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MIXED AUTOMORPHIC VECTOR BUNDLES

ON SHIMURA VARIETIES

MIN Ho LEE

Let S°{G,X), S°{G',X') be connected Shimura varieties as-
sociated to semisimple algebraic groups G, G' defined over Q
and Hermitian symmetric domains X, Xf. Let p : G —ϊ G' be
a homomorphism of algebraic groups over Q that induces a
holomorphic map ω : X —> X' mapping special points of X
to special points of X'. Given equivariant vector bundles J,
J' on the compact duals X, X' of the symmetric domains
X, X', we can construct a mixed automorphic vector bundle
M(J,J', p), on S°(G,X) whose sections can be interpreted as
mixed automorphic forms. We prove that the space of sections
of a certain mixed automorphic vector bundles is isomorphic
to the space of holomorpic forms of the highest degree on the
fiber product of a finite number of Kuga fiber varieties. We
also prove that for each automorphism r of C the conjugate
τM(J,J',p) of a mixed automorphic vector bundle M(J,J',p)
on a connected Shimura variety S°(G,X) can be canonically
realized as a mixed automorphic vector bundle λΛ(JiiJΊ,p\)
on another connected Shimura variety S°(Gι, X\) associated to
a semisimple algebraic group G\ and a Hermitian symmetric
domain X\.

1. Introduction.

Mixed automorphic forms generalize automorphic forms, and certain types of
mixed automorphic forms occur naturally as holomorphic differential forms
of the highest degree on certain fiber varieties over arithmetic varieties whose
fibers are abelian varieties (see e.g. [8], [14], [16] [17], [18], [19]). Holomor-
phic automorphic forms can be interpreted as the sections of automorphic
vector bundles on a Shimura variety (see [6], [7], [21], [22]) just as automor-
phic functions can be considered as sections of the sheaf of germs of functions
on a Shimura variety. In this paper, we introduce mixed automorphic vector
bundles on connected Shimura varieties whose sections can be interpreted
as mixed automorphic forms.

Let E be an elliptic surface and let π : E —> X be an elliptic fibration in the
sense of Kodaira (cf. [11]). Thus E is a compact smooth surface over C, X
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is a compact Riemann surface, and the generic fiber of π is an elliptic curve.
We assume that π has a global section and that there are no exceptional
curves of the first kind in the fibers of π. Let Eo be the union of the regular
fibers of π and let Xo — π(E0). We identify the universal covering space of
Xo with the Poincare upper half plane Ή, and the fundamental group π1(X0)
with a subgroup Γ of PSX(2, R). Thus we have Xo = Γ\Ή, where Γ acts on
7ίQ by linear fractional transformations. Given a point z £ Xo, we choose a
holomorphic 1-form on Ez — π~ι(z) and a basis {az,βz} of H1(EZ,Z) that
depends on z E Xo in a continuous manner. Then the many-valued function

on Xo can be lifted to a holomorphic function ω : % —̂  Ή satisfying ω(jz) =
χ(j)ω(z) for all 7 G Γ and z E Ή, where χ : Γ —>• SX(2, R) is the monodromy
representation of Γ = π1(X0) for the elliptic fibration π : E —> X. Hunt and
Meyer. [8] defined mixed cusp forms using the automorphy factor

where

They proved that the space S2,i(Γ,tι;, χ) of mixed cusp forms of type (2,1)
associated to Γ, ω and χ is canonically isomorphic to the space H°(E, Ω2) of
holomorphic 2-forms on E. In [14] mixed automorphic forms of type (2, n)
for n > 1 were defined using the automorphy factor

and it was proved that the space S ^ n ί Γ ^ x ) of mixed cusp forms of type
(2,m) associated to Γ, ω and χ is canonically isomorphic to the space
H°(En, Ω n + 1) of holomorphic (n + l)-forms on the elliptic variety En, where
En is obtained by resolving the singularities of the compactification of the n-
fold fiber product of Eo over Xo. Assuming that Γ C 5L(2, R) with - 1 £ Γ
and that % is an inclusion Γ °-> SX(2,M), the above result of Hunt and
Meyer was proved by Shioda [31] and the higher weight case was proved by
Sόkurov [32] (see also [33], [34]).

More general definition of mixed automorphic forms were given in [18],
and mixed Siegel modular forms were treated in [19]. In this paper, we
generalize the notion of mixed automorphic forms further by considering
mixed automorphic vector bundles on connected Shimura varieties. Then
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the mixed automorphic forms are sections of mixed automorphic vector bun-
dles of special type. A Kuga fiber variety is a fiber variety over a Shimura
variety whose fibers are isomorphic to a polarized abelian variety (see [12],
[30, Chapter IV]). One of the goals of this paper is to prove Theorem 4.2
which states that the space of sections of a certain type of mixed automor-
phic vector bundle is canonically isomorphic to the space of holomorphic
forms of the highest degree on the fiber product of a finite number of Kuga
fiber varieties.

Another goal of this paper is to study the conjugates of mixed automorphic
vector bundles. One of the main theorems for automorphic vector bundles
proved by Milne ([21], [22]) is about their conjugation by an automorphism
r of C. More precisely, given a Shimura variety S(G, X) associated to a
semisimple algebraic group G over Q and a Hermitian symmetric domain X,
the conjugate τV(J) of every automorphic vector bundle V{J) on S{G,X)
determined by a G(C)-vector bundle J on the compact dual X of X by
an automorphism rof C is an automorphic vector bundle of the form V(r J)
determined by the conjugate r J for some explicitly determined automorphic
vector bundle of J. In other words, this means that to each automorphic
form / on the symmetric domain X, a special point x of X (see §4 for the
definition of a special point) and an automorphism r of C, we can associate
another automorphic form T'x f on another symmetric domain T>XX in such a
way that the association / H-> τ>xf commutes with the Hecke operators and
τ(f(x)) is equal to τ'xf{y) for some explicitly defined special point y of T'XX.
A similar problem for automorphic functions instead of forms was conjec-
tured by Langlands [13] and was later proved by Milne [20] and Borovoi [1]
(see also [9], [10], [15]).

Let S°(G,X), 5°(G',X') be connected Shimura varieties associated to
semisimple algebraic groups G, G' defined over Q and Hermitian symmetric
domains X, X'. Let p : G -* G' be a homomorphism of algebraic groups
over Q that induces a holomorphic map ω : X -> X' mapping special points
of X to special points of X'. Given equivariant vector bundles J, J1 on the
compact duals X, X' of the symmetric domains X, X', we can construct a
mixed automorphic vector bundle M{J, J', p), on 5°(Gr, X) (see §3). In this
paper, we prove Theorem 5.5 which states that the conjugate rΛ4 of a mixed
automorphic vector bundle jVίona connected Shimura variety S°(G, X) can
be canonically realized as a mixed automorphic vector bundle M(Ji, J[, pi)
on another connected Shimura variety S°(Gι,Xι) associated to a semisimple
algebraic group G\ and a Hermitian symmetric domain Xx. In classical
terms, this theorem implies that to each mixed automorphic form / on X, a
special point x oϊ X and an automorphism r of C, we can associate another
mixed automorphic form r'xf on the domain Xx in such a way that τ(f(x))
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is related to τ'xf(xι) for some explicitly defined special point xλ of Xλ and
the association / »-> T)X/ commutes with Hecke operators.

This paper is organized as follows. In §2 we review connected Shimura
varieties, Serre groups and the conjugation of Shimura varieties. In §3 we
describe the Borel embedding of a symmetric domain into its compact dual,
and construct mixed automorphic vector bundles on connected Shimura va-
rieties. In §4 we discuss the connection of mixed automorphic vector bundles
and mixed automorphic forms, and prove the theorem about the realization
of mixed automorphic vector bundles as holomorphic forms on fiber prod-
ucts of Kuga fiber varieties. The theorem concerning conjugates of mixed
automorphic vector bundles is stated and proved in §5.

2. Connected Shimura varieties.

In this section we review the definition of connected Shimura varieties and
Serre groups, and describe the theorem about conjugates of Shimura varieties
(see [2], [3], [20], [21], [22], [23], [27] for details). Let G be a semisimple
algebraic group defined over Q, let Gaά be the associated adjoint group, and
let Gad(R)+ be the identity component of Gad(M). Let § be a real algebraic
group Resc/κGm, where Res is the Weil's restriction map, and let X be a
Gad(IR)+-conjugacy class of homomorphisms h : § -» Gff that satisfy the
following conditions:

(i) When composed with G^ -» GL(g), each h in X defines a Hodge
structure of type {(0,0), (-1,1), (1, -1)} on the Lie algebra g of Gg.

(ii) For each h in X, ad (h(i)) is a Cartan involution of GR.
(iii) GΆά possesses no nontrivial factor defined over Q whose real points

form a compact group.
If x is a point of X regarded as a symmetric domain, we shall denote by

hx the corresponding homomorphism from S to Gf>d; thus we have hg.x =
ad(#) o hx for g G Gad(M)+ and x E X. Fix a point x0 in X and let
hXo : S -> G|d be the homomorphism corresponding to x0. Let
be the identity component of G(R) and let Ko be the subgroup of
that fixes x0. Since Ko is fixed by hXo(i), axiom (ii) above implies that it is
compact. The Lie algebra Q of G(R)+ has the Cartan decomposition Q = t+p
with 6 = Lie if07 where I and p are +1 and —1 eigenspaces for ad h(i) acting
on g. The action of G(R)+ on X determines a bijection of G(R)+ /Ko with
X. If we use this bijection to provide X with a real analytic structure, then
p can be identified with the tangent space TXQ(X) of X at xo There is a
unique homogeneous complex structure on X such that the action of i on
TXo(X) corresponds to the action of /ι(eπi/4) on p. Relative to this structure,
X becomes a Hermitian symmetric domain.
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A congruence subgroup of G(Q) is a subgroup of the form Γ = K Π
G(Q) with K a compact open subgroup of G(Af). Consider a topology
on Ga d(Q) in which the images of the congruence subgroups in G(Q) form
a fundamental system of neighborhoods of the identity element, and let
G a d ( Q ) + Λ be the completion of Ga d(Q)+ relative to this topology. Let Σ(G)
be the set of torsion-free arithmetic subgroups of G a d (Q) + that contains
the image of a congruence subgroup of G(Q). For each Γ G Σ(G), the
quotient Γ\X is a locally symmetric algebraic variety. The group G a d (Q) +

acts on the projective system (Γ\-X")ΓGΣ(G)
 a s follows: for each Γ G Σ(G)

and g G G a d (Q) + , g defines a map

Γ\X -> g^TgXX, [^[f 1^.

This map is holomorphic and therefore algebraic. The action of G a d ( Q ) + on
(Γ\X)r<ΞΣ(G) extends by continuity to G a d ( Q ) + Λ . The connected Shimura
variety S°(G,X) is defined to be the projective system (Γ\X)ΓGΣ(G)> or its
limit, together with the continuous right action of G a d ( Q ) + Λ .

When G is simply connected, G(M) is connected and G(Q) K — G(Af).
For any congruence subgroup Γ = G(Q) Π K of G(Q), the map

T\X -> G{Q)\X x G{Af)/K, [x] ^ [x, 1]

is an isomorphism. Taking the limit, we have

S°{G,X){C) = lhnΓ\X - G(Q)\X x G(A/).

The semi-direct product G(Af) xi G a d (Q) + acts on this scheme by

[x,a](g,q) = [q-ιx,&ά(q

for x G X, a,g G G(Af) and q G G a d ( Q ) + . The homomorphism q H>
(g-1, ad q) identifies G(Q) with a normal subgroup of G(Af) xi G a d ( Q ) + , and
the quotient group G(Af) * G ( Q ) G a d (Q) + continues to act on S°(G,X). In
this case, we have

G(A') *G(Q) G a d (Q) + = G a d ( Q ) + Λ ,

and the action just described agrees with that defined in the preceding para-

graph.

A real Hodge structure is a real vector space V with a decomposition

rP)ί7, with VVΆ = Vp>q.

The category of real Hodge structures has a Tannakian structure, and the

affine group scheme attached to the category and the forgetful functor is
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S = Resc/κGm (see [4], [28], [29]). If V has a real Hodge structure with
decomposition F®C = 0 V™, then an element ^ G §(i) = C x acts on VVΆ

as multiplication by z~p~z~q. Thus we can consider a real Hodge structure
as a pair (V, h) consisting of a real vector space V and a homomorphism
h:S->GL(V).

If W is a vector space over k C C, a homomorphism v : Gm —>• GL(W)
defines a decomposition W — 0 W* with

^ = {w6^ |φ)=Λ for all z e kx}

and a decreasing filtration F* of W with i^W = ®i>pW\ Given a real
Hodge structure, let μh : Gm -> GL(Vc) be the map defined by μh(z) —
hc(z, 1), where we identified § c with C x x C x in such a way that the em-
bedding S(K) M- S(Q becomes z ^ {z,~z). Then the Hodge filtration on
V is simply the decreasing filtration defined by μh : Gm -> 6rL(Vc), and
the weight grading wh : Gm -> GL(V) is defined by ̂ ( r ) = h(r~ι) for all
r G l x . A Hodge structure is a vector space V over Q together with a real
Hodge structure on V ®Q R such that the weight grading is defined over Q.

The Mumford-Tate group MT(V,h) of a Hodge structure (F,Λ) is the
smallest Q-rational algebraic subgroup of GL(V) x Gm such that MT(V, h)c
contains the image of (μh, 1) : Gm -> GL(V) x Gm (see [4], [26]). The Hodge
structure (V, h) of weight n is said to be polarizable if there is a morphism
of Hodge structures φ : V(R) ® V(R) -> R(-n) such that the real-valued
form (x,y) »-> (2πi)nφ(x, h(i)y) is symmetric and positive definite.

A Hodge structure is said to be of CM-type if it is polarizable and its
Mumford-Tate group is commutative. The category of Hodge structures of
CM-type is a Tannakian category. The Serve group & is the aίfine group
scheme attached to this Tannakian category and the forgetful fiber functor.
The functor sending a Hodge structure (V, h) to the real Hodge structure
(V ® M, h) defines a homomorphism /ιcan : S —>• ΘR. The Serre group © and
the homomorphism hCΆn have the following universal property: For any torus
T over Q and homomorphism h : S -» Tκ whose cocharacter is defined over
a CM-field and whose weight is defined over Q there is a unique Q-rational
homomorphism p : 6 -» T such that PK O /ιcan = /& (see [25]).

The category of CM-motives over Q is a Q-linear Tannakian category
(see [22], [24] for the definition of CM-motives). The affine group scheme
% attached to this category and the Betti fiber functor HB is called the
Taniyama group (see [5]). The fully faithful tensor functor from the cat-
egory of Artin motives over Q to the category of CM-motives determines
a surjective homomorphism π : % —> Gal(Q/Q). The Betti functor HB is
an essentially surjective functor from the category of CM-motives to the
category of Hodge structures of CM-type; hence it determines an injective



MIXED AUTOMORPHIC VECTOR BUNDLES 111

homomorphism i : Θ -> %. Each r G Gal(Q/Q) determines an automor-
phism sp(τ) of the fiber functor ίf^ ® Qg whose image in Gal(Q/Q) is r.
The map sp is a homomorphism from Gal(Q/Q) to %(Qι) that is continu-
ous with respect to the Krull and £-adic topologies, and the product of the
homomorphisms sp^ defines a homomorphism sp : Gal(Q/Q) -> T(A ̂ ) (see
[22] for details). Then there is an exact sequence

1 -> 6 A X A Gal(Q/Q) -> 1

of affine group schemes (see [5]).
Let S°(G, X) be a connected Shimura variety, and let x be a special point

of X. This means that there is a maximal Q-rational torus T in G such that
hx factors through (T/Z)(M), where Z is the center of G. By the universal
property of Θ there is a unique Q-rational homomorphism ρx : © —» T/Z
such that /la. = {px)u ° /λcan The map px : Θ —> G a d defines an action of
Θ on G. For each r <E Gal(Q/Q), the association M h-> HT(M) = HB(τM)
is a fiber functor from the category of CM-motives over Q to the category
of vector spaces over Q; hence Isom(HB,Hτ) is a torsor for Θ, and it is
represented by r Θ = π~ 1 (r). Using the Θ-torsor r Θ to twist G, we obtain
an algebraic group T'XG = r& x 6 ί P i G over Q such that

T'XG(Q) = {s • g I s E TΘ(Q), g e G(Q)}/Θ(Q)

on which ©(Q) acts by

(s g)σ = sσ dΛ{px{σ~ι))g

for σ G Θ(Q) and (s - g) G r ' x G(Q). Then r ' x G is a semisimple group
that contains τ& x&,Px T — T as a subtorus. The point sp(r) in T©(A ̂ )
defines a canonical isomorphism of G{kf) onto T'XG(PJ) that maps g to

There is a canonical isomorphism

G a d (Q) + Λ A r ' x G a d ( Q ) + Λ , g ^ r ' ^

that is compatible with the preceding isomorphism. Define rh to be the
homomorphism S —> TyXG^ associated to the cocharacter τμx of T/Z C
r ' * G a d , and let T>XX be the τ'xGad(IR)+-conjugacy class of maps § -+ T'XG^
containing τh. Then the pair (τ'xG,r'x X) defines a Shimura variety.

Proposition 2.1. Ifx andy are special points of X, then there is a canonical

isomorphism

φ°{τ;y,x) : S°{T>XG,T>XX) -» 5 0( r '^G, τ'yX)
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such that
φ°(τ;y,x)o(^g) = {r,yg)oφo{r.y^χ)

forallgeGad(Q)+A.

Proof. See [21, Proposition 1.3]. D

The following is the main theorem about the conjugates of Shimura vari-
eties which was conjectured by Langlands in [13].

Theorem 2.2. For each r G Aut(C), there is a unique isomorphism

φ°TyX : τS°(G,X) -> S°(r>xG,τ>xX)

satisfying the following conditions:
(i) The point τ[x] is mapped to ['x], where τx G T'XX is the point corre-

sponding to rh.
(ii) φ«tX o τ(g) = (τ'*g) o φ°TtX for all g € G a d (Q)+\

Furthermore, if y is another special point of X, then

Proof See [20, Theorem 1.1] (see also [1]). D

3. Mixed automorphic vector bundles.

In this section, we construct automorphic vector bundles on connected Shimura
varieties. We first describe the Borel embedding of a Hermitian symmetric
space into its compact dual space (see [21], [22] for details). Let G be a
reductive group over a field &, and let r : G —> GL(V) be a representation
of G. Then a homomorphism μ : Gm -> G defines a decomposition

l/ = 0 ^ Vi = {υeV\roμ(z)υ = ziυ for all z G kx}

and a decreasing filtration Fm of V with FPV = 0 ^ V\ These filtra-
tions are compatible with the formation of tensor products and duals. Con-
versely, any functor (r, V) H> (F*, V) from representations of G to filtrations
compatible with tensor products and duals arises from a homomorphism
μ : Gm -> G. Such a functor is called a filtration of Repfc(G), and tHe
filtration determined by μ is denoted by Filt(μ). When k is C and μ is
a cocharacter μ0 of G, we define the compact dual X of X to be the set
of filtrations of Repc(G) that are G^Q-conjugate to Filt(μo) Then the
action of G(C) on X given by g μ = Filt(ad(g) o μ) defines a bijection
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between G(C)/P0(C) and X, where Po is the parabolic subgroup F°G of
G (see [21, Proposition 2.2]); hence the bijection induces the structure of a
smooth projective variety over C on X.

Let (G,X) be a pair defining a connected Shimura variety and let μ0

be the cocharacter corresponding to a point o G X We apply the above
construction of X for Gaά. Thus X is the set of filtrations of Repc(Gaά) that
are conjugate to Filt(μ0) under Gad(C). Such X is in fact the compact dual
Hermitian symmetric space of X in the usual sense. The Borel embedding
β : X —» X is the map that sends a point x G l t o the filtration Filt(μ:c) of
Repc(Gcd) determined by μx. It is indeed an embedding of X onto an open
complex submanifold of X.

Proposition 3.1. The map β : X —> X sending a point x G X to the
filtration of Rep<c(G^) defined by μx embeds X onto an open complex sub-
manifold of X. For o G X, let Ko be the isotropy group at o in G(]R)+

;

and let Po be the isotropy group at o G X in G(C); then the inclusion of KQ
into Po identifies (K0)c with a Levi subgroup of Po; there is an equivariant
commutative diagram

Gaά(R)+/K0 > G a d(C)/P 0(C)

1 1
X > X,

where the vertical maps are isomorphisms and the horizontal maps are em-

beddings.

Proof See [21, Proposition 2.6]. D

Since X is an algebraic variety over C, for each r G Aut(C) we can consider

the conjugate variety τX.

Proposition 3.2. Let T'XX be the dual Hermitian symmetric space associ-
ated to the pair (T>XG,T'XX). For each special point x G X, there is a unique
isomorphism φ^ x : rX —> T'XX such that

(i) the point rx is mapped to τx, and
(ii) φl% o r(g) = C'xg) o <%x for all g G G a d(C).

Proof See [21, Proposition 2.7]. D

Let 5°(G, X) be a connected Shimura variety associated to an algebraic Q-
group G and a symmetric domain X. If β : X c—> X is the Borel embedding
of X, the action of G(1R) on X extends to a transitive action of G(C) on



114 MIN HO LEE

X. Let (J,p) be a Gcvector bundle on X with a Gc-action satisfying the
following conditions:

(i) p(g w) = g p(w) for all g E G(C) and w e J.
(ii) The maps g : Jx —> J ^ are linear for all g E G(C) and £ E X.
Let G(R)+ be the inverse image of Gad(M)+ in G(M) and let G(Q)+ =

G(Q) Π G(R)+. A Gc-vector bundle {J,p) satisfying (i), (ii) restricts to a
G(M)+-vector bundle V = β* J on X, and, for each congruence subgroup Γ
of G(Q), VΓ = Γ\V is a vector bundle on Γ\X = S£(G,X)(C). We set

V = {Vr I Γ is a congruence subgroup of G(Q)}.

Then V is a projective system, and there is a natural action of G(Q)+ on
V that sends an element v E V modulo Γ to an element gv E V modulo
gVg~ι. This action extends by continuity to the closure G(Q)+ of G(Q)+
in G(Af). A G(Q)+-vector bundle V on S°(G,X) arising in this way from
a G(C)~vector bundle J on X is called an automorphic vector bundle (see
[6], [7], [21], [22]; see also [35]). When G is simply connected, V is the
G(A^)-vector bundle

V = G{Q)\V xG{Af)

on S°(G,X) = G(Q)\X x G(Af), and the action of g E GίA^) on V is given
by

g [υ,a] = [υ^^"1]

for all u G V and a E G(Af). On the other hand, if the action of G(C) on
JΓ factors through Gad(C), then we can consider V as the projective system
{Γ\V I Γ E Σ(G)}, where Σ(G) is the set of torsion-free arithmetic subgroups
of Ga d(Q)+ that contains the image of a congruence subgroup of G(Q) as in
§2, and the action of G a d(Q)+ Λ on S°(G,X) lifts to J.

Now we consider another Shimura variety S°(Gt^Xt) determined by an
algebraic Q-group G' and a symmetric domain X''. Let p : G -> G' be a
homomorphism of algebraic groups over Q carrying the conjugacy class X
into X'. The map ω : X -t X* defined by ω(h) = ad(p) o Λ for h E X sends
special points of X to special points of X'. As in the case of S°(G,X) we
construct a projective system

V' = {Vf, I Γ" is a congruence subgroup of G'(Q)}

of vector bundles Vf, = Γ\V' on Γ\X ; = S$,(G',X') determined by^a
G'(€) vector bundle associated to the Borel embedding β' : X' ^> X'.

Let {Γj}, {Γ;J be projective systems of congruence subgroups of G(Q) and
G'(Q) respectively such that p(I\) C Γ̂  for each i. Then V can be considered
as the projective system of vector bundles Vpt = Γi\/3*(17) on S®. (G, X), and
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similarly V is the projective system of vector bundles Vf, = T'^\β'*(J') on
S°,(G",X') If Ui : S^(G,X) -> S°,(G',X') denotes the map induced by
ω : X —> X', we define V ® ω*V' to be the projective system of vector
bundles VΓι ® ω*Vf, on S$t(G,X). Then the natural action of G(Q)+ on
V (8) α;* V induces an action of G(Q)+.

Definition 3.3. The G(Q)+-vector bundle V ®u*V described above is
called a mixed automorphic vector bundle of type {J,J',p), and the space
of mixed automorphic vector bundles of type (J,J',ρ) will be denoted by
M(J,J',p).

4. Mixed automorphic forms.

In this section we define mixed automorphic forms, and discuss their rela-
tion with mixed automorphic vector bundles. We also review the construc-
tion of Kuga fiber varieties, and describe the relation between the mixed
automorphic vector bundles and holomorphic forms on fiber products of
Kuga fiber varieties. Let Γ be a discrete subgroup of Aut(X), and let
J : Γ x I 4 GL(V) be an automorphy factor for (Γ,X) with values in
a complex vector space V such that

(i) the map z ι—>> J(7, z) is holomorphic on X for each 7 G Γ;
(ii) J(7i72,2) = J{ΊUΊΊZ) ' J{l2,z) for all 7^72 G Γ and z e X.

Let p : Aut(X) -> Aut(X;) be a homomorphism and let ω : X —> X' be a
holomorphic map such that ω(pz) — p(g)ω(z) for all g G Autpf) and z E X;
let J1 : Γ ' x l ' 4 GL{V) be an automorphy factor for (Γ,X') with values
in V, where Γ; is a discrete subgroup of Aut(X;) containing p(Γ). Then a
mixed automorphic form of type (J, J',p, ω) is defined to be a holomorphic
function / : X -> V <g> F ; such that

(i) /(7^) = (J(7,*) ® J ' ί p ί T ) ^ ^ ) ) ) / ^ ) for all 7 G Γ and z G X;
(ii) / is holomorphic at infinity.

Various types of mixed automorphic forms have been investigated (see [8],
[14], [16], [17], [18], [19]), and certain types of mixed automorphic forms
occur naturally as holomorphic differential forms on certain fiber varieties
over arithmetic varieties whose fibers are abelian varieties ([8], [14], [19]).

Example 4.1. Let X be the Poincare upper half plain % and let Γ be a
discrete subgroup of PSL(2,R). Let χ : Γ -> SX(2,R) be a homomorphism
and let ω : Ή, —>> H be a holomorphic map such that ω(jz) — χ(j)ω(z) for
all 7 G Γ and z G U. We set J(-γ,z) = {j(j,z))k and J'(δ,w) = {j{δ,w))1,
where A:, / are nonnegative integers with k even and ,7(7, ̂ ) = (cz + cί) if

7 = Γ Ί G5L(2,M) or
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Then the mixed automorphic form of type (J, J7, p, ω) is the mixed automor-
phic form of type (fc, Z) for Γ associated to χ,ω considered in [8], [14], [16],
[17], and [18], and certain types of such mixed automorphic forms arise as
holomorphic differential forms of the highest order on elliptic varieties (see
[14]). A similar problem for Siegel modular forms was treated in [19].

Let p : G -> G' and ω : X -> X1 be as in §3, and let p : J -» X be a
G(C)-vector bundle on X. Fix a point x0 G X and let V be the fiber Jβ(XQ)
of J over β(xo) G X. The isomorphism of V with β~ι{J)XQ extends to an
isomorphism of X x V with β~~λ(J) and we can transfer the action of G(IR)+

on β~ι{J) to the one on X x V. We write

for 7 G G(R)+, x G X and v e V. Similarly, given a G^-vector bundle
p' :Jf -)• X' on X', we define J' : G'(IK)+ x l 4 GL(F') by

for Y G G ;(R)+, a;' G X' and υ' G F'. Then the maps J and J ; are automor-
phy factors, and a section of (V ® ̂ *V)/^ on the connected Shimura variety
Sγκ(G,X) associated to J, J' and a compact open subgroup K of G(Af)
can be identified with a mixed automorphic form for Γ# = K Π G(Q) of type

In the rest of this section, we describe a relation between mixed auto-
morphic vector bundles and fiber products of Kuga fiber varieties. We first
review the construction of Kuga fiber varieties over connected Shimura va-
rieties (see [12], [30, Chapter IV]). Let W be a vector space over Q of
dimension 2m, and let β be an alternating bilinear form on W. We set

Sp(β) = {geGL(W)\β(gx,gy)=β(x,y) for all x.yeW}

and let H(β,R) be the set of all complex structures J on W(R) such that
the bilinear form /?(#, Jy) on W(R) is symmetric and positive definite. Then
the group Sp(β, R) of real points of Sp(β) acts on H(β, R) transitively by

(g,J)'-+gJg-1 for g e Sp(β,R), Je H(β, R).

Let {βi,... , em, / i , . . . , /m} be a basis for W(R) such that

β{ei,ej)=β{fi,fi)=Q, βiβijj) = -δij

for 1 < i, j < m, where ί̂  is the Kronecker delta. Then we can identify
Sp(β,R) with

,R) - {̂  G
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and Ή(/3, IK) with the Siegel upper half space

nm = { z G Mm(C) \z = tz, Im z » 0 }

(see [30, §11.8]).
Let G be a semisimple algebraic Q-group as before, and let Ko be a

maximal compact subgroup of G(M)+. We assume that the symmetric space
X = G(R)+ /Ko has a G(M)+-invariant complex structure. Let p : G(R)+ -»
Sp(β, R) be a homomorphism of Lie groups and let ω : X —>• H(β, R) = % m

be a holomorphic map such that

for all g G G(R)+ and z G X. Then p determines the semidirect product
ix p Ŵ (1K) in which the multiplication is given by

for all gug2 G G(R)+ and v1?ι;2 G W(R). The group G(R) + κ p W(R) acts
on X x W(R) by

(g, υ) (x, tϋ) = (gx, ρ(g)w + υ)

for (g,υ) G G(E) + κ p W(R) and (x,tι;) G X x W(M).
Let u(x) — (uι(x),... ,uk(x)) be a global complex analytic coordinate

system of the bounded symmetric domain X. Define the map z : X x
W{R) -> C m by

where J5 = (J - J ) G M2 m(M). This induces the map μ : X x VK(R) -> C f e + m

given by

μ(x,w) = (u(x),2:(a:,iί;)).

Thus μ is a diffeomorphism of X x W(R) onto ?i(X) x C m . If J is the
natural complex structure on u{X) x C m , then J — μ~ι (J) defines a complex
structure on X x W(R) with global coordinates

Let L be a lattice in W(IK) and let Γ be a torsion-free co-compact discrete
subgroup of G(R)+ such that p(Γ)L C L. Then the semidirect product Γix^L
operates on X x W(K) properly discontinuously, and the complex structure J~
on X x W(1K) determined by the holomorphic map ω : X —> Ή(/3, R) induces
a complex structure on the manifold Γ tXpL\X x W(IK). We denote by Ap the
complex manifold Γ txpL\X x W(IK) obtained this way. Then the projection
map X x W(R) -» X induces a fiber bundle π : Ap -> S°(G, X)(C) known as
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a Kuga fiber variety over the complex manifold S°(G^X)(C) = Γ\X whose
fibers are complex tori of dimension m (see [12] and [30, Chapter IV] for
details; see also [15]). We denote by An

p the n-fold fiber product

Λp x π Ap x π x π Ap

of Apover S°(G,X)(C).
Let g = t + p be the Cartan decomposition of the Lie algebra g of G(IR)+

as in §2, and let J o be the complex structure on X such that

[Joξ,η] = [ξ,Joη] for all ξ G ί, η G p,

o*j] = [£,*ϊ] for a 1 1 ξ,V€p>

Let p+,p_ C pc be the eigenspaces of Jo belonging to the eigenvalues z, —i
respectively. Then we have

0c = P+ + 6c + p_, P+ = P -

and G(C) = P+K0(C)P_, where P + , K0(C), P_ are the Lie groups whose
Lie algebras are p + , ϊc> P-? respectively. The map Jc : G(C) x p + -> UΓo(C)
defined by

Jc(g,z) = (g expz)o

for (g,z) G G(C) x p + , where ( ) 0 denotes the Jfo(C)-part in the decomposi-
tion G(C) = P+i^o(C)-P- 5 is called the canonical automorphy factor of G(C)
(see [30, §11.5]). Now we define the function j H : G(M)+ x X -> C by

JH(g,z) =det[ad p + (JH(g,z))}

for (g, ^) G G(M)+ x X, where JH is the restriction of Jc to G(M)+ x X. Then
the map z »-» i/zί^, ̂ ) is the Jacobian map for the transformation z v-+ gz oί
X.

We also consider another automorphy factor j v : Sp(m,E) x 7ΐm -> C
defined by

jV(σ, 2?) = det(c2r + d)

for 2? G Um and σ = (a

c

b

d) G
Given a positive integer Z, let J (resp. J/) be G(C)-vector (resp. Sp(m, C)-

vector) bundle on the compact dual I of I (resp. Hm of Ή m ) that in-
duces a G(R)+-vector bundle J (resp. J() on Ή m that has a trivialization
η:XxC-ϊj (resp. r ) ' : F x C 4 J/) given by

g(η(z,υ))=η(z,jH(g,z)-1υ) (resp. ^(^(^,υ ')) - V(z',3v{g',z')ιv'))
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for g G G, z G X and υ G C (resp. g' G 5p(m,M), zf G Ή m and i/ G
C). Then, for each positive integer /, the mixed automorphic vector bundle
Λ4(J', J{iP) is the projective system

where each discrete subgroup Γ of G(]R) is of the form Γκ = G(Q) Π K

for some compact open subgroup K of G(Af) as before. We denote by

Mκ{J,Jί,ρ) the vector bundle Tκ\J®ω*Jl on S$K(G,X)(C) = ΓK\X,
and by Mκ(J, i7/, p) the sheaf of sections of Mκ{J-> J{, p)-

Theorem 4.2. Let π : An

p -+ S£κ(G,X)(C) be the fiber product of a Kuga
fiber variety determined by (p, ω) described above. Then the cohomology space

is canonically isomorphic to the cohomology space H°(A™, Ωk+mn), where
Qk+mn z 5 £^e sheaf of holomorphic (k + mn)-forms on An

p.

Proof. Since we are assuming that S®κ(G,X)(C) = TK\X is compact, we
do not need to consider the holomorphy condition at infinity. Let u =
(ί/i,... , iz&) be a global coordinates for the symmetric domain X, and let
z(rt — (z[j\... ,z$) be the canonical coordinates for C™ for 1 < j < n. If
φ is a holomorphic (k + mn)-foτm on A^, then φ can be considered as a
holomorphic (k + mn)-form on X x (On)n that is invariant under the action
of Γκ κp Ln, where L is a lattice in C™. Then there is a holomorphic function
fφ{u,z) on X x ( C m ) n such that

, z) du A dz^ A Λ dz^,

where u = ( n l 5 . . . ,ufc) G X, s = (^(1),. . ,z ( n ) ) G ( C m ) n , and ^ ^ =
(z[j\... , 2?W) G Cn for 1 < j < n. Given x G X, φ descends to a holomor-
phic mn-form on the fiber A^x over x. The fiber A™x is the n-fold product
of a complex torus of dimension m, and hence the dimension of the space of
holomorphic ran-forms on An

px is one. Since any holomorphic function on
a compact complex manifold is constant, the restriction of fψ(u,z) to the
compact complex manifold An

px is constant. Thus fφ(u,z) depends only on
u] and hence φ can be written in the form

φ = fφ(u) du A dz{1) Λ Λ dz{n\

where fψ is a holomorphic function on X. To consider the invariance of φ"
under the group Γκ ιxp Ln, we first notice that the action of Γκ \xp Ln on
du — dui Λ Λ duk is given by

(7,v) -du = jH(η,v)du
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for all (7, v) G Γ# κ p L n , because jπ (7, *) is the Jacobian map of the transfor-
mation u H-* ju of X. On the other hand, from Equation (17) in [12, §11.6],
the action oίTκ κ p Ln on dz^ = cb^ Λ Λ c b ^ is given by

(7, υ) <feϋ) - d γ(cpω(υ) + dp)-ιz{j) + (ω{jυ), l)Eυ

= det(cpω(υ)+dp)-1dzU)

for 1 < j < n, where

E = ( ? ~oJ) G M2m{R) and

hence we obtain

(7, v) φ = fψ(Ίv) jH(Ί,v)jv(p(Ί),ω(v))-ndu Λ dz{1) Λ Λ

Thus we have

for all 7 G Γ^ and u G l . On the other hand, each element

h e H°(S°Γκ(G,X)(C), Mκ(J,ft,p))

is a Γχ-invariant section of the vector bundle J ®ω*J' on Sγκ{G,X){(C)\
hence it is a function satisfying

for u G X and 7 G Γ^. Therefore the assignment ^ H-> /^(TX) determines an
isomorphism between the space H°(A™, Ωfc+mn) of holomorphic (A: +
forms on A™ and the space

of sections of the automorphic vector bundle Λ4κ(J', J^p)- Π

Example 4.3. If G is SX2> then X is the Poincare upper half plane
W, and i/f(7,z) - (cz + d)~2 for 7 = ( ^ ) G 5^(2,R) and 2 G Ή. If,
furthermore, Γ# is a cocompact arithmetic subgroup of SX(2,Q), then A™
becomes the elliptic variety En considered in [14], and Theorem 4.2 above
reduces to Theorem 3.2 in [14] which states that the space H°(En, Ωn+1)
of holomorphic (n + l)-forms on En is canonically isomorphic to the space
£2,72(1̂ 5 ω,p) of mixed cusp forms of type (2,n); it reduces to Theorem 1.2
in [8] for n=l.
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5. Conjugates of mixed automorphic vector bundles.

In this section we state and prove the theorem about the conjugates of mixed
automorphic vector bundles. Let (G,X) be a pair defining a connected
Shimura variety S°(G,X) as in §1. Each Γ G Σ(G') defines a principal
G(C)-bundle P$(G,X) = Γ\X x G(C) over S${G,X). Such bundles form
a projective system P°(G,X) which can be considered as a principal G(C)-
bundle over S°(G,X). When G is simply connected, we have

P°(G,X) = G{Q)\X x G(C) x G{Af)

with g e G(Q) acting on (a;, c,a) e X x G(C) x G(Άf) by the rule g(x, c, a) =

(gx,gc,ga).

Proposition 5.1. The principal G(C)-bundle P°(G^X) is algebraic, and

there is a canonical G(C)-equivariant map 7 = Ύ(G,X) : P°(G,X) —> X.

Proof. See Propositions 3.2 and 3.5 in [21]. D

Theorem 5.2. Let (G,X) be a pair defining a connected Shimura variety,
and let x be a special point of X. From each automorphism τ of C, there
is a unique isomorphism φζx : τP°(G,X) -> P°( r ' x G, T'XX) that lies over
φ°τx : τSΌ(G,X) —> Sr°(r' :EG,r' :cX) αnc? satisfies the following conditions:

(i) TΛe point rw is mapped to τw.
(ii) φζtX o r(^) = (^g) o φ^x for all g G (G(C) x

Proof See [21, Theorem 3.10]. D

Proposition 5.3. If φζx is as in Theorem 5.2, then there is a commutative
diagram

τP°(G,X)

To ( ( J Γ , A J •—y o { ' CJ, ' Λ J .

Furthermore, the two maps φ% and φζx in the upper square are compatible

with the map g H> τ>xg form G(C) to T>XG(C).

Proof. See [21, Corollary 3.11]. D
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Let p : G —)> G' be a homomorphism of algebraic groups over Q that
determines a mixed automorphic vector bundle M{J,J',p) as described
in §3, where J (resp. J') is a Gc-vector (resp. G^-vector) bundle on X
(resp X'). Thus p carries the conjugacy class X into X'', and the map
ω : X -+ X1 defined by ω(h) = ad(p) o Λ for h G X sends special points of
X to special points of X'. We fix a special point a; inX, and denote the
special point ω(x) in X1 by #'. The homomorphism p induces a homomor-
phism τ>xp : TXG -> r '*G' and a map τ>xω : r'*X -> r 'xX'. The Gc-vector
(resp. G^-vector) bundle r J (resp. rj"') on rX (resp. r l ' ) corresponds
under the isomorphism ψτ^x : r l -> T'XX (resp. ^Tia./ : r l ' -> T)a;/X )
to a r'*G(C)-vector (resp. r'x'G'(C)-vector) bundle T>XJ (resp. τ>x' J') on
T*XX (resp. T 'XX/). The vector bundles r'xJ', r^x> J1 define automorphic vec-
tor bundles r'xV, r y V on the connected Shimura varieties ^ ( ^ G / ' Ί ) ,
S°(T'X'G'IT'X'X1) respectively, and they also determine the mixed automor-
phic vector bundle M(T'XJ, τ'x> J',τ"xp) on the connected Shimura variety
S°(G,X).

Proposition 5.4. Ify is another special point of X, then there is a canonical
isomorphism φM{τ-,y,x) : M(T>XJ,τ'x> Jf, τ>xp) -> M(τ>yJ,τ>y/J',τ>yp) lying
over φ°(τ;y,x) and such that

for alΓ>xgeτ>xG{Af).

Proof. By [21, Lemma 5.1] there is a canonical isomorphism φv(τ\y,x)
τ,χy _^ τ,yy lying o v e r φ°(τm,y,x) and such that

for all τ'xg G τ'xG(Af). Thus the proposition follows easily from this and
the G(M)+-equivariance of the map ω : X —>> X' used in the construction of
M(J,J',p). Π

Theorem 5.5. Let M^J^J^p) he the mixed automorphic vector bundle
on a connected Shimura variety S0(GjX) associated to a homomorphism
p : G —> G1, a Gc-vector bundle J on X, and G'c-vector bundle J' on Xf.
Then there is a canonical isomorphism

φ^x : τM(J,J',p) -> M{τ'xJ,τ x'j',r'xp)
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such that the diagram

τM(J,J',p)

rS°(G,X) - ^ S°(r>xG,τ>xX)

is commutative and φ^4

x°τ(g) = {τ'xg)°ψ^i

x for allg G G(Q)+. Furthermore,
if y is a second special point of X, then

Proof. From the construction of τ>x J and τ'x> J1 we obtain the commutative

diagrams

rj > T>XJ

I I
TX -^=->- T'XX

and

TJ' >• T *'J'

I I
ΛTt PTIX' rχ> -y-l

Let ώ : X —> X' be the G(C)-equivariant extension of ω : X —> Xf, and

let r ' x ώ : r ' x X -> r ' x x ' be the map induced by rω : rX -> τ l ' and the

isomorphisms $Tιa. : r l -> r ' x X and <^T)a;' : rX' —> τ>x'X . Then we have the

following commutative diagram:

:TtX>J,

1
TX

J') »• τ

ψτ,x r,

"' xώ ;

I
xx.

Pulling back these vector bundles via the upward vertical maps TJ and 7 in
Proposition 5.3, and using the lower square in the commutative diagram in
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Proposition 5.3, we obtain

> -y*(τ>xJ®(τ>xώ)*τ>x'j')

τP°(G,X) - ^ - > P°(T'XG,T'XX)

From the construction of mixed automorphic vector bundles it follows that
M{J, J', p) and M(r'x J, τ>x> J', r'xp) are obtained by descent from the vec-
tor bundles j*(J ® ώ*J') and Y(T>XJ ® (τ>xώ)* τ>x'j'), respectively. Thus
the commutativity of the diagram in the theorem follows from the above
commutative diagram. By Theorem 5.2(ii) the map φ^x commutes with
the Hecke operators r(g) and T)Xg, and the map φM(τ\y,x) commutes with
operators τ>xg and τ'vg\ hence, using the compatibility of ψy

τ x and φ^x^ we
have

where y is a second special point of X. D
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