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(A2)-CONDITIONS AND CARLESON INEQUALITIES IN
BERGMAN SPACES

TAKAHIKO NAKAZI AND MASAHIRO YAMADA

Let v and u be finite positive measures on the open unit disk
D. We say that v and pu satisfy the (v, u)-Carleson inequality,
if there is a constant C' > 0 such that

INREELINRY

for all analytic polynomials f. In this paper, we study the
necessary and sufficient condition for the (v, pu)-Carleson in-
equality. We establish it when v or y is an absolutely con-
tinuous measure with respect to the Lebesgue area mesure
which satisfy the (A4;)-condition. Moreover, many concrete
examples of such measures are given.

§1. Introduction.

Let D denote the open unit disk in the complex plane. For 1 < p < oo, let
L? denote the Lebesgue space on D with respect to the normalized Lebesgue
area measure m, and || - ||, represents the usual LP-norm. For 1 < p < oo,
let L? be the collection of analytic functions f on D such that || f]|, is finite,
which are so called the Bergman spaces. For any z in D, let ¢, be the Mobius
function on D, that is

b, (w) = fu (w € D),

and put,
Bz, w) =1/2 log(1 + |- (w)))(1 = |p(w)) ™" (2,w € D).
For 0 <r < oo and z in D, set
D, (z) ={w € D; B(z,w) <r}

be the Bergman disk with “center” z and “radius” r, and we define an
average of a finite positive measure p on D, (a) by

o1 .
frl@) = rpras /| e (aeD),
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and if there exists a non-negative function » in L' such that d u = ud m,
then we may write it 4., instead of fi,.

Let v and p be finite positive measures on D, and let P be the set of
all analytic polynomials. We say that v and p satisfy the (v, u)-Carleson
inequality, if there is a constant C' > 0 such that

[israv<c [ |fdn

for all f in P. Our purpose of this paper is to study conditions on v and
p so that the (v, u)-Carleson inequality is satisfied. If v < Cu on D, then
the (v, u)-Carleson inequality is true. However it is clear that this sufficient
condition for the (v, u)-Carleson inequality is too strong. A reasonable and
natural condition is the following: there exist 7 > 0 and v > 0 such that

(%) De(a) <vite(@)  (a€ D).

The average ji.(a) are sometimes computable. If 4 = m, then fi,.(a) =1 on
D. Ifd p = (1—|2/*)*d m for a > —1, then [i,(a) is equivalent to (1 —]|a|?)*
on D.

When d p = (1 — |z[*)*d m for @ > —1, Oleinik-Pavlov [7], Hastings
[2], or Sitegenga [8] showed that v and p satisfy the Carleson inequality if
and only if they satisfy ( * ). In §3 of this paper, when d p = ud m and
u satisfies the (A;)s-condition (the definition is in §3), we obtain that the
(v, p)-Carleson inequality is satisfied if and only if they satisfy ( * ). We
show that if both v and u~! are in B M Oj ( see [9, p. 127] ), then u
satisfies the (A,)s-condition. We give some concrete examples which satisfy
the (A,)s-condition.

When v = m and d 4 = xgd m, where x¢ is a characteristic function of
a measurable subset G of D, Luecking [4] showed the equivalence between
the (v, p)-Carleson inequality and the condition ( * ). If we do not put any
hypotheses on u, the problem is very difficult. The equivalence between the
(v, u)-Carleson inequality and the condition ( * ) is not known even if v = m.
Luecking [5] showed the following:

(1) If there exists v > 0 such that m,.(a) < yi,(a) for all » > 0 and a in
D, then the (m, u)-Carleson inequality is satisfied.

(2) Suppose the (u, m)-Carleson inequality is valid (equivalently f, is
bounded on D). Then the (m, u)-Carleson inequality implies the condition
(*)

In §2 of this paper, we give a sufficient condition (close to that of (1))
for the (v, pu)-Carleson inequality when v is not necessarily m. Moreover,
using the idea of Luecking’s proof of (2), a generalization of (2) is given. In
84, when d v = vd m and v satisfies the (A4;)-condition (the definition is in
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§3), we establish a more natural extension of (2) under some condition of a
quantity e,(v) (the definition is in §2), that is e,.(v) — 0 as r — oo. The
(Az)-condition is weaker than the (A;)s -condition. We give some concrete
examples which satisfy the (A;)-condition or the above condition of €, (v).

§2. (v, p)-Carleson inequality.

Let G be a measurable subset of D and u be a non-negative function in L',

and put
1

(ug')r(a) = m /D,(a) utyad m.

Particular, when G = D, we will omit the letter D in the above notation.
The following Proposition 1 gives a general sufficient condition on v and p
which satisfy the (v, u)-Carleson inequality. In order to prove it we use ideas
in [5] and [9, p. 109]. Since (uv=*)"(a)™! < 4, (a) for all a in D, Proposition 1
is also related with (1) of §1 (cf. [5, Theorem 4.2]).

Proposition 1. Suppose that d p = ud m. Put E, = {z € D; there is a
w € suppv such that B(z,w) < r/2}. If there exist r > 0 and v > 0 such
that u > 0 a.e. on E = E,, and D(a) X (ug')(a) < v for all a in D, then
there is a constant C > 0 such that

2 2
[irrav<e [ iffdp
for all f in P.

Proof. Suppose that i, (a) x (ugz')5.(a) < yforallain D, and put E = {z €
D; there is a w € suppv such that 8(z,w) < r}. By an elementary theory
for Bergman disks, there is a positive integer N = N, such that there exists
{\.} C D satisfying that D = UD,(),) and any z in D belongs to at most
N of the sets Dy.()\,) (cf. [9, p. 62] therefore

/suppu lf| dv S Z /D,.(An)ﬂsuppu Ifl dv
<> v(Dr(A)) x sup{|f(2)[*; z € D,(X,) Nsuppr}.

By Proposition 4.3.8 in [9, p. 62], there is a constant C' = C,. > 0 such that
P S s [ (7wl m(w)
~ m(Dy(2)) b,z

for all f analytic, z in D. If z in D,(\,) Nsuppv, then D,(z) is contained in
D,,(M\,)NE, and there exists a constant K = K, > 0 such that m(D,,(}\,)) <
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Km(D,(z)) for all n > 1 (cf. [9, p. 61]). Hence the Cauchy-Schwarz’s
inequality implies that

, KC ’
/D [fPdv <) v(D,(An)) % (————(m( TNEW) /D L m)
<> v(D, (M) x K2C?

1 2
g <m(02r(xn)) /132,<An, | Puxed m)

1 -1
8 (m(D%()‘n)) /;%(/\n) uxed m)
<K*C*Y_ 0o (An) X (up')5.(An)

X (/ |fPud m) .
Dsr(An)NE

By the hypothesis and a choice of disks, it follows that
[ \fdy < k2 [ |fFd g
D E
This completes the proof. O
Let p be a finite nonzero positive measure on D. For any a in D, put
ka(z) = (1—laf*)/(1 —a@z)*  (2€D),

and a function ji on D is defined by
ila) = [ Ihad p.
D

Moreover, for any fixed r < oo, put

er (1) = sup (/D\Dr(a) |ka|*d u) x (/D |ka|*d u) o

If there exists a non-negative function » in L' such that d u = ud m, then
making a change of variable, it is easy to see that

ET(M)=:EB (/Dwr(o)uoqbad m) X (/DU0¢ad m)_l.

In general 0 < e,(u) < 1. In this section and §4, this quantity €, is important.
The following Proposition 2 gives two general necessary conditions on v
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and p which satisfy the (v, u)-Carleson inequality. In order to prove (2)
of Proposition 2 we use ideas in [5, Theorem 4.3]. Since ¢,(m) < 1 and
e-(m) = 0 (r = 00), (2) of Proposition 2 is related with (2) of §1.

Lemma 1. Let p be a finite positive measure on D and 0 < r < oo, then
the following (1) ~ (3) are equivalent.

(1) e,(p) < 1.
(2) There is a § = 6, < oo such that

[ mPau<s [ kPl
D\D.(a) Dy (a)

for all a in D.
(3) There is a p = p, < 0o such that

fi(a) < pfi-(a)
for alla in D

Proof. The implication (1) = (2) is trivial. (2) = (3) and (3) = (1) follow
from Lemma 4.3.3 in [9, p. 60]. In fact, by Lemma 4.3.3, there exist L =
L,.>0and M = M, > 0 such that

L < m(D,(a)) x inf{|k,(2)|?; 2 € D,(a)}

and
m(D,, (a)) x sup{|k.(2)[*; z € D.(a)} < M

for all @ in D. Thus remainder implications are obtained. a

Proposition 2. Suppose that v and p satisfy the (v, u)-Carleson inequality,
then the following are true.

(1) If there ezists r < 0o such that €,(u) < 1, then there ezists v > 0 such
that ©,(a) < «yfi-(a) for all a in D.

(2) Ifdv=vdm, v>0a.e onD,e(v) >0 (t— 00), and there are
[ >0 and v > 0 such that ji(a) x (v"1)MNa) < for all a in D, then there
are v > 0 and v = v, > 0 such that 0,.(a) < vji,(a) for all a in D.

Proof. Since k,(z) is uniformly approximated by polynomials, the inequality
is valid for f = k,, that is

/ Ika2d v < 0/ |a|2d .
D D

Firstly, we show that (1) is true. The above inequality and Lemma 1
imply that
#(a) < Cji(a) < Cpii,(a)
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for all @ in D. Moreover, by Lemma 4.3.3 in [9, p. 60], there exists a constant
L > 0 such that
?,(a) < L7'5(a)

for all a in D. Hence we have that
D(a) < CpL™' i, (a).

Next, we prove that (2) is true. For any a in D and r > [, put
d por = (1 = XD.(a))d p. By the latter half of the hypothesis in (2), we
have that

() (N) x (71 (N) <o
for all @, in D, and r > I. Set E,,.;, = {z € D; there is a w in supp fq -,
such that f(z,w) < 1/2}. By Proposition 1, there exists a constant C' > 0

such that
[ apapsc [ iffdy
D\D,.(a) Ea,r,l

forall a in D, r > [ and f in P. Here we claim that E, ,, is contained in
D\D,5(a). In fact, since D\D,(a) contains supp ., and r > [, if z belongs
to E, ,; then there exists w in D such that B(w,a) > r and B(w,z) < r/2.
Therefore,

r < B(w,a) < Bw, 2) + B(z,a) < /2 + B(z,a),

thus we have that z is contained in D\D, ;(a). Particularly put f =k, in
the above inequality, then

[ kPdpsc [ Py
D\D,(a) D\D,/3(a)

for all @ in D and r > [. It follows that

[ WPdu= [ pPdp= [ jkPds
D, (a) D D\D,(a)

> 0—1/ \ka2d v — c'/ ko |2d .
D D\D,/2(a)

By the definition of ¢,(v), the above inequality implies that
/ halPd > (C1 = C'ers() [ [kalPd v
Dr(a) D

for all @ in D and r > [. Here let r be sufficiently large, then by the
hypothesis on ¢,(v),C~! — C'e,/3(v) > 0, and by Lemma 4.3.3 in [9, p. 60],
we conclude that

fir(a) > [M~HC7'C'e, 2 (v)) L]0y (a)
for all @ in D. O
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§3. (Az)-condition.

For a complex measure p on D, recall that a function & on D is defined by
jita) = [ 1kPd p.
D

Particularly, if there exists a complex valued L'-function « such that d pu =
ud m, then we denote the function by @ instead of [i, and say that @ is the
Berezin transform of the function w.

Let v and u be non-negative functions in L', put d v = vd m and d p =
ud m. Suppose that there is a constant v > 0 such that

9(a) x (v~ (a) <7y

for all @ in D, then Lemma 4.3.3 in [9, p. 60] implies that there exist r > 0
and ' > 0 such that

i,(a) x (u™)7(a) <9

for all @ in D, and hence by Proposition 1, we obtain that the (v, u)-Carleson
inequality is satisfied. In the above two inequalities, if we put u = v, then
such a function u is interesting for us.

A non-negative function v in L' is said to satisfy an (A4,)s-condition, if
there exists a constant A > 0 such that

a(a) x (u™H)¥(a) < A
for all @ in D. If there exist 7 > 0 and A, > 0 such that

n(a) x (u™)(a) < A,
for all @ in D, then we say that u satisfies an (A,)-condition. In [6], the
(A5)-condition is called Condition Cy . It is known that u satisfies the (A,)-
condition for some 0 < r < oo if and only if u satisfies the (A;)-condition
for all 0 < r < oo [6]. Hence it shows that the definition of the (A,)-
condition is independent of r. In general, Lemma 4.3.3 in [9, p. 60] and
the familiar inequality between the harmonic and arithmetic means imply
that for any 0 < r < oo there exists a constant M = M, > 0 such that
M (u™ )~ < ()2 7! < 4, < Ma. Therefore, if u satisfies the (A,)-
condition, then (u=!)~~! (u™')2~! 4,, and @ are equivalent. Similarly, if u

satisfies the (A;)-condition, then (u=')"~!, and 4,, are equivalent. When u
is in L*(0D)(L' is a usual Lebesgue space on the unit circle and k,(z) is a
normalized reproducing kernel of a Hardy space), the (As)s-condition has

been studied in [3, (c) of Theorem 2].
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The following Theorem 3 gives a necessary and sufficient condition in order
to satisfy the (v, u)-Carleson inequality when d p = u d m and u satisfies
the (As;)s-condition.

Theorem 3. Suppose that u satisfies the (As)s-condition, then the following
are equivalent.
(1) There is a constant C > 0 such that

[iravse [ fudm

for all f in P.
(2) There exist r > 0 and v > 0 such that

Ur(a) < iy (a)

for all a in D.
(3) For any r > 0, there exists v = 7, > 0 such that

Or(a) < vy (a)
for all a in D.

Proof. Suppose that (1) holds. Since u satisfies the (A2)s-condition, by (1) of
Proposition 8, u satisfies a relation in (3) of Lemma 1 for all » > 0. Therefore,
(3) follows from (1) of Proposition 2. The implication (3) = (2) is obvious.
We will show that (2) = (1). Since u satisfies the (A4;)s-condition, u™! is
integrable, hence u > 0 a.e. on D. Moreover, by (5) of Proposition 4, u
satisfies the (A;)-condition for all » > 0 and therefore (2) implies that

Dp(a) x (u™')7(a) < Ary

for all @ in D. In the statement of Proposition 1, put £ = D, then the
above fact shows that the inequality in (1) is satisfied. This completes the
proof. O

For any u in L?, a in D, we put
MO(u)(a) = {|ul*™(a) — |@(a)[*}'/?,

and let BMO; be the space of functions u such that M O(u)(a) is bounded
on D (cf. [9, p. 127]). We give several simple sufficient conditions.

Proposition 4. Let u be a non-negative function in L', then the following
are true.
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(1) If both @ and (u™')™ are in L™, then u satisfies the (A;)a-condition.

(2) If both u and u™' are in BMO;, then u satisfies the (Aj)s-condition.

(3) Let 1 < p,g< oo and 1/p+1/q = 1. If u} and u} satisfy the (A3)s-
condition, then u = u u, satisfies the (As)s-condition.

(4) Suppose that f is a complex valued function in L' such that f # 0 on
D, fVisin L, f x (f~1)~ is in L, and |arg f| < 7/2 — € for some € > 0.
If u = |f|, then u satisfies the (Az)s-condition.

(5) If u satisfies the (A3)p-condition, then u satisfies the (As)-condition.

Proof. (1) is trivial. By Proposition 6.1.7 in [9, p. 108], we have that
@(a) x (u™)~(a) < MO(u)(a) x MO(u~")(a) + 1.

This implies that (2) is true. The Holder’s inequality implies that (3) is true.
(5) follows from Lemma 4.3.3 in [9, p. 60].

We show that (4) is true. Suppose that u = |f| and there exists ¢ > 0
such that |arg f| < 7/2—e€ on D. Since |arg f| < 7/2 —¢ on D, there exists
0 > 0 such that cos(arg f) > § on D . Therefore, we have that

Re f = |f| x cos(arg f) > |f] - & = bu.

For any a in D, it follows that
(@) < [Ref - |kf'd m < |f(a)]

Similarly, we have that

8(u)(a) < (F7)~(a)-

Thus, )
a(a) x (u™)~(a) <07 x |f(a)l x |(f71)~(a)]
for all a in D, and hence (4) follows. |

We exhibit some concrete examples which satisfy the (A;)s-condition.

Proposition 5. If u is a function that is given by (1),(2), or (3), then u
satisfies the (As)s-condition.

(1) For any —1 < a < 1, put u(z) = (1 — |z|?)=.

(2) Let {b;} be a finite sequence of complex numbers in D U 0D with
b; # bj(i # 7), and let 0 < a(j) < 2 for all j or =2 < a(j) < 0 for all 3.
Put u = Hp;’(j) where p;(z) = |z — b;]|.
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3) Let {b;},{p;} as in (2) and -1 < a(j) <1 for all j. Putu = Hpj‘(j).

Proof. We suppose that u has the form of (1). For any a in D, making a
change of variable, we have that

ifa) x (u)*(a) = [ (L= |af")*(1 = |2")°]1 - az**d m(2)
x [(L=1aP)==(1 = |2) 211 - azed m(z)
— / ~12P)%|L — a2 "2%d m(2)
x /(1 —122)"?|1 — az**d m(2).

Since —1 < a < 1, Rudin’s lemma (cf. [9, p. 53]) implies that both factors
of the right hand side in the above equality are bounded. Hence satisfies the
(A2)s-condition.

We show that u satisfies the (A;)s-condition when u has the form of (2).
Let a be a real number such that 0 < a < 2. For any fixed b in D, put
p(z) = |z—0b|. Firstly, we show that the Berezin transform of p~* is bounded.
In fact, making a change of variable, elementary calculations show that

(r)"(@ < |1 —ab|= 1= azll% x [ [a(5) = 2| ~*d m(2).

Since ¢,(b) — z lies in 2D = {2z;z € D} for any a,z in D and an area
measure is translation invariant, we have that

(07" (@) < (W= P -1 = azl2 x [ ul~d m(w)

for all @ in D. Hence we obtain that the Berezin transform of p~* is bounded.
Next, let b be in dD and put p(z) = |z — b|. Then, as in the proof of the
above case, we have that

(*)(@) <la =4 - Iga(b) = 2l1%, x [ |1~ a2/~ m(z),

and

(7)"(@) < la— b= L= azl% x [ ful~d m(w).

Therefore, Rudin’s lemma implies that p* satisfies the (A)s-condition. For
any by in D and by in 8D, put p;(2) = |z — b| and p(z) = |z — by|. Fix
0 < a(j) <2for y =1,2and € > 0. Because b; = b,, there exist measurable
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subsets B; of D such that B, N B; = ¢ and p; > € on B for j = 1,2. Set
BO = D\B]_ U Bz, then

P - )~ (a) x (7% - p; )~ (a)

< 6155 (@) x (200 [ i m
0

+£““(2)/ Dk, 2 d m
B,

wee® [ gk fam)

< My x gmeW)=a(®) 4 M, x g7 (pl—a(l))w(a)
+ My x e @ (p3P)~(a) - (p; %)™ (a),

where My = |[p¢™ - p5®||o and M; = |[p{"]|. Hence we have that p7™ -
p;“” satisfies the (AQ)a condition. If u has the form of (2), then applying
the sarne argument for finitely many factors of u and u™!, we obtain that u
satisfies (A2)s-condition.

Apparently, (3) follows from (2) of this proposition and (3) of Proposi-
tion 4. In fact, we let —1 < a(j) < 1 for all j, and set

={j; a(j) 20}, J(=) ={j; a(4j) <0}
Put u, =[], p;-"(j) and uy, = Hj(_)p?(’), then u? and u3 satisfy the (A4s)s
-condltion. Hence, (3) of Proposition 4 implies that u = u; X u, satisfies the
(A3)s-condition. (]
Corollary 1 is a partial result of [2], [7] and [8].

Corollary 1, Oleinik-Pavlov-Hastings-Stegenga. Let v be a finite positive
measure on D. For any —1 < a < 1, there is a constant C > 0 such that

[iravsc [ 1pa-jprdm
for all f in P if and only if there exist r > 0 and v > 0 such that
?p(a) < (1~ af*)
for alla in D.

Proof. Since [(1 — |z]?)*]2(a) is comparable to (1 — |a|?*)*, by Theorem 3 and
(1) of Proposition 5 the corollary follows. a
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Lemma 2. Let {b;} be a finite sequence of complex numbers in DUID with
b; # b;(i # 7), and let {a(j)} be a finite sequence of real numbers such that
—2 < a(j) when j is in A° (the definition of A is below). Put p;(z) = |z —b;]

and u = ]_[p?(j), and let 0 < r < oo, then there are constants v; > 0 and

vy > 0 such that

mi.(a) < ] la = 5;1°? < i, (a)
JEA

for all a in D, here A = {j;b; is in OD}.

Proof. For any fixed 0 < r < 00, in general, Lemma 4.3.3 in [9, p. 60] implies
that there are constants L > 0 and M > 0 such that

Li,.(a) < / uo p,d m < Mii,(a)
D, (0)

for all @ in D, where u is a non-negative integrable function on D. Let
u =[]z —b;]*"), {b;} C DUAD, b; # b;(i # j), and a(j) be real numbers.
Then, by the same calculations in the proof of (2) of Proposition 5, we have
that

/ uo ¢, dm
D..(0)
= [ —ab;|]? / [L1¢a(®;) = 21°9 - 1 — az| 7D d m(z).
D,(0)

f@)= [ TIiu(b) ~=0d m(2),

then it is easy to see that [ D.(0) 4 © ¢.d m is equivalent to
I(a) x H la — bjl“(j).
JeA

Firstly, we show that the lemma is true when 0 < «a(j) for all j. By the
above facts, it is enough to prove that the integration

I(a) = H |a(bj) — 2|*Dd m(z)
D,(0)

is bounded below for all a in D, because 0 < «(j). Conversely, suppose
that there exists {a,} C D such that I(a,) < 1/n. Here we can choose a
subsequence {ax} C {a,} such that a; — a/(k — o0), where a’ may be in
D U dD. Therefore, Fatou’s lemma implies that I(a’) = 0, thus it follows
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that [ |¢a (b;) — 2/*9 = 0 on D,(0). This contradiction implies that the
assertion is true when 0 < a(j) for all j.

Next, we prove that the lemma is true when —2 < a(j) < 0 for all j
in A and —oo < «a(j) < 0 for all j in A. In fact, we claim that I(a) is
bounded for all @ in D. If j is in A, then |¢,(b;)| = 1 for all a in D, therefore
|¢a(b;j) — 2|7 is bounded, because z belongs to D,(0). Analogously, if j is
in A¢, then |¢,(b;)] = 1 (la|] = 1), therefore |¢,(b,) — 2| ™" is bounded when
a is nearby 9D, because z belongs to D,(0). Thus, it is sufficient to prove
that

Ja)= [ T Igalby) = 21*Pd m(2)
+(0) e
is bounded for all @ in U,(0) = {a € D;la| < n}, where 0 < n < 1is a
constant which is close to 1. Put

D, ,(a) = |pa(bi) — Pa(b;)| (4,5 € A®, a € U,(0)).

For any fixed 7,7 € A°, since ®,, is a continuous function on U,(0) and
Mobius functions are one-to-one correspondence on D, there exists
€(i,7) > 0 such that ®;;(a) > €(4,7) for all @ in U,(0) when ¢ # j. Put
e = min{e(4,7)/2; 1,7 € A such that ¢ # j},

Bj(a) = {z € D,(0); g (b;) — 2| < £}
and By(a) = D,(0)\ U B;(a). For any j in A°U {0}, since |¢,(b,) — 2| > €

when z belongs to Bj(a) and i belongs to A¢ such that 7 # j, therefore we
have that

HOESSE |

falby) = A2 Od m(z) + e [ dm(z)
a) Bo(a)

JEAC B, (
< Z gael@ / lw|*Pd m(w) 4 *
JEAC 2D

where

a= 3 alj).
JEAS
Therefore, J is bounded on D, (0), and hence we obtain that I is bounded
on D.

Using the above facts, we can show that the assertion is true when u has
the general form of the statement of this lemma. Let {«(j)} be a finite
sequence of real numbers such that —2 < «(j) < oo when 7 is in A° and
—00 < aj) < oo when j is in A. As in the proof of Proposition 5, set
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j(+) = {Jj; a(j) >0} and j(=) = {j; a(j) < 0}, then we have that

I(a) < 2Ej(+)a(j)/ H |pa(b;) — Z|a(j)d m(z)
B0 5

and
1@) 2 2500 [ T jgu(6;) - 2120 m(z).
(0 ()
Therefore, we obtain that I is bounded and bounded below on D. Hence,
this completes the proof. O

Corollary 2. Let u be a non-negative function in L' that is given by (2),
or (3) of Proposition 5 and v be a finite positive measure on D, then there
is a constant C > 0 such that

[iravse [ iPudm
D D
for all f in P if and only if there exist r > 0 and v = 7y, > 0 such that

D,(a) < 7T la— b;[*@
j€A

for all a in D, here A = {j; b; is in OD}.

Proof. The corollary follows from Theorem 3, Proposition 5 and Lemma 2.

O

We give a characterization of u which satisfies the (A,)-condition or the
(Az)s-condition when u is a modulus of a rational function or a modulus
of a polynomial, respectively. Let u be a non-negative integrable function
on D, then it is easy to see that if u satisfies the (A)s-condition then u™*
is integrable on D. But, we claim that the converse is true, when u is a
modulus of a polynomial. As the result, we show that the (A;)s-condition is
properly contained in the (A;)-condition. The essential part of the following
theorem is proved in Proposition 5 and Lemma 2.

Theorem 6. Let {b;} be a finite sequence of complex numbers such that
b; # b;(1 # j) and {c(j)} be a finite sequence of real numbers. Put p;(z) =
|z —b;] and u = Hp?(j), then the following are true.

(1) If a(j) > 0 for all § or a(j) < 0 for all j, then u satisfies the (Az2)s-
condition if and only if a(j) < 2 or a(j) > —2 when b; is in D U 0D
respectively.
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(2) u satisfies the (As)-condition if and only if —2 < a(j) < 2 when b; is
i D.

Proof. (1) By (2) of Proposition 5 and the remark above this theorem, it is
enough to prove that v~ is not integrable on D when a(j) > 2 for some b;
in DU @D. Suppose that there is a j such that b; in D U 0D and «(j) > 2,
then there exists a L>°-function h such that u(z) = |z —b,|* - h(z). It is easy
to see that ™" is not integrable on U = {z € D;|z —b| < dist(b,,0D)} when
b, is in D, therefore we consider the case when b; = 1. Put M, = ||A||w,
then

1 2
/u_ldszrjl/ 2r/ |1 —re'|?d 6/2nd r
0 0
1 1
=M2‘1/ 27‘(1—7‘2)_1d’r'=M2_1/t_1dt.
0 0

Hence we obtain that ™' is not integrable.

(2) Suppose that —2 < a(j) < 2 when b; is in D, then apparently Lemma, 2
implies that u satisfies the (A;)-condition. Conversely, suppose that there
exist r > 0 and A, > 0 such that

ir(a) x (u')3(a) < A4,

for all @ in D. Since 4, is non-zero on D, therefore (u=!)"(a) < oo for all a
in D. By the same argument in (1), we have that «(j) must be less than 2
when b; is in D. In fact, if a(y) > 2 for some b; in D, then there exists a
function h such that u(z) = |z — b;|* - h(z). Put

e = min{dist(b;,b,)/2; i # j}

and
U(j) ={z € D;|z — bj| < e},

then obviously A is bounded on U(j). Since there exists a, such that a center
of the Bergman disk D, (a;) is just equal to b,, therefore we have that u™!
is not integrable on D, (a;) NU(j), and thus, it follows that the average of
u™! on D,(a;) is infinite. This contradicts the above fact. Consequently, we
obtain that a(j) must lie in (—oo,2) when b; is in D. Applying the same
argument to u™!, we have that a(j) must lie in (—2,00) when b; is in D.
Therefore, we conclude that —2 < (j) < 2 when b, is in D. |
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§4. Uniformly absolutely continuous.

Recall that

-1
er(u)=sup(/ lkmdu)x(/ Ikalzdu) ,
aeD \JD\D,(a) D

where u is a finite positive measure on D (see Lemma 1 and Proposition 2).
Using the quantity €, we give a necessary condition on v and g which satisfy
the (v, u)-Carleson inequality.

Theorem 7. Suppose that d v = vd m, &, (v) — 0 (t = 00), and that v
satisfies the (As)-condition, furthermore p and v satisfy the (u,v)-Carleson
inequality. If there is a constant C > 0 such that

[irravsc [ ifpan

D D

for all f in P, then there exist v > 0 and v > 0 such that
o (a) < vt (a)

for all a in D.

Proof. By hypotheses on v and Lemma 1, there exist t > 0,p >0and A >0
such that

v<p-0, <Ap- (v
Moreover, Lemma 4.3.3 in [9, p. 60] and the (u, v)-Carleson inequality imply
that there exist L > 0 and C' > 0 such that

L'ﬂtSﬁSC"f/-
Thus, a desired result follows from (2) of Proposition 2. (]

Luecking [5] shows the above theorem when v is the Lebesgue area mea-
sure m. It is clear that €.(m) — 0 (r — oo) and m satisfies the (A4,)-
condition. Now, we are interested in measures p such that €,(u) < 1 or
e-(p) = 0(r — 00).

Proposition 8. Suppose that d p = ud m, and u is a non-negative function
in L'. If u is the function such that (1) or (2), then there exists 0 < r < 00
such that e,(u) < 1.

(1) u satisfies the (Az)s-condition.

(2) u(z) = (1 — |2*) for some 1 < a < 2.

Proof. If u has the property in (1), then by the remark above Theorem 3,
for any r > 0 there is a positive constant p = p, such that ji(a) < pfi,(a) for
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all @ in D and hence ¢, () < 1 by Lemma 1. Suppose that u has the form of
(2). For any fixed 1 < a < 2, put u(z) = (1 — |2/?)*, Then, Rudin’s lemma
(cf. [9, p. 53]) shows that

(@) = (1= laf")" [ (1= [2)7]1 = 2z m(z) < 9(1 = [af")",

where v > 0 is finite. On the other hand, Lemma 4.3.3 in [9, p. 60] implies
that

M@ZM“XGHWP/)O—MWH—MW%mw

r

> M x (1 —12]%)%(1 — tanh® r)* x 272,
therefore, by (3) of Lemma 1, we obtain that e,.(u) < 1. g

Proposition 9. Suppose that d u = ud m, and u is a non-negative function
in L'. If u is one of the following functions (1) ~ (7), then e,(u) — O(r —
00).
(1) There exists €o > 0 such that 4 > €y on D, and {u o ¢,d m;a € D}
is uniformly absolutely continuous with respect to the Lebesgue area measure
m.

(2) There exists g > 0 such that & > ¢y on D, and there is a constant
C > 0 such that (u'*?)~ < C on D for some 8> 0.

(3) u is in L™, and there exist r > 0 and 6 > 0 such that u > 6 on
D\D,(0).

(4) u = |p|, where p is an analytic polynomial which has no zeros on 0D.

(5) u(z) = (1 —|2*)* for some ~1 < a < 1.

(6) u= Hp?(j), where p;(z) = |z — B;, b; # b;(i # j), and 0 < a(j) < 2
for b; in DUAD, or =2 < a(j) <0 for b; in DUOD.

(7) u=TIp;" where p;(2) = |2 = bjl, b; # b;(s # j), and -1 < a(j) < 1
for b; in DUOD.

Proof. Firstly, we show that the assertion is true when u has the property
of (1). Since {uo ¢,d m;a € D} is uniformly absolutely continuous, for any
€ > 0 there exists 7 > 0 such that fD,(o)c uo ¢pd m < g - € for all a in
D. Therefore, making a change of variable, let r be sufficiently large, then
e-(1) < gg' - €0 - € = €. Hence, we obtain that ¢,(u) — 0(r — 00).

Next, we prove the implications (2) = (1), (3) = (2), and (4) = (3). Then-
g-(1) — 0 when u is a function such that (2), (3) or (4). In fact, suppose
that there exists 3 > 0 such that the Berezin transform of the function u!*+?
is bounded, then a set of functions {u o ¢,;a € D} is uniformly integrable
(cf. [1, p. 120]), therefore it follows that {u o ¢,d m;a € D} is uniformly
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absolutely continuous with respect to m. Hence, (2) implies (1). If there
exist 7 > 0 and § > 0 such that v > § on D\D,(0), then

t(a) >6—0 |ko|?d m = 8[1 — m(D,(a))] > 6(1 — tanh®r) > 0.
D-(0)

Hence (3) implies (2) because (u!*t#)~(a) < ||u||}F? for all a in D and any
B > 0. Next, let p be an analytic polynomial which has no zeros on 90D,
then there are 7 > 0 and § > 0 such that u = |p| > § on D\D,(0), therefore
4) = (3).

We prove that the assertion is true when u has the form of (5). For any
fixed —1 < a < 1, put u(z) = (1 — |2/?)* and making a change of variable,
then

eoli) =sup ([ (1= )L = azPod m(z))

X (/D\D,(o)(l —12]*)¥|1 — az|~**d m(z)> .

When 0 < o < 1, since 0 < 1 — |z|*> < 1, we have that
/ (1—12*)*|1 — az|"**d m > 2_2"’/ (1 — |2]*)d m = constant.
D D

If —~1 < a < 0, then the familiar inequality between the harmonic and
arithmetic means shows that

-1
/ (1—12*)%1 — az|~**d m > (/ (1—z>)"*1 — az|**d m)
D D

> constant.
Here, the last inequality follows from Rudin’s lemma (cf. [9, p. 53] ). Again
using Rudin’s lemma, since —1 < a < 1, there exists 8 > 0 such that a set of
functions {[(1 — |2|?)%|1 — az|~2%]**#;a € D} is bounded in L*. This implies
that the set of these functions are uniformly integrable ( cf. [1, p. 120]),
therefore it follows that £,(u) — 0(r — o).

We show that €,(u) — 0 when u has the form of (6). As in the proof of (2)
of Proposition 5, we only prove that ,.(u) — 0(r — oo) when u = o). pa@
where p;(2) = |z — by], pa(2) = |z — ba], 0 < (1), a(2) < 2, and b, is in
D, b, is in 9D. We suppose that B;, M;, and € are as in the proof of (2) of
Proposition 5. By the definition of ¢,(u1), we have that

er(p) = sup(uxp, (a)c)~(a) x @(a)™".



CARLESON INEQUALITIES IN BERGMAN SPACES 169

Moreover,

(UXDr(a)C)N(a) X a(a)_l S(UXDr(a)C)N(a) X (u—l)N(a)
<(uxp.0)~ (@) x W0 [ kP m

Bo
+ (uxp, (@)~ (@) x 7 - (pr ") (a)
+ M, xe W x C 1 —az|~*®d m,

D\D,(0)

where
€ = Igulbn) ~ 212 x 1~ a2 x [l m,
2D

Since u is bounded, therefore {u o ¢,;a € D} is uniformly integrable
(cf. [1, p. 120]), moreover applying the same argument in the proof of this
proposition when u has the form of (5), Rudin’s lemma implies that a set
of functions {|1 — az|~*®;a € D} is also uniformly integrable, hence we
conclude that €,(u) — 0(r — o0). The proof of the latter half of (6) of this
proposition is similar that in the above.

If u has the form of (7), then by the similar arguments in the proof of (3)
of Proposition 5, set j(+) = {j;a(j) > 0}, j(—) = {j;a(i) < 0}. And put

— a(7) _ a(4)
ur = [l P57 w2 = Iy P, then

(uXD,(a)c)~ (@) X @(a) ™! <(uxp, ()~ (a) x (u™1)~(a)
=(urU2Xp, (a))~ (@) X (u7'uz ')~ (a).

Therefore, the desired result follows from the Cauchy-Schwarz’s inequality
and (6) of this proposition. U

Corollary 3. Suppose that d v = vd m and there is a consrant C > 0 such

that
[ipdv<c [ (1P
D D

for all a in D, then the following are true.
(1) If v(z) = (1 — |2]?)® for some —1 < a < 1, and there exist | > 0 and
v =/ > 0 such that
fu(a) <+'(1 - al*)"

for all a in D, then there exist r > 0 and v =, > 0 such that
(1 = la*)* < vii,(a)

for all a in D.
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(2) Ifv =TIp;?, where p;(2) = |z=b;, bi # b;(i # j), and 0 < a(j) < 2
for b; in DUOD or —2 < a(j) <0 for b; in DUOD, and if there exist I > 0
and v =y, > 0 such that

ufa) <+ T] la— b,
JEA

for all a in D, then there exist r > 0 and vy = vy, > 0 such that

I la = b;1*% < v, (a)
jEA
for all a in D, where A = {3j;b; is in OD}.
(3) Ifv = ]_[p?(]) where p;(z) = |z—bj|, b; # b;(i # j), and =1 < a(j) < 1
for b; in DU OD, and if there exist | > 0 and v = v, > 0 such that

pu(@) <7 T] la = b,°9

jEA
for all a in D, then there exist r > 0 and v = vy, > 0 such that

II la = b;1*9 < v, (a)
jeA

for all a in D, where A = {j;b; is in OD}.

Proof. We show that (1) is true. By the fact in the proof of Corollary 1, and
the fact that u(z) = (1 — |z|*)* satisfies the (A;)-condition for all @ > —1
(see [6]), the hypothesis in (1) of the Corollary and Proposition 1 imply the
(u, v)-Carleson inequality. Hence, Theorem 7 and Proposition 9 show that
the assertion is true.

Similarly, (2) and (3) follow from Proposition 1, Lemma 2, (5) of Propo-
sition 4, Theorem 6, Theorem 7, and Proposition 9. O
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