleson inequality is satisfied.

(2) Suppose the (μ, ra)-Carleson inequality is valid (equivalently μ r is
bounded on Γ>). Then the (ra, μ)-Carleson inequality implies the condition

( * ) •
In §2 of this paper, we give a sufficient condition (close to that of (1))

for the (z/, μ)-Carleson inequality when v is not necessarily ra. Moreover,
using the idea of Luecking's proof of (2), a generalization of (2) is given. In
§4, when d v — vd m and v satisfies the (A2)-condition (the definition is in
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§3), we establish a more natural extension of (2) under some condition of a
quantity εr{u) (the definition is in §2), that is εr{y) —> 0 as r —>> oo. The
(τ42)-condition is weaker than the (A2)d -condition. We give some concrete
examples which satisfy the (A2)-condition or the above condition of εr(u).

§2. (z/, μ)-Carleson inequality.

Let G be a measurable subset of D and u be a non-negative function in L1,
and put

1 r

i ( \\ /

r{a)) JDr{

uGl)ria) = — ' - - - / u ^VrA m.
m{JUr{a)) JDr{a)

Particular, when G — D, we will omit the letter D in the above notation.
The following Proposition 1 gives a general sufficient condition on v and μ
which satisfy the (z/, μ)-Carleson inequality. In order to prove it we use ideas
in [5] and [9, p. 109]. Since (u~1)^(a)~1 < ύτ{a) for all a in D, Proposition 1
is also related with (1) of §1 (cf. [5, Theorem 4.2]).

Proposition 1. Suppose that d μ — ud m. Put Er = {z E D; there is a
w E suppz/ such that β(z,w) < r/2}. If there exist r > 0 and 7 > 0 such
that u > 0 a.e. on E — Er, and v{a) x {u^)^{a) < 7 for all a in D, then
there is a constant C > 0 such that

ί \ί\2dv<C ( \f\2dμ
JD JE

for all f in P.

Proof. Suppose that v2r{a) x [u^)2r[a) < 7 for all a in D: and put E = {z E
JD; there is a w E suppz^ such that β(z,w) < r}. By an elementary theory
for Bergman disks, there is a positive integer N = Nr such that there exists
{λn} C D satisfying that D = UD r (λ n ) and any z in D belongs to at most
iV of the sets D2r(λn) (cf. [9, p. 62] therefore

Lsupp v -/Dr(λn)nsuppi/

<^K^(λ n ) )xsup{ | / (^) | 2 ;

By Proposition 4.3.8 in [9, p. 62], there is a constant C = Cr > 0 such that

for all / analytic, z in D. If z in Dr(Xn) Πsuppz/, then Dr(z) is contained in

£, and there exists a constant K — Kr > 0 such that m(D2r(\n)) ^
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Km(Dr(z)) for all n > 1 (cf. [9, p. 61]). Hence the Cauchy-Schwarz's
inequality implies that

[ \f\2dv<Σ HDΛλn)) x ((m(n
C

(χ „ / \f\d m)

<K2C2Σv2r{\n) x (u^KΛK)

xlf \f\2udm).
\JD2r.(\n)nE )

By the hypothesis and a choice of disks, it follows that

( \f\2dv<K2C2

ΊN f \f\2dμ.
JD JE

This completes the proof. D

Let μ be a finite nonzero positive measure on D. For any a in Z), put

fcα(^) - ( 1 - | α | 2 ) / ( l - α ^ ) 2 (z e D),

and a function μ on D is defined by

μ(a) = / \ka\
2d μ.

JD

Moreover, for any fixed r < oo, put

εr(μ) = sup ( / |&α |2d μ J x ( / |/cα |2d μ ) .
oGD y7D\Dr(α) / \JD J

If there exists a non-negative function u in L1 such that o? μ — ud m, then
making a change of variable, it is easy to see that

if \ ( f \~ι

εr(μ) = sup I / uo φad m x ( / u o φad m j
aeD \JD\Dr(o) ) \JD J

In general 0 < εr(μ) < 1. In this section and §4, this quantity εr is important.
The following Proposition 2 gives two general necessary conditions on v
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and μ which satisfy the (z/, μ)-Carleson inequality. In order to prove (2)

of Proposition 2 we use ideas in [5, Theorem 4.3]. Since εr(m) < 1 and

εr(m) -^ 0 (r —> oo), (2) of Proposition 2 is related with (2) of §1.

Lemma 1. Let μ be a finite positive measure on D and 0 < r < oo, then
the following (1) ~ (3) are equivalent.

(1) εr(μ) < 1.
(2) There is a δ = δr < oo

\ka\
2dμ<δ ί \ka\

2dμ
»r(α) JDr{a)D\D>

for all a in D.

(3) There is a p = pr < oo such that

μ(a) < ρμr{a)

for all a in D

Proof. The implication (1) =* (2) is trivial. (2) => (3) and (3) => (1) follow
from Lemma 4.3.3 in [9, p. 60]. In fact, by Lemma 4.3.3, there exist L —
Lr > 0 and M = Mr > 0 such that

L < m(Dr(a)) x inf{\ka(z)\2] z G Dr(a)}

and

m(Dr, (a)) x sup{|&α(z)|2; * € A-(α)} < M

for all α in D. Thus remainder implications are obtained. D

Proposition 2. Suppose that v and μ satisfy the (v,μ)-Carles on inequality,
then the following are true.

(1) // there exists r < oo such that εr(μ) < 1, then there exists j>0 such
that vr(a) < jμr(a) for all a in D.

(2) / / d v = υd m , υ > 0 α.e. on D, εt(v) —>> 0 (ί —> oo) , αnrf ίΛere are
ί > 0 ancί 7 r > 0 such that μt(a) x (v - 1)^(a) < η' for all a in D, then there
are r > 0 and 7 = ηr > 0

Proof Since A:a(^) is uniformly approximated by polynomials, the inequality

is valid for / = fcα, that is

/ \ka\
2du<C ί \ka\

2dμ.
D JD

Firstly, we show that (1) is true. The above inequality and Lemma 1
imply that

ΐ>(a) < Cμ(a) < Cpμr(a)
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for all a in D. Moreover, by Lemma 4.3.3 in [9, p. 60], there exists a constant
L > 0 such that

ur(a) < L^via)

for all a in D. Hence we have that

τ>λa) < CpL-ιμr{a).

Next, we prove that (2) is true. For any a in D and r > Z, put
d μa,r = (1 — XDr(a))d μ. By the latter half of the hypothesis in (2), we
have that

for all α, λ in D, and r > I. Set Ea^ι = {z G D; there is a w in suppμα,r,
such that β{z,w) < 1/2}. By Proposition 1, there exists a constant C > 0
such that

/ \f\2dμ<C'ί \f\2du

for all a in D, r > I and / in P. Here we claim that Ea^rj is contained in
D\Dr/2(a). In fact, since D\Dr(a) contains suppμα?r and r > Z, if z belongs
to Ea^rj then there exists w in D such that β(w, a) > r and β(w, z) < r/2.
Therefore,

r < β(w,a) < β(w,z) + β(z,a) < r/2 + β(z,α),

thus we have that z is contained in D\Dr/2(a). Particularly put / — ka in
the above inequality, then

\ka\
2dμ<C [ \K\2dv

D\Dr{a) JD\Dr/2(a)

for all a in D and r > I. It follows that

/ \ka\
2dμ= ί \ka\

2dμ- [ \ka\
2dμ

JDr(a) JD JD\Dr{a)

>C~ι ( \ka\
2dv-C' ( \ka\

2dv.
JD JD\Dr/2(a)

By the definition of εt(v), the above inequality implies that

/ |fco |2d μ>(Cι- C'ετ/2{v)) ί \ka

JDr(a) JD

| o | μ( τ / 2 { ) ) \ a f v
(a)

for all a in D and r > I. Here let r be sufficiently large, then by the
hypothesis on εr(v), C~ι — Cε r/2(^) > 0, and by Lemma 4.3.3 in [9, p. 60],
we conclude that

μr(a) > [M~ι{C^C'εr/2

for all a in D. D
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§3. (τ42)-condition.

For a complex measure μ on D, recall that a function μ on D is defined by

μ(α) = /
JD

d μ.
D

Particularly, if there exists a complex valued L1-function u such that d μ —
ud ra, then we denote the function by u instead of μ, and say that u is the
Berezin transform of the function u.

Let v and u be non-negative functions in Z1, put d v — vd m and d μ —
ud m. Suppose that there is a constant 7 > 0 such that

ϋ(a) x (u~1)^(a) < 7

for all a in Z>, then Lemma 4.3.3 in [9, p. 60] implies that there exist r > 0
and 7' > 0 such that

for all a in D, and hence by Proposition 1, we obtain that the (z/, μ)-Carleson
inequality is satisfied. In the above two inequalities, if we put u = υ, then
such a function u is interesting for us.

A non-negative function u in Z1 is said to satisfy an (^2 ^-condition, if
there exists a constant A > 0 such that

u(a) x (ίx~1)"'(α) < A

for all a in D. If there exist r > 0 and Ar > 0 such that

ur(a) x (u~ι)r{a) < Ar

for all a in Z), then we say that u satisfies an (^2)-condition. In [6], the
(A2)-condition is called Condition C2 . It is known that u satisfies the (A2)-
condition for some 0 < r < 00 if and only if u satisfies the (Λ2)-condition
for all 0 < r < 00 [6]. Hence it shows that the definition of the (A2)-
condition is independent of r. In general, Lemma 4.3.3 in [9, p. 60] and
the familiar inequality between the harmonic and arithmetic means imply
that for any 0 < r < 00 there exists a constant M — Mr > 0 such that
M " 1 ^ " 1 ) ' 1 < (u^1)^ ~ι < ur < Mu. Therefore, if u satisfies the (A2)-
condition, then (u~λ) 1,(u~1)r~1,ur, and u are equivalent. Similarly, if u
satisfies the (v42)-condition, then (u~1)/^~1, and ΰ r , are equivalent. When u
is in ^(dD)^1 is a usual Lebesgue space on the unit circle and ka(z) is a
normalized reproducing kernel of a Hardy space), the (A2^-condition has
been studied in [3, (c) of Theorem 2].
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The following Theorem 3 gives a necessary and sufficient condition in order
to satisfy the (ẑ , μ)-Carleson inequality when d μ = u d m and u satisfies
the (A2)a-condition.

Theorem 3. Suppose that u satisfies the (A2)#-condition, then the following
are equivalent.

(1) There is a constant C > 0 such that

ί \ f \ 2 d u < C I \ f \ 2 u d m
JD JD

for all f in P.

(2) There exist r > 0 and 7 > 0 such that

ύr(a) < jύr(a)

for all a in D.

(3) For any r > 0? there exists 7 = ηr > 0 such that

vr(a) < 7/ur(α)

for all a in D.

Proof. Suppose that (1) holds. Since u satisfies the (.A2)a-condition, by (1) of
Proposition 8, u satisfies a relation in (3) of Lemma 1 for all r > 0. Therefore,
(3) follows from (1) of Proposition 2. The implication (3) => (2) is obvious.
We will show that (2) => (1). Since u satisfies the (A2^-condition, u~ι is
integrable, hence u > 0 a.e. on D. Moreover, by (5) of Proposition 4, u
satisfies the (A2)-condition for all r > 0 and therefore (2) implies that

for all α in P . In the statement of Proposition 1, put E — D, then the

above fact shows that the inequality in (1) is satisfied. This completes the

proof. D

For any u in L2, a in Z), we put

(u)(a) = {\u\2~(a)-\ΰ(a)\ψ2,

and let BMOQ be the space of functions u such that M0(u)(a) is bounded
on D (cf. [9, p. 127]). We give several simple sufficient conditions.

Proposition 4. Let u be a non-negative function in L1, then the following

are true.
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(1) // both u and (u~x)~ are in L°°, then u satisfies the (A2)d-condition.

(2) If both u and u~ι are in BMOQ, then u satisfies the (A2)β-condition.

(3) Let 1 < p, q < oo and 1/p + 1/q = 1. // u\ and u2 satisfy the (A2)d-

condition, then u = UχU2 satisfies the (A2)d-condition.

(4) Suppose that f is a complex valued function in L1 such that f φ 0 on

D, f ' 1 is inL\fx (f~ι)~ is inL°°, and | a rg/ | < π / 2 - ε for some ε > 0.

If u — I/I, then u satisfies the (A2)d-condition.

(5) If u satisfies the [A2)Q-condition, then u satisfies the (A2)-condition.

Proof. (1) is trivial. By Proposition 6.1.7 in [9, p. 108], we have that

ύ{a) x (u^Πa) < M0(u)(a) x M0{u-l){a) + 1.

This implies that (2) is true. The Holder's inequality implies that (3) is true.

(5) follows from Lemma 4.3.3 in [9, p. 60].

We show that (4) is true. Suppose that u = \f\ and there exists ε > 0

such that I arg f\ < π/2 — εonD. Since | arg/| < π / 2 - e o n ΰ , there exists

δ > 0 such that cos(arg/) > δ on D . Therefore, we have that

Re/ = I/I x cos(arg/) > | / | . ί = δu.

For any a in JD, it follows that

δύ{a) < / R e / \ka\
2d m < |/(α)|.

Similarly, we have that

Thus,

«(α) x (u-ιr(a) < δ~2 x |/(o)| x |(.rT(«)l

for all o m ΰ , and hence (4) follows. D

We exhibit some concrete examples which satisfy the (^42)a-con(iition.

Proposition 5. If u is a function that is given by (1), (2), or (3), then u

satisfies the (A2)Q-condition.

(1) For any - 1 < a < 1, put u(z) = (1 - \z\2)a.

(2) Let {bj} be a finite sequence of complex numbers in D U dD with

ft. φ bj(i φ j), and let 0 < a(j) < 2 for all j or - 2 < a(j) < 0 for all j .

Put u = Y\pfj) where Pj{z) = \z - bj\.



160 TAKAHIKO NAKAZI AND MASAHIRO YAMADA

(3) Let {bj}, {pj} as in (2) and - 1 < a{j) < 1 for all j . Put u = Y[pfj).

Proof. We suppose that u has the form of (1). For any a in D, making a
change of variable, we have that

ύ(a) x (O~(β) = /(I - I^ΓΠ1 ~ k H Ί 1 " α*|2α<* m(z)

x ί ( l - |α | 2 )" α ( l - \z\2)-a\l - άz\2ad m(z)

= ί{l-\z\2)a\l-άz\-2adrn(z)

x ί(l-\z\2)~a\l-άz\2Qdm(z).

Since — 1 < a < 1, Rudin's lemma (cf. [9, p. 53]) implies that both factors
of the right hand side in the above equality are bounded. Hence satisfies the

We show that u satisfies the (A2)a-condition when u has the form of (2).
Let a be a real number such that 0 < a < 2. For any fixed b in Z), put
p(z) = \z — b\. Firstly, we show that the Berezin transform of p~a is bounded.
In fact, making a change of variable, elementary calculations show that

(p-aΓ(a) < |1 - ab\~a ||1 - αz| |^ x f \φa{b) - z\~ad m{z).

Since φa(b) — z lies in 2D — {2z\z G D} for any α,z in O and an area
measure is translation invariant, we have that

(p~aΓ(a) < (1 - \b\)-a 111 - α * ^ x / \w\-"d m{w)
J2D

for all a in D. Hence we obtain that the Berezin transform of p~a is bounded.

Next, let b be in dD and put p(z) = \z — b\. Then, as in the proof of the

above case, we have that

(par(a) <\a- b\° • \\φa(b) - zlfc x 111 - az\~ad m(z),

and

(p~aΓ{a) <\a- b\~a ||1 - az\\^ x / \w\~ad m(w).
J2D

Therefore, Rudin's lemma implies that pa satisfies the (yl2)a-condition. For
any &i in D and b2 in 9J9, put P\{z) = \z — b\\ and p<ι(z) = \z — 62 |. Fix
0 < α(j') < 2 for j = 1,2 and ε > 0. Because &χ = 62, there exist measurable
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subsets Bj of D such that Bι Γ) B2 = φ and Pj > ε on Bc for j = 1,2. Set

5 0 = D\BX U 5 2 , then

ί \ka\
JB0

d m

[
B1

+e-M f pΓi2)\ka\
2dm)

JB2 J

< Mo x ε"α ( 1 )-α ( 2 ) + Mo x ε-*(2) (P;a(1)Γ{a)

where Mo = | |ft ( 1 ) J92(2)||oo and Mx = ||rf(1)||oo Hence we have that pf1]

P2 satisfies the (A2^-condition. If u has the form of (2), then applying
the same argument for finitely many factors of u and IΛ"1, we obtain that u
satisfies (τ42)a-condition.

Apparently, (3) follows from (2) of this proposition and (3) of Proposi-
tion 4. In fact, we let —1 < a(j) < 1 for all j , and set

= {j; a(j) > 0}, i ( - ) - {j; a(j) < 0}.

Put Ui = Πf(+)P^ a n ( i ^2 — Π j ( - ) P ^ \ ^ e n ^1 a n ( l U2 satisfy the (Λ2)a
-condition. Hence, (3) of Proposition 4 implies that u = uλxu2 satisfies the
(^42)cτcondition. D

Corollary 1 is a partial result of [2], [7] and [8].

Corollary 1, Oleinik-Pavlov-Hastings-Stegenga. Let v be a finite positive
measure on D. For any — 1 < a < 1, there is a constant C > 0 such that

I/I (1 — \z\ ) a m
)D

ί \f\2dv<C {
J D J D

for all f in P if and only if there exist r > 0 and 7 > 0 such that

Ma) < 7(1 - H2Γ

for all a in D.

Proof. Since [(1 - |^|2)α]^(α) is comparable to (1 - | α | 2 ) α , by Theorem 3 and
(1) of Proposition 5 the corollary follows. D
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Lemma 2. Let {bj} be a finite sequence of complex numbers in DUdD with
bi φ bj(i φ j), and let {θί(j)} be a finite sequence of real numbers such that
—2 < a(j) when j is in Ac (the definition of A is below). Putpj(z) = \z — bj\
and u = l\Pj , and let 0 < r < oo, then there are constants 71 > 0 and
72 > 0 such that

for all a in D, here Λ = {j; bj is in dD}.

Proof. For any fixed 0 < r < oc, in general, Lemma 4.3.3 in [9, p. 60] implies
that there are constants L > 0 and M > 0 such that

Lύr(a) < I uo φad m < Mύr(a)
J Dr(0)

for all α in ΰ , where u is a non-negative integrable function on D. Let
u = Π \z - bj\aU\ {bj} C DUdD, btφ bj(i φ j), and a(j) be real numbers.

Then, by the same calculations in the proof of (2) of Proposition 5, we have
that

/
JD

u o φad m
)

= T[\1- άbj\a^ ί TT 1^(6,-) - z\a^ |1 - άz\-Έ°(j)d m{z).
JDr{0)

Put

[
Dr(0)

then it is easy to see that JD ^ u o φad m is equivalent to

I (a) x Y[\a-bj\aU).
j€A

Firstly, we show that the lemma is true when 0 < a(j) for all j . By the
above facts, it is enough to prove that the integration

Dr(0)

is bounded below for all α in D, because 0 < a(j). Conversely, suppose
that there exists {an} C D such that I(an) < l/n. Here we can choose a
subsequence {ak} C {an} such that ak —ϊ a'(k —> oo), where a' may be in
D U dD. Therefore, Fatou's lemma implies that I (a1) = 0, thus it follows
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that U\Φa'{bj) - z\a{j) = 0 on JDΓ(O). This contradiction implies that the
assertion is true when 0 < a(j) for all j .

Next, we prove that the lemma is true when — 2 < a(j) < 0 for all j
in Λc and —oc < a(j) < 0 for all j in Λ. In fact, we claim that I (a) is
bounded for all a in D. If j is in Λ, then \φa{bj)\ — 1 for all a in D, therefore
\Φa(bj) — z\~ι ι s bounded, because z belongs to Dr(0). Analogously, if j is
in Λc, then \φa{bj)\ -> 1 (|α| —> 1), therefore \φa{b0) — z\~ι is bounded when
a is nearby dD, because z belongs to Dr(0). Thus, it is sufficient to prove
that

[ Π \Φa{b3)~z\^dm{z)
0 ) j e A c

is bounded for all a in Uη(0) — {a e D] \a\ < η}, where 0 < η < 1 is a
constant which is close to 1. Put

Φ ; » = \φa{bτ) - φa{b3)\ (i,j e Λc, a € Uη(0)).

For any fixed i,j G Λc, since Φ^7 is a continuous function on Uη(0) and
Mόbius functions are one-to-one correspondence on D, there exists
ε(i,j) > 0 such that Φij(a) > ε(i,j) for all a in Uη(0) when i φ j. Put
ε = min{ε(i, j)/2\ i,j G Λc such that i φ j } ,

Bj(a) = {zeDr(O)',\φa(bj)-z\<ε}

and B0{a) = Dr(0)\ U B3(a). For any j in Λc U {0}, since \φa{bt) - z\ > ε

when z belongs to Bj(a) and i belongs to Λc such that i φ j , therefore we
have that

J(a) < Σ εa~a^ ^ ^ 1̂ (6,-) - z\*Md m(z) +εa J^ ^d m(z)

< y εa-a{j) ( \w\a{3)d m(w) + εa
\w

J2Dj€A

where

Therefore, J is bounded on 1)^(0), and hence we obtain that / is bounded
on D.

Using the above facts, we can show that the assertion is true when u has
the general form of the statement of this lemma. Let {θί(j)} be a finite
sequence of real numbers such that —2 < a(j) < oo when j is in Λc and
—oc < a(j) < oc when j is in Λ. As in the proof of Proposition 5, set
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i(+) — {i; aU) ^ 0} a n d i(~") — {i; α ( i ) < 0}? then we have that

JDr(0) .7Λ

and

I(a) > 2Έ^a{j) j JJ \φa(bj) - z\a{j)d m(z).

Therefore, we obtain that / is bounded and bounded below on D. Hence,
this completes the proof. D

Corollary 2. Let u be a non-negative function in L1 that is given by (2);

or (3) of Proposition 5 and v be a finite positive measure on D, then there
is a constant C > 0 such that

ί \f\2du<C ί \ f \ 2 u d m
JD JD

for all f in P if and only if there exist r > 0 and 7 = j r > 0 such that

for all a in D, here Λ = {j; bj is in dD}.

Proof The corollary follows from Theorem 3, Proposition 5 and Lemma 2.
D

We give a characterization of u which satisfies the (A2)-condition or the
(^42)d-condition when u is a modulus of a rational function or a modulus
of a polynomial, respectively. Let u be a non-negative integrable function
on J9, then it is easy to see that if u satisfies the (A2)o-condition then u~ι

is integrable on D. But, we claim that the converse is true, when u is a
modulus of a polynomial. As the result, we show that the (A2)a-condition is
properly contained in the (A2)-condition. The essential part of the following
theorem is proved in Proposition 5 and Lemma 2.

Theorem 6. Let {bj} be a finite sequence of complex numbers such that
bi φ bj(i φ j) and {ct(j)} be a finite sequence of real numbers. Put Pj(z) =
\z — bj\ and u = \[p"^\ then the following are true.

(1) If a(j) > 0 for all j or a(j) < 0 for all j , then u satisfies the (A2)d~
condition if and only if a(j) < 2 or a(j) > —2 when bj is in D U dD
respectively.
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(2) u satisfies the (A2)~ condition if and only if —2 < a(j) < 2 when bj is
in D.

Proof. (1) By (2) of Proposition 5 and the remark above this theorem, it is
enough to prove that u"1 is not integrable on D when a(j) > 2 for some bj
in D U dD. Suppose that there is a j such that bj in D U dD and a(j) > 2,
then there exists a L°°-function h such that u(z) = \z — b3\

2 h(z). It is easy
to see that u~ι is not integrable on U — {z G D] \z — b\ < dist(6_7, dD)} when
bj is in I?, therefore we consider the case when bj = 1. Put M2 =
then

u-ιdm>M~ι ί 2r f |1 - reiθ\2d θ/2πd r
Jo Jo

= M~ι 2 r ( l - r 2 ) - 1 d r = M'1 / Γ1 d t.
Jo Jo

Hence we obtain that u~ι is not integrable.
(2) Suppose that —2 < a(j) < 2 when bj is in D, then apparently Lemma 2

implies that u satisfies the (yl2)-condition. Conversely, suppose that there
exist r > 0 and Ar > 0 such that

ύr(a) x ( O r ί α ) < ^ r

for all α in D. Since ύr is non-zero on D, therefore {u~ι)^{a) < oo for all a
in D. By the same argument in (1), we have that a(j) must be less than 2
when bj is in D. In fact, if a(j) > 2 for some bj in JD, then there exists a
function h such that u(z) — \z — bj\2 h(z). Put

ε = min{dist(6i3 6^/2;

and

then obviously h is bounded on U(j). Since there exists a3 such that a center
of the Bergman disk Dr{dj) is just equal to 6J? therefore we have that -M"1

is not integrable on Dr(a,j) Π U(j), and thus, it follows that the average of
u~ι on Dr(dj) is infinite. This contradicts the above fact. Consequently, we
obtain that a(j) must lie in (—00, 2) when bj is in D. Applying the same
argument to u" 1, we have that a(j) must lie in (—2, 00) when bj is in D.
Therefore, we conclude that —2 < a(j) < 2 when b3 is in D. D
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§4. Uniformly absolutely continuous.

Recall that

εr(μ) = sup ( ί \ka\
2 dμ]x(ί \ka\

2 d μ) \
aeD \JD\Dr(a) J \JD /

where μ is a finite positive measure on D (see Lemma 1 and Proposition 2).
Using the quantity εr we give a necessary condition on v and μ which satisfy
the (ẑ , μ)-Carleson inequality.

Theorem 7. Suppose that d v = υd m, εt(v) —> 0 (t -» oo), αnc?
satisfies the (A2)-condition, furthermore μ and v satisfy the (μ,u)-Carleson
inequality. If there is a constant C > 0 such that

I \f\2dv<cf \f\Hμ
J D J D

for all f in P, then there exist r > 0 and 7 > 0 such that

Vr{o) < 7Ar(α)

for all a in D.

Proof. By hypotheses on v and Lemma 1, there exist t > 0, p > 0 and A > 0

such that

Moreover, Lemma 4.3.3 in [9, p. 60] and the (μ, ι/)-Carleson inequality imply
that there exist L > 0 and C" > 0 such that

L At < μ < C ί>.

Thus, a desired result follows from (2) of Proposition 2. D

Luecking [5] shows the above theorem when v is the Lebesgue area mea-
sure m. It is clear that εr(m) —> 0 (r —> 00) and m satisfies the (^-2)-
condition. Now, we are interested in measures μ such that εr(μ) < 1 or
εr(μ) -> 0(r —>- 00).

Proposition 8. Suppose that d μ — ud m, and u is a non-negative function
in L1. If u is the function such that (1) or {2), then there exists 0 < r < 00
such that εr(μ) < 1.

(1) u satisfies the (A2)d-condition.
(2) u ( z ) = (1 - \ z \ 2 ) a for some l<a<2.

Proof. If u has the property in (1), then by the remark above Theorem 3,
for any r > 0 there is a positive constant p = ρr such that μ(a) < pμr(a) for
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all a in D and hence εr(μ) < 1 by Lemma 1. Suppose that u has the form of
(2). For any fixed 1 < a < 2, put u{z) = (1 - \z\2)a, Then, Rudin's lemma
(cf. [9, p. 53]) shows that

ύ(a) = (1 - \a\2)a [ (1 - \z\2)a\l - άz\~2ad m(z) < 7 ( 1 - | α | 2 ) α ,
JD

where 7 > 0 is finite. On the other hand, Lemma 4.3.3 in [9, p. 60] implies

that

ύr(a) > M " 1 x (1 - | α | 2 ) α / (1 - | * | 2 ) β | l - az\'2θίd m(z)

> M~ι x (1 - \z\2)a(l - tanh 2 r)a x 2" 2 α ,

therefore, by (3) of Lemma 1, we obtain that εr{μ) < 1. D

Proposition 9. Suppose that d μ = ud m, and u is a non-negative function
in L1. If u is one of the following functions (1) ~ (7), then εr(μ) —> 0(r —>

00).

(1) There exists ε0 > 0 such that u > ε0 on D, and {u o φad m\a G D}
is uniformly absolutely continuous with respect to the Lebesgue area measure
m.

(2) There exists ε0 > 0 such that u > ε0 on D, and there is a constant
C > 0 such that (uϊ+p)~ < C on D for some β > 0.

(3) u is in L°°, and there exist r > 0 and δ > 0 such that u > δ on
D\Dr(0).

(4) u — \p\7 where p is an analytic polynomial which has no zeros on 3D.

(5) u(z) = (1 - \z\2)a for some - 1 < a < 1.

(6) u = Upfj\ where Pj(z) = \z - βό\, h φ bj(i φ j), and 0 < a(j) < 2

for bj in D U 3D, or - 2 < a(j) < 0 for bά in D U 3D.

(7) u = Upfj) where pό(z) = \z - bό\, b{ φ bά(i φ j), and - 1 < a(j) < 1

forbj in DUdD.

Proof. Firstly, we show that the assertion is true when u has the property
of (1). Since {u o φad m;a£ D} is uniformly absolutely continuous, for any
ε > 0 there exists r > 0 such that fD ,Q,C u o φad m < ε0 ε for all a in
D. Therefore, making a change of variable, let r be sufficiently large, then
εr(μ) < ε^1 ε0 ε — ε. Hence, we obtain that εr(μ) —> 0(r —> oo).

Next, we prove the implications (2) => (1), (3) => (2), and (4) => (3). Then
εr(μ) —> 0 when u is a function such that (2), (3) or (4). In fact, suppose
that there exists β > 0 such that the Berezin transform of the function uι+β

is bounded, then a set of functions {u o φa;a G D} is uniformly integrable
(cf. [1, p. 120]), therefore it follows that {u o φad m a G D} is uniformly
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absolutely continuous with respect to m. Hence, (2) implies (1). If there

exist r > 0 and δ > 0 such that u> δ on D\Dr(0), then

ύ(a) > δ - δ ί \ka\
2d m = δ[l - m(Dr(a))] > δ(l - tanh 2 r) > 0.

JDT(O)

Hence (3) implies (2) because (zz1+/3)~(α) < I M I ^ for all a in D and any

β > 0. Next, let p be an analytic polynomial which has no zeros on dD,

then there are r > 0 and δ > 0 such that u = \p\ > δ on D\Dr(0), therefore

(4) => (3).

We prove that the assertion is true when u has the form of (5). For any

fixed — 1 < a < 1, put u(z) = (1 — \z\2)a and making a change of variable,

then

εr(μ) - s u p (f (1 - \z\2)a\l - άz\2ad m{z)\

x I [ (1 - M2Γ|1 - άz\-2ad m{z)) .
\JD\Dr(0) J

When 0 < a < 1, since 0 < 1 — \z\2 < 1, we have that

/ (1 - M 2 Γ | 1 - άz\~2ad m > 2~2a ί (1 - \z\2)d m = constant.
JD JD

If — 1 < α < 0, then the familiar inequality between the harmonic and

arithmetic means shows that

/ (1 _ \z\2)°\l - άz\~2ad m>(f(l- \z\2)~a\l - άz\2ad m\

> constant.

Here, the last inequality follows from Rudin's lemma (cf. [9, p. 53] ). Again

using Rudin's lemma, since — 1 < a < 1, there exists β > 0 such that a set of

functions {[(1 - \z\2)a\l - az\-2a]1+β] a E D} is bounded in ZΛ This implies

that the set of these functions are uniformly integrable ( cf. [1, p. 120]),

therefore it follows that εr(μ) -» 0(r -> oo).

We show that εr(μ) —> 0 when u has the form of (6). As in the proof of (2)

of Proposition 5, we only prove that εr(μ) -> 0(r -> oo) when u — p" -p2 !,

where pι(z) = \z — 6χ|, p2(^) = |^ — 62|, 0 < α(l) , α(2) < 2, and &! is in

JD, 62 is in 9D. We suppose that Bj, Mu and ε are as in the proof of (2) of

Proposition 5. By the definition of ε r(μ), we have that

εr(μ) = sup(uχ£>r(α)c)~(α) x u{a)~ι.
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Moreover,

(a) x u(a)~ι <(uχDr{a)c)~(a) x ( i r 1 ) " ^ )

<(uχDrla)c)~(a) x ε-^ 1 )-^ 2 ) / \ka\
2d m

DΛaYr (a) x ε-°<2> (pΓ ( 1 ))^(α)

D\Dr(0)

where

C = |μΩ(62) - z|β2> x ||1 - αz|β2> x / μ | - ^ d m.
J2D

Since w is bounded, therefore {u o </>α;α E D} is uniformly integrable
(cf. [1, p. 120]), moreover applying the same argument in the proof of this
proposition when u has the form of (5), Rudin's lemma implies that a set
of functions {|1 — άz\~a^]a G D} is also uniformly integrable, hence we
conclude that εr(μ) -+ 0(r -> oo). The proof of the latter half of (6) of this
proposition is similar that in the above.

If u has the form of (7), then by the similar arguments in the proof of (3)

of Proposition 5, set j(+) = {j\a(j) > 0}, j(-) — {j;a(ί) < 0}. And put

ui = UjMpf\ ^ - Uj{-)Pf\ then

(uχDr{a)c)~(a) x ύ(a)'1 <(uχDr{a)c)~(a) x (u'^ia)

Therefore, the desired result follows from the Cauchy-Schwarz's inequality

and (6) of this proposition. D

Corollary 3. Suppose that d v — vd m and there is a consrant C > 0 such

that

ί \!\2dv<C [ \f\2dμ
J D JD

for all a in D, then the following are true.

(1) If v(z) — (1 — l^l 2)" for some — 1 < a < 1, and there exist I > 0 and

7' — JΊ > 0 such that

A ; ( α ) < 7 ' ( l - | α | 2 Γ

for all a in D, then there exist r > 0 and 7 = j r > 0 such that

(1 - |α|2Γ < ΊfiΛa)

for all a in D.
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(2) Ifv = Y\pfj\ where pj(z) = \z-bj\, b{ φ bά{i φj), and 0 < a{j) < 2

for bj in DUdD or - 2 < a(j) < 0 for bά in D U dD, and if there exist I > 0

and η' — η[ > 0 such that

for all a in D, then there exist r > 0 and 7 = ηr > 0 swcΛ

J 6 Λ

/or α// α in D, where Λ = {j] bj is in dD}.

(3) Ifv = Π P i ( J ) where pj{z) = \z-bάl b> Φ bά{% Φ 3), and - 1 < a(j) < 1

/or 6j in D U 915, and if there exist I > 0 and 7 = η[ > 0

/or α// α in D, then there exist r > 0 and 7 = ηr > 0 SΪ/CΛ that

/or a// a in D7 where A = {j; 6̂  is m dD}.

Proof. We show that (1) is true. By the fact in the proof of Corollary 1, and

the fact that u(z) = (1 — \z\2)a satisfies the (A2)-condition for all a > — 1

(see [6]), the hypothesis in (1) of the Corollary and Proposition 1 imply the

(μ, ι/)-Carleson inequality. Hence, Theorem 7 and Proposition 9 show that

the assertion is true.

Similarly, (2) and (3) follow from Proposition 1, Lemma 2, (5) of Propo-

sition 4, Theorem 6, Theorem 7, and Proposition 9. D
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