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RESOLUTIONS MODELED ON TERNARY TREES

CHRISTOPHER W. STARK

Let Γ be a discrete group. An extension of Swan's classic
technique of grafting chain complexes shows that Γ is of type
FP(oo) if and only if there is an augmented chain complex C*
of finitely generated projective ZΓ-modules such that each
Hi(C) is finitely generated over Z.

This paper establishes the FP(oo) property for many discrete groups by
grafting together chain complexes, extending the construction of [19] from
the homologically trivial case to general complexes; all of these splicing or
grafting constructions descend from ideas of Swan [21]. We follow [19] in
using a tree as the blueprint for our construction; in that paper the under-
lying tree was an infinite binary tree, while an infinite ternary tree serves
as our model in the present case. The resulting finiteness criterion is easily
applied, especially in topological settings:

Theorem 3.1. A countable group Γ is of type FP(oo) if and only if there is

an augmented chain complex C* of finitely generated projective ZΓ modules

such that the homology groups of C* are finitely generated over Z.

Theorem 4.1. Let X be a connected CW complex of finite type. IfT is the
group of covering transformations of a regular covering projection p: W —>
X, where W is homotopy equivalent to a complex of finite type, then Γ is of
type FP(oo).

We recall some definitions and set some conventions. All modules are left
modules, unless specified otherwise. Let R be a commutative ring with 1. A
group Γ is of type FP(n, R) (or "of type FP(n) over Λ") if and only if there
is a resolution by projective RT modules

> Pi ->• Pi_i > Po A R -> 0

of the trivial Γ-module R such that Pi is finitely generated for i < n. Γ is of
type FP(oo, R) if and only if it is of type FP(n, R) for all rc. If Γ is of type
FP(n, Z) then Γ is said to be of type FP(n), and this is the version of the
notion which is usually studied.
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The first section of this paper discusses grafting or splicing chain com-
plexes to kill homology groups, the second section sets terminology and no-
tation concerning trees, the third proves the main theorem, and the fourth
section gives some applications. In [20] the results of this paper are ap-
plied to establish characterizations of Poincare duality groups and virtual
Poincare duality groups.

Spectral sequence arguments can establish similar finiteness theorems but
do not seem to give as much control on fine properties, such as growth rates
of resolutions. I am grateful to Peter Kropholler and Ross Geoghegan for
comments on alternate proofs of some of these results.

For basic information on groups and modules of type FP(n) and FP(oo),
see [3] and [5]. A characterization of these classes of groups based on ho-
mological limits is discussed in those volumes and in [4], while [6] gives a
topological recognition criterion which is quite different from our Theorem
4.1. Another genre of results shows that a group with good rewriting prop-
erties must be of type FP(oo), including [1] and [7]; [9] proves a result in
this vein concerning automatic groups.

Most of this work was done while the author was a guest of the mathe-
matics department at the University of Maryland and revisions were made
at the Winterthur Museum and Library; I thank both institutions for their
hospitality. I am deeply grateful to Frank Connolly for comments on [19]
which led directly to the present paper.

1. Homological lemmas.

We review some homological algebra. Recall that all modules are left mod-
ules unless specified otherwise. Let S be a ring with 1 and let C*, D* be
chain complexes of 5-modules. The n-fold suspension of C*, denoted ΣnC*,
is defined by this commutative square at each degree p:

( Σ «C) p

A sign change is sometimes included in the definition of the differentials for
the suspension, as in [5], but it will be more convenient here to work with
the sign convention above.

If / : C* —>• D* is a chain map then the mapping cone of / is the complex
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MΦ = Af (/)«, with

Mp

Note that D* is a subcomplex of M* and that a short exact sequence of chain
complexes results: 0 -> J9* -> Af(/)* —• — ΣC* -» 0, where — ΣC* denotes
the suspension with all differentials multiplied by (—1).

If d is a non-negative integer then the d-skeleton of the chain complex
C* is denoted Cjfi and consists of the modules C* for 0 < i < d, with the
differentials of C*.

We recall the following line of argument from [19]:
Let R be a commutative ring with 1 and let S be an augmented R-

algebra. Let D* be a chain complex of ^-modules such that Hn(D) is a
finitely generated iί-module and Hi(D) = 0 for n < i < n + d. Let C* be
an i?-augmented chain complex of projective ^-modules. There is a chain
complex E* such that Ei = A for 0 < i < n, H^E) = H^D) for 0 < i < n,
Hn(E) S 0, and #<(£) ̂  i ϊ^n-iίC) for n + 1 < i < n + d.

The conclusions of this argument are less important than the main con-
struction, which will be referred to as grafting chain complexes or "splicing
chain complexes." The fundamental theorem of homological algebra is the
main tool used here, in the following manner.

Pick an epimorphism Φ : Rs -> Hn{D) and let {C{d))s denote the direct
sum of s copies of the d-skeleton of C. Consider this commutative diagram:

0 < Rs <^ — CS

Q i C{ i . . . i Cs

d

epi Φ \φo \φι Φd

0 < Hn(D) < Z(Dn) < Dn+ι < . . . < Dn+d

Because Σn((C^)8) is a projective complex and the middle row is acyclic, a
chain map φ+ : Σn((C^)s) -> D* is induced by Φ. As usual, Φ determines
φ* up to chain homotopy.

Let M be the mapping cone of φ* and consider the short exact sequence of
chain complexes 0 -> D* -> Af, -> -Σ n + 1 ( (C ( d ) ) s ) -> 0. The resulting long
exact sequence in homology yields the claimed properties, bearing in mind
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that the connecting homomorphism from Hn+1(Σn+1((Cw)8)) ^ HO(C)S =
Rs to Hn(D) is φ.

The next lemma is well known in homological algebra, cf. Proposition
3.1.5 of [2] or Corollary III.5.7 and Exercise IΠ.0.2 of [5].

Lemma 1.1. Let Γ be a group and let R be a commutative ring with 1. //
P is a protective RT-module and M is an RT-module which is R-free, then
P ®R M is RT"-protective.

Recall that the action of Γ on P ®& M is diagonal, and observe that if
P is a finitely generated i?Γ-projective module and the module M of the
Lemma is finitely generated over i?, then P ®R M is also a finitely generated
i?Γ-projective module.

Lemma 1.2. Let Γ be a group and let R be a commutative ring with 1.
IfJM is an RT-module which is finite as a set, then there is an RY-module
M which is free and finitely generated as an R-module and which admits an
RΣ-module epimorphism η: M —> M.

Proof. Let M = i?M, the set of all functions f:M->R. Since M is a
finite set, this is a finitely generated free i?-module, and we give it the left
Γ-action defined by pullbacks: 7 / = (7"1)*/, SO that 7 / : m •-*

Define

η : RM -> M

/ •-> Σ

Since

= Σ Γ i ^ i ( m ) m + Σ Γ 2 ^ 2 ( m ) m

m m

and

vil " /) = Σ(7 ' ί)im)m = Σ f(l~lm)m

m m

= Σ f^'1' 7*0(7*) = 7 ( Σ f(χ)χ)»

r; is an i?Γ-module homomorphism. For each a G M, define

— J l , m = a

then 7/(χα) = α, showing that r/ is an epimorphism. D
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2. Ternary trees.

We will work with rooted trees of a special type throughout the argument
in the next section. Letters from the beginning of the Greek alphabet will
be used to denote nodes in graphs below; capital Roman letters will usually
refer to graphs or modules. Trees may be infinite.

A ternary tree T is a rooted tree which may be empty; if T is not empty
then for each each node a E T the nodes descended from α must be par-
titioned into three ternary trees, L(α), C(a) and i?(α), the left, central,
and right subtrees of a. A node is a leaf of the tree if it has no children.
A complete ternary tree T is either an empty ternary tree or a nonempty
ternary tree with the property that every node which is not a leaf has ex-
actly three children. We will encounter trees in which all nodes but the
root and the leaves have exactly three children; such a tree will be called a
complete ternary tree with adjoined root.

The depth of the root of a tree is 0; the depth of any other node a is the
length of the unique path joining a to the root and is denoted d(a).

Nodes in a ternary tree may be represented faithfully as words in the al-
phabet {c, Z, r}, where a word indicates the path of central advances and left
and right turns descending from the root to a node and where the empty
word e denotes the root node. Abusing notation, we take the word repre-
senting a as a synonym for a. We make a convention that in our ternary
trees with adjoined roots, every nonempty word begins with I (i.e. the node
of depth one is labeled I). We let a(i) denote the letter in the i-th. posi-
tion of the word representing a; put otherwise, the word representing a is
α(l)α(2)...α(rf(α)).

If a and β are two nodes in a tree then we define their meet, denoted
αΛ/3, to be the node represented by the maximal common initial string of
a and β. Observe that Λ is commutative and associative.

If a and β are nodes of a tree then we write a •< β if and only if d{ά) < d(β)
and either

(1) a = aΛβ,

(2) aeL(aΛ β) and β E C(a Λ β) U R(a Λ /3), or

(3) a E C(a Λ β) and β E R{a Λ β).
Given /?, the nodes a such that a -< β form a subtree of depth d(β) which
is bounded on the right by β.

If a is a node in a ternary tree T then the collection of nodes represented by
the regular expression al* is the left leg of Γ through a. Similarly, the right
leg of T through a is the set of nodes determined by the regular expression
ar* and the central leg of T through a is the set of nodes determined by the
regular expression αc*.
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3. Resolutions modeled on trees.

The argument for the next theorem grafts chain complexes repeatedly, using
a ternary tree as a blueprint for the construction. The nodes of the tree in-
dex submodules in the resolution, in which the sum over all nodes of depth
d forms the module of d-chains. Some of the morphisms in the construc-
tion appear as edges in the tree, but most do not; all the morphisms are
conveniently recorded by the order relation -< on the tree, however.

Theorem 3.1. A countable group Γ is of type FP(oo) if and only there is
an augmented chain complex C* of finitely generated protective ZΓ modules
such that the homology groups of C* are finitely generated over Z.

Proof. If Γ is of type FP(oo) then a resolution of the trivial ZΓ-module R by
finitely generated ZΓ-projectives exists and has the prescribed properties.

For the converse implication, let T be a ternary tree with adjoined root
which is complete of infinite depth. We give a recursive construction of a res-
olution P* of Z by finitely generated projective ZΓ modules which associates
to each node a of T such a module P(α) and defines Pi :— ®a:d(a)=iP{o/)

A boundary homomorphism will be defined from Pi to Pi-\ so that two
conditions are met.

Condition A. // d(a) — i then the image of P{a) lies in ®P(β), where
this sum runs over all nodes β •< a with d(β) = d(a) — 1.

This convention on boundary homomorphisms implies that for each node
a the submodules

of the Pi form a subcomplex Sa, which we describe as the a-th skeleton of
P*. We usually call the morphism

P(QΛ —y φ,o . ._ , P(β)

the a-th partial differential.

Condition B. For each righthand node a (i.e. each a such that a(d(a)) =

r),
Hd(a)^{Sa) = 0.

Note that this requirement implies that Hi(P) = 0 for all i > 1 since a
direct limit argument shows that Hi(P) = Hi(Sa) for any node a lying
the right leg through the root and of depth greater than i.

on
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The construction begins with a copy of the chain complex C*, arranged
as the left leg through the root, i.e. with P(l{) := C*. This initial step is
sketched in Figure 1.

depth 0

I depth 1

depth 2

depth 3

Figure 1. The construction is complete through depth 1.

At this stage in the construction used in [19], we used a graft to kill
i2i(C); that argument assumed that the action of Γ on Hλ{C) was trivial
and becomes more complicated in the present instance.

Prepare a graft to kill the torsion subgroup T = Torsion(fί1(Cr)) by form-
ing the diagram:

0 < Z τ ® z Z < Z τ ®z CO < Z τ ®z CΊ

epi η

T

I
HΛC) Zχ(C)

I
Attach Zτ ®z CO as the top node P(lc) in the central subtree of P(l) = C l 5

with the rest of Z τ ®z C* descending from P(lc) as the lefthand descending
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path P(lcl*) in the new subtree. Note that η0: Z τ ® z Co —>• CΊ is the only
new morphism defined so far. Extend our resolution by taking

C2 Θ (Z τ (8>z Co)

— thus forming an augmented complex Slc = (P2 —> Pi —> Po —ϊ Z) which is
finitely generated and projective over ZΓ at each stage, by Lemma 1.1 and
which has Hχ(Slc) finitely generated and torsion-free over Z. See Figure 2.

Now let M = Hι(Slc) = H^S10)/ Torsion and prepare a second graft to
annihilate this torsion-free quotient of the original homology:

M <g)z CΊ

SΊc

s[c < sι

2

c
2

Attach M <g)z Co at the righthand node P(/r), with the rest of M ® z C*
descending from P(lr) as the lefthand descending path P(lrl*). We have
produced a complex Slr for which Hι(Slr) = 0.

This completes the construction through depth 2 and we continue by
inducing on depth. Our induction hypothesis is that the construction has
been completed through depth d > 2 so that:

(1) for each node β of depth d or less, the entire left leg through β has been
constructed and is a direct sum of copies of M <8>z G* (up to suspension,
and each choice of the factor M is always a ZΓ-module which is a finitely
generated free Abelian group),

(2) morphisms satisfying Conditions A and B above have been defined, and

(3) for each righthand node a of depth d — 1 or less, -ffd(α)_i(5α) = 0.
The nodes of depth d + 1 are ordered by •< and we begin a secondary

induction from left to right. The first node of depth d + 1 is Zd+1, with
= Cd+ι and with morphism P{ld+ι) -> P(ld) given by the differential
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of C,. Observe that Sι*+1 is the skeleton Cf + 1 ).

depth 0

depth 1

depth 2

depth 3

Figure 2. The first phase of the construction at depth 2.

depth 0

M®CΊ

depth 1

M®C0 depth 2

depth 3

Figure 3. The second phase of the construction at depth 2.

As we induce from left to right, we fill in the central child a = βc of
each node β of depth d by performing a graft to kill Torsion(ίίd(S'7)), where
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7 = βl is the immediate predecessor at depth d + 1 of a in the ordering •<.
Righthand children a = βr are dealt with by performing a graft to kill the
finitely generated, torsion-free quotient Hd{S(3c) = Z r Hd{S(3ί)/ Torsion. In
either case, the graft determines both P{a) and the α-th partial differential,
as well as the modules P(alj). The grafting process establishes properties
(l)-(3) for central and righthand nodes, following the discussion of grafting
in Section 1.

During this horizontal induction the modules associated to lefthand nodes
a = βl of depth d+1 are determined by continuation from the parent β. The
α-th partial differential for a lefthand node other than Zd+1 is determined (up
to chain homotopy) by the fundamental theorem of homological algebra and
the homological vanishing requirement for the righthanded node immediately
preceding a at depth d+1. D

4. Applications.

Recall that a CW complex X is said to be of finite type if X has a finite
number of cells in each dimension. This notion gives a topological setting
for the FP(oo) property: a finitely presented group Γ is of type FP(oo) if
and only if there is a if(Γ, 1) complex of finite type (see [4] or [3], Theorem
1.8). A topological translation of Theorem 3.1 is straightforward:

Theorem 4.1. Let X be a connected CW complex of finite type. If a
finitely presented group Γ is the group of covering transformations of a reg-
ular covering projection p: W —» X, where W is homotopy equivalent to a
complex of finite type, then Γ is of type FP(oo).

Note that the covering space W need not be simply connected, although
this result is most easily applied when W is the universal covering space of
X. The next result shows that some of the hypotheses may be weakened
slightly.

Corollary 4.2. Let X be a finitely dominated, connected CW complex
and p: W -> X is a regular covering projection in which W is finitely domi-
nated. If the finitely presented group Γ is isomorphic to the group of covering
transformations of p then Γ is of type FP(oo).

Proof. Apply Theorem 4.1 to the covering projection W x S3 -> X x S3,
in which both spaces are homotopy equivalent to finite complexes by the
product formula for Wall's finiteness obstruction [11]. D

The mixed spaceform problems of topology seek characterizations and
classifications of closed manifolds whose universal covers are homotopy equiv-
alent to closed manifolds [18]. Recent progress on the spherical-Euclidean
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spaceform problem of classifying of manifolds whose universal covers are
Sn x Hk includes open manifold realization theorems for many groups satisfy-
ing appropriate cohomological periodicity conditions [8], [15] and construc-
tions of closed spherical-Euclidean spaceforms whose fundamental groups
contain finite dihedral subgroups [13], [17]. We also know that the topology
of ends of groups constrains the fundamental groups of closed mixed space-
forms [18] and that closed spherical-Euclidean spaceform groups may have
infinite virtual cohomological dimension [10].

The results obtained here show that the fundamental groups of closed
mixed spaceforms are of type FP(oo). In particular, we obtain the follow-
ing consequence of Theorem 4.1 and the results on virtual Poincare duality
groups from [18].

Corollary 4.3. Let M be a finite Poincare complex whose universal cover
M has the homotopy type of a Poincare complex. Let Γ = πi(Λf). Then the
virtual cohomological dimension VCD(Γ) is finite if and only ifY is a virtual
Poincare duality group.

Proof. A theorem of Gottlieb and Quinn [12], [16] asserts that ΊfF-*E-ϊB
is a fibration with finitely dominated fiber, base, and total space, then E is
a Poincare complex if and only if F and B are Poincare complexes.

We apply this result as in [18], to the fibration classifying X —> X,

X -> X ~> BY,

or rather to the finite-sheeted covering space Xo of X corresponding to a
finite-index subgroup Γo of Γ which has finite cohomological dimension. If
Γo is a finitely presented group of type FP(oo) and of finite cohomological
dimension then Proposition VIΠ.6.1 and Theorem VIII.7.1 of [5] show that
BΓ0 is finitely dominated. If X is a Poincare complex then all three spaces
in the fibration X -> Xo —> BΓ0 are finitely dominated and the Gottlieb-
Quinn theorem shows that Γo shows that BΓ0 is a Poincare duality space,
i.e. Γo is a Poincare duality group [14].

Conversely, every virtual Poincare duality group has finite VCD and is of
type VFP, and hence is of type FP(oo). (See [5], Sections 8.10 and 8.11,
especially remark 2 on p. 222.) D

It is a familiar fact that finite-sheeted covering spaces of Poincare com-
plexes are also Poincare complexes, but the argument for Corollary 4.3 pre-
sented above shows that many infinitely-sheeted covering spaces share this
property:

Corollary 4.4. Let X be a finite, connected Poincare complex and let
p: W —» X be a regular covering projection with a finitely generated group
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Γ as the group of covering transformations. If the virtual cohomological
dimension VCD(Γ) < oo then W is finitely dominated if and only ifW is a
Poincarέ complex.

Proof. Poincare complexes are finitely dominated by definition, so one im-
plication is automatic.

For the converse, take a subgroup Γo < Γ of finite index and finite coho-
mological dimension and consider the diagram

W > W/Γo > BΓ0

I I
w/τ = x > BY.

The argument of Corollary 4.3 applies to the top row, in which W/Yo is a
Poincare complex, to show that if W is finitely dominated then W and BΓ0

are Poincare complexes. D

This result yields a significant restriction in mixed spaceform problems,
since we now know that if the fundamental group of a closed, connected man-
ifold M has finite VCD and if the universal cover M is finitely dominated,
then M is necessarily a Poincare complex; this is j ^ great constraint on M.
One would like to know if the homotopy type of M is restricted (assuming
finite domination) when V C D ^ M ) is infinite, but little evidence seems to
be available.
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