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APPROXIMATION BY NORMAL ELEMENTS WITH FINITE
SPECTRA IN C*-ALGEBRAS OF REAL RANK ZERO

HuaxiN LIN

We study the problem when a normal element in a C*-
algebra of real rank zero can be approximated by normal
elements with finite spectra. We show that all purely infi-
nite simple C*-algebras, irrational rotation algebras and some
types of C*-algebras of inductive limit of the form C(X) ® M,
of real rank zero have the property weak (FN), i.e., a normal
element z can be approximated by normal elements with finite
spectra if and only if I'(z) =0 (A—2 € Invo(A) for all X ¢ sp(z)).
For general C*-algebras with real rank zero, we show that a
normal element z with dim sp(z) < 1 can be approximated by
normal elements with finite spectra if and only if I'(x) = 0.
One immediate application is that if A is a simple C*-algebra
with real rank zero which is an inductive limit of C*-algebras
of form C(X,) ® Mp,(n), where each X, is a compact subset of
the plane, then A is an AF-algebra if and only if K;(A4) = 0.

1. Introduction.

The notion of real rank for C*-algebras was introduced by L.G. Brown and
Gert K. Pedersen ([BP]). At present, it seems that it is the notion of real rank
zero that attracted most attention. (See [BBEK], [BDR], [BP], [BKR],
[CE], [El12], [EE],[G], [GL], [LZ], [Zh1-4], [Ph], [Lin4], [Lin5], and other
articles. When this revision is writing, many other articles on the subject
are appearing.) It turns out that the class of C*-algebras of real rank zero
is fairly large. In fact, from the remarkable work of G.A. Elliott ([E112]), for
any countable unperforated graded ordered group G with Riesz decomposi-
tion property, there exists a separable nuclear C*-algebra A of real rank zero
( and stable rank one) such that the graded ordered group (Ko (A), K;(A)) is
isomorphic to G. ( See [Ell3, 1.2 and 5.1] for the definition of unperforated
graded ordered group. Notice that Elliott’s definition of unperforated is in
fact weaker than that of weakly unperforated in [BI13, 6.7.1].) If A has real
rank zero, then A has the property (FS), i.e., every selfadjoint element can
be approximated by selfadjoint elements with finite spectra (see [BP, 2.6])
(and converse is also true). What about unitaries? Does real rank zero imply
the property (FU), i.e., every unitary can be approximated by unitaries with
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finite spectra? One quickly realizes (for example, from Elliott’s classification
theorem [Ell2]) that there are many C*-algebras with real rank zero have
nontrivial K;-groups. It is clear that those unitaries which are not connected
to the identity can not be approximated by unitaries with finite spectra. N.
C. Phillips introduced the notion of weak (FU), i.e., every unitary in the
connected component containing the identity can be approximated by uni-
taries with finite spectra ([Ph1]). Many C*-algebras of real rank zero were
proved to have the property weak (FU) ([Ph1-2], [GL]). Recently, we show
that, in fact, every C*-algebra with real rank zero has the property weak
(FU)([Lin5]). This result has many applications in the study of the uni-
tary groups and K;-groups and is shown to have applications to C*-algebra
extension theory (see [Lin3], [Lin4] and Lemma 2.2). Next, of course, we
will consider general normal elements. At this point we would like to men-
tion the BDF-theory. It is known that the Calkin algebra A = B(H)/K,
where H is the separable, infinite dimensional Hilbert space and K is the
C*-algebra of compact operators, has real rank zero. One crucial result in
the BDF-theory is that a normal element z in the Calkin algebra can be ap-
proximated by normal elements with finite spectra if and only if the index of
z, ['(z) is zero. All of these previous results lead us to the following question:

Q Is it true that in a C*-algebra with real rank zero, a normal element
x can be approximated by normal elements with finite spectra if and only if
['(z) = 0 (the index T will be defined later)?

Our result for weak (FU) in [Lin5] shows that if we further assume that
sp(z) = S, then the answer to Q is affirmative. The BDF-theory shows
that the answer to Q is affirmative if A is the Calkin algebra. Recent results
in [Lin4] show that for many other corona algebras the answer to Q is also
affirmative. If all of these give evidence that, in general, the answer to Q
should be positive, we would like to remind the readers that the question for
AF-algebras remains open, i.e., we do not know if every normal element in
an AF-algebra can be approximated by normal elements with finite spectra,
even though some progresses have been made (see [Lin6]).

In the present paper, we show that the answer to Q is affirmative for purely
infinite simple C*-algebras and for many other C*-algebra of real rank zero
such as the Bunce-Deddens algebras and irrational rotation algebras. For
general C*-algebras, we show that if we restrict to those normal elements z
with dim sp(z) < 1, the answer to Q is affirmative. But for more general
normal elements, we have to work in the A ® K (see Theorem 3.13). While
the author still believes the answer to Q should be affirmative, Theorem 3.13
might be the best form we can have for the general case at present.
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An affirmative answer to () has some interesting implications. Let X, ;
be a sequence of compact subsets of the plane and A be a C*-inductive limit
of C*-algebras of the form

> LY C(X(n) ® Minni)-

Some necessary and sufficient conditions for A having real rank zero are given
in [BEEK]. From [Ell2], if every X, ; is either the unit circle or the unit
interval, then such C*-algebras of real rank zero are completely determined
by their K,. An immediate consequence of an affirmative answer to @ is
that A is in fact an AF-algebra if and only if K;(A) = 0. So in the case that
K;(A) = 0, these algebras will be completely determined by their Ky-groups
([E111]). It should not be hard, then, from an affirmative answer to Q, that
in fact these C*-algebras of real rank zero in general (without assuming their
K;-groups being trivial), are completely determined by their K,-groups. In
particular, these C*-algebras are included in [ElI2].

The paper is organized as follows: Section 2 gives a generalized notion
of index I" for normal elements and some basic facts which we are needed
in subsequent sections. In Section 3, we present some technical approxima-
tion results in A ® K which are important for the rest of the paper. In
Section 4, we show that for purely infinite simple C*-algebras, irrational ro-
tation algebras, the Bunce-Deddens algebras and many other C*-algebras
with real rank zero, the answer to Q is affirmative. In Section 5, we show
that for general C*-algebras with real rank zero, a normal element z with
dim sp(z) < 1 can be approximated by normal elements with finite spectra
if and only if I'(z) = 0. Finally, in Section 6, we give some applications. We
will show, for example, if A is a simple C*-algebra of real rank zero which
is an inductive limit of C*-algebras of the from C(X,) ® M,,(,), where each
X, is a contractible compact subset of the plane, then A is an AF-algebra.

The following notations are used throughout this paper.

Let A be a C*-algebra. We use the notation A** for the enveloping W*-
algebra. If p is an open projection (of A) in A**, Her(p) is the hereditary
C*-subalgebra pA**p N A.

Let

A oAy 2 Ay — -

be a sequence of C*-algebras and ¢, : A, = A, be the connecting ho-
momorphisms. We will use the notation lim_,(A,,, ¢,) for the C*-inductive
limit and ¢.(A,) for the image of A, in the inductive limit.

Added in proof: This paper was written in 1992. Since then there are
significant development in the study of C*-algebras of real rank. We would
only like to mention that, by the result that a pair of almost commuting self-
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adjoint matrices is close to a pair of commuting selfadjoint matrices proved
by the author, every AF-algebras has (FN).

2. Preliminaries.

While 2.2 and 2.3 are certainly new, most results stated in this section are
either routine or easy consequences of some known facts. Since many of
these will be needed frequently in the subsequent sections, we present them
here for reader’s convenience. Some sketch of proofs are also presented.

Definition 2.1. Let A be a unital C*-algebra and X be a compact
Hausdorff space. Suppose that ¢ : C(X) — A is a monomorphism and
¢s : K1(C(X)) = K;(A) is the induced homomorphism. Let z be a normal
element in A. Denote by B the C*-subalgebra of A generated by z and the
identity 1. Then B = C(X), where X = sp(z). This gives a monomorphism
¢: C(X) - A. We define

I'(z) =T 4(z) = ¢..

If A is not unital, we define I'(z) =T 4(z).

Suppose that A is unital. We denote the unitary group of A by U(A) and
the path connected component containing the identity by Uy(A). There is
a homomorphism ¢ from U(A)/U,(A) into K;(A). We will use the following
lemma which is an application of our result for weak (FU) ([Lin5]).

Lemma 2.2. Let A be a (unital) C*-algebra of real rank zero. Then the
map i : U(A)/Up(A) — K,(A) is injective.

Proof. Suppose that u € U(A) and V = diag(1,1,...,1,u) is in Up(M;(A))
for some integer k. It follows from [BP, 2.10] that M;(A) has real rank
zero. So, by [Lin5], V can be approximated by unitaries in Mj(A) with
finite spectra. It follows from [Lin5, Lemma 3] that u can be approximated
by unitaries in A with finite spectra. Since unitaries with finite spectra are
connected by a path with the identity, we conclude that u € Uy(A). O

When X is a compact subset of the plane, it is well known that
K1 (C(X)) =2 U(C(X))/Us(C(X)).

So T'(z) is a homomorphism from U(C(sp(z)))/Uo(C(sp(z))) into
U(A)/Uy(A), when the map i is injective, in particular, when A has real rank
zero. Let Inv(A) denote the group of invertible elements in A and Invy(A)
denote the path connected component of Inv(A) containing the identity. It
is well known that Inv(A)/Invo(A) = U(A)/Us(A). We also will use the no-
tation 7!(X) for the group Inv(C(X))/Inv,(C (X)) = U(C(X))/U,(C(X)).
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Lemma 2.3. Let A be a (unital) C*algebra of real rank zero and let p € A
be a projection. If z € pAp and y € (1—p)A(1—p) such that z+y € Inv,(A)
and y € Invy((1 — p)A(1 — p)), then z € Invy(pAp).

Proof. Let u be the unitary part of the polar decomposition of z + y in A.
Then u € Uy(A). It follows from [Lin5] that A has the property weak (FU).
So u can be approximated by unitaries in A with finite spectra. We can
write u = u; + u,, where u; € U(pAp) and u, € U((1 — p)A(1 — p)). Since
y € Inve((1 — p)A(1 — p)), u2 € Uo((1 — p)A(1 — p)). By [Lin5] again, u,
can be approximated by unitaries in (1 — p)A(1 — p) with finite spectra.
Then, from [Lin5, Lemma 3], we conclude that u; can be approximated by
unitaries in pAp with finite spectra. Hence u € Uy(pAp). This implies that
z € Invy(pAp). (]

Proposition 2.4. Let A be a (unital) C*-algebra and let z € A be a normal
element. Then I'(z) = 0 if and only if for any A & sp(z), A — z € Invy(A).
Or equivalently, the unitary part of the polar decomposition of A — x is in
Uo(A) for all X & sp(z).

Proof. The “only if” part is trivial from the definition of I". For the “if”
part, we know that 7' (sp(z)) is the free abelian group with a generator for
each bounded component of C \ sp(z). Morover, if Q is such a component
and )\ € Q, then the homotopy class containing the invertible function 6,,
defined by

0y=X—2z for 2z€sp(z),

is a generator corresponding to 2. Since
¢*([0/\]) = Oa
we conclude that ¢, = 0. So I'(z) = 0. |

Lemma 2.5. Let z and y be two elements in a unital C*-algebra A. If x is
invertible and if
lz =yl <=7,

then y is invertible and [z] = [y] in Inv(A)/Invy(A).

Corollary 2.6. If X is in the unbounded component of C \ sp(z), then
A —z € Invy(A).

Lemma 2.7. For any d > 0, any C*-algebra A and normal element x € A
and I'(z) =0, if y € A such that

lz -yl <d,
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then for any bounded component Q of C\sp(z) and A € Q with dis()\, sp(z)) >
d, A —y € Invy(A), moreover, the unitary part of the polar decomposition of
A —y is in Up(A).

Proof. Since z is normal, it is known that
(A = 2)7*| < 1/dis(A,sp(z)) < 1/d.
If |z — y|| <d, then ||(A —z) — (A —y)|| < d. By 2.5, A — y is invertible and
A=y]=[A—2]=0 in Inv(A4)/Inv,(A).
Therefore, A — y € Invy(A). O

Lemma 2.8. For any e > 0, b > 0, an analytic function f on a region X
and a continuous function g on X, there exists § > 0,

(1) #f =z and y are two normal elements in a (unital) C*-algebra A with
sp(z), sp(y) C X and ||z|, |ly|| < b such that ||z —y|| < 4, then

lg(z) — 9@l <&
(2) if p € A is a projection and ||pz — zp|| < 4, then
| (pzp) — pf (z)pl| < e.
(In the above, note that if f = X is a constant, f(pzp) = \p.)

Proof. (1) is the same as [Lin6, 1].
(2) If 4 is small enough, by [Lin6, 4], there is closed curve I' € X such
that

dist(T, sp(z) Usp(pzp)) > d > 0,

pi@p =1/2i [ F(00p(A - 2)"pr
and

f(oop) = 1/2xi [ FN)Op - pap) .
If A €T, by [Lin6, 4], again,

lp(A = 2)~'p — (\p — pzp) ||
= [[p(A = z)7'p— (Ap — pzp) '] (A — z)(A — ) ||
< lph = 2) ' plp(A — 2) = (A — 2)p](A — 2) 7|
+ [lp(x — 2)7*p[(A — 2)p — (Ap — pzp) 'p(A — 2)p)(A — )|
+ |(Ap — pzp) (X — 2)p — p(A — 2)](A — ) 7|
<d/d®+4/(d - d)d.
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Therefore

If (pzp) — pf (x)pll < [I£]| - (length (T)) - (1/2m)(1/d* + 1/(d — 6)d)s.
O

Remark 2.9. Lemma 2.8 (1) remains true if g is analytic, z and y are not
assumed to be normal, but then § may depend on z.

2.10. Let P be a polynomial of z and 2*. For any element z in a C*-algebra
A, we define P(z) to be the corresponding linear combination of z"(z™)*.
Notice that we do not assume that zz* = z*z. In fact, we should view P as
a linear combination of z"(z*)™ (note that z" appears before (z*)™). Similar
to [Ch, 2], one can show that for any € > 0 and b > 0, there is a § > 0 such

that
I1P(z) — P(y)ll <e

whenever ||z —y|| < 4, ||z]] < band |ly|| < b.

Lemma 2.11. Let f be a continuous function in C(D) for some disk with
the center at the origin and radius r > 0. For any € > 0, there exist 6 > 0 and
a polynomial P of z and z* such that for any C*-algebra A and a normal
element x € A, if ||z|| < r,p is a projection in A with the property that
sp(pzp) C D and

lpz — zpl|| < 9,
then

lnf (z)p — P(pzp)|| < e.

Proof. From the Stone-Weierstrass theorem, there is a polynomial P of z
and z* such that
lf — Pllp <e/2.

It is routine and standard that if § is small enough,
lpP(z)p — P(pzp)l| < €/2.
Therefore

lpf (z)p — P(pzp)ll < |Ipf(x)p — pP(z)pll + lpP(z)p — P(pzp)| <.
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3. Approximation in A ® K.

The main result in this section is Theorem 3.13. We first consider the case
that the spectrum of z is a square. In this case, y and z are constructed
by “cutting” the spectrum of z into small pieces (3.1, 3.3, 3.4). Then,
by using conforming mappings, we can deal with the case that sp(z) is
homeomorphic to a square (3.5). For the case that sp(z) is an annulus, the
method is somewhat different (3.6, 3.7, 3.8 and 3.9). Then we deal with
the case that sp(z) is a square with finitely many holes. This is done by
“cutting” the spectrum into several pieces each of which is homeomorphic
to an annulus. The general idea of “cutting” spectrum comes from [BD)].
However, techniques used in this section come from other sources such as
[BDF], [GL] and [Ph2].

Some of the statements in this section are somewhat complicated (two
C*-algebras A and B appear). It would be simpler if B= A or p = 1.

The following lemma looks similar to Lemma 5.2 in [BD]. But 3.1 and its
proof are inspired by [BDF, 7.4].

Lemma 3.1. For any € > 0 and n > 0, there is § > 0 such that for any
unital C*-algebra A and z € A with ||z|| < 1, if

sp(h1) C [-b,¢], sp(h2) C [~a, B,
where hy = Re(z) and hy, = Im(z), and b,c,a and B are positive, and
lzz* — z*z|| < 6,
then there is a projection ¢ € M>(A) such that
llg(z & thy) — (z @ 1hy)ql| <€

and
sp(Re[q(z @ ih2)q]) C [-n,c+ ),
sp(Im[g(z & ih2)q]) C [—a, B,
p(Re[(1 — g)(z ® ih2)(1 — q)]) C [~b—n,7]
and

p(Im[(1 — q)(z @ th2)(1 — ¢)]) C [~0, B].

Furthermore, if T is normal and we denote by P, the spectral projection of
z @ thy (in A**) corresponding to the subset

= {{: Re(¢) € [-n,c+nl}
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and by P, the spectral projection of x @ thy (in A**) corresponding to the
subset

R2 = {f : Re(é) € [—b - 77,77]},
then P, > q and P, > (1 — q).

Proof. Suppose that
lzz* — z*z|| < &,

where §; is a positive number to be determined. Let §, be another positive
number. Set

fH)=4¢0 ift < —6,
linear if —d, <t < 6,

If 63 > 0 is given, we can choose §; small enough such that
lf(h1)he — hof(h1)ll < &3, and ||f(h1)z —zf(h)]l < 0s.
We denote a = f(h;) and

g= ( a (a1 - a))1/2)
(a(l—-a))? 1-a ’
q(z @ ihy) — (z ® iha)q
[ Z11 Z12
- ($21 $22>
where

Ty = az — za,T1; = (a(l — a))/%ihy — ihy(a(l — a))*/? — hy(a(l — a))*/?,
221 = (a(1 — a))?ihy — ihy(a(l — a))'/? + (a(1 = @)’y

We have

and
ZTgs = (1 — a)ihy — thy(1 — a).
If 6, and d; are small enough, by a direct computation, we obtain
llg(z @ ihy) — (z ® thy)g|| < e.
Let

_ 0 ah;(a(1 — a))*/?
= (am @ -a)"* (@l ~a))"*h(all - a))‘”) |
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It is easy to see that
”ahl(a(l - a))1/2” <6, and ”(a(l —a))2hy (a(1 - a))1/2" < 6,
Therefore ||w|| < 2d,. Notice that

v ah;a ahi(a(1 - a))*/?
Re(q(x @th)q) = (ahl(a(l _ a))1/2 (a(l _ a))?ﬂhl(a(l _ a))1/2) .

So
Re(q(z @ ihs)q) — (ah1a ©0) = w.

Since ah; = hya and h; < ¢, we have
Re(g(z & ths)q) < ¢+ 26,.
On the other hand, if » < —4,, then
|(r — ahia ® 0)7*| < 1/|r + &,
and

|1 = [r — (ahia & 0)]*[r — Re(g(z @ ih2)q)]||
< |Ir — ah1a ® 0] 'w|| < (1/|r + 82]) - 25.

For n > 0, if 4, is small enough, whenever
r < —n(< —6,/2),
r — Re(g(z @ ih;)q) is invertible. Therefore
sp(Relq(z @ ihs)q]) C [—n, ¢ + 7).
Similarly,
sp(Re((1 - g)(z @ ihy) (1 — q)]) C [~b —n,n].
Moreover, since Im[q(z ® ihs)q] = q(hy & h2)q,
sp(Im[g(z @ ih2)q]) C [~a, B].
Similarly,

sp(Im[(1 — g)(z @ ih2)(1 — q)]) C [~a, B].



APPROXIMATION BY NORMAL ELEMENTS 453

Finally, if z is normal, and if §, < 7, one sees easily that

P >q and P, >(1-g9).

In Lemma 3.1, we also have
lz @ ihs — [g(z @ ihs)g + (1 — q)(z @ ihs)(1 — g)]l < €/2.

Lemma, 3.1 allows us to “cut” the spectrum of z into two vertical strips. But
in order to do that, we have to add to z a normal element with spectrum
contained in a vertical line. In the following corollary, by repeating this, we
can “cut” the spectrum of z into k vertical strips. But for each cut, we have
to add a normal element with spectrum contained in a vertical line. In 3.2,
we only do this to a normal element.

Corollary 3.2. Let
X ={X:|Re)| <1,|Im )| < b},

where b > 0. For any ¢ > 0 and n > 0, there is 6 > 0, for any unital
C*-algebra B and a normal element x € B with

IRe(z)| <1 and | Im(z)| <,
if
lpz — zp|| <4,

and if
—1:to<t1 <t2<...<tk=1,

then there are mutually orthogonal normal elements yi,ys,...,Yr—1 €
Max-1_(pBp), mutually orthogonal projections p,,ps,...,pr € Mar-1(pBp)
and normal elements zy, zs, ..., 2k, € Mae—1(B) with sp(z;) C X satisfying

sp(y;) C {t; +ia:la| <b},j=1,2,..,k—1,
Sp(ijjpj) C X"I N Rj,

such that

lpiz; — z;pill < e

and
lz@y, & Dygp_1 — pr121Pp1 D P2z2P2 B - - - B Pr2xPrl| < €,
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where
X, = {X:dist(\, X) < n}

and
R;={\:t;_1 —n/2<ReX<t; +n/2,|Im A < b+n/2}.

Furthermore,

(1) if we denote by P; the spectral projection of z; (in B**) corresponding
to X, N R, then P; > p,.

(2) of A is a C*-subalgebra of B, p € A, pf(z), f(z)p € A for any
f € C(sp(z)), then we can have y; € Mae-1_1(pAp) and p,g(2;), g(z;)p €
M1 (pAp) for any g € C(sp(2;))-

Proof. The proof is a repeated application of Lemma 3.1. Notice that, for
any element z € A and any projection q € A, Im(gzq) = ¢(Im z)q. We also
notice that it follows from [Lin6, Lemma 4] that if ¢ is small enough then
sp(g(z®ihy)q) C X, and sp((1—q)(z®ihs)(1—¢)) C X,,. The normal element
z;j is a direct sum of z with a normal element with spectrum contained in
finitely many vertical line segments. O

Now we will “cut” the spectrum of z vertically as well as horizontally. So
the spectrum of z is cut into small pieces. Note that for each cut, we have
to add a normal element with spectrum contained in a line segment. Note
also that 3.2 is not used in the proof of 3.3.

Lemma 3.3. Let
X ={z:|Rez| <1/2,|Imz| < 1/2}.

For any € > 0, there exist § > 0 and an integer k, for any unital C*-algebra
A and an element x € A, if

[ Re(z)l <1/2, || Im(z)]| < 1/2
and
|zz* — z*z|| <,

there are mutually orthogonal normal elements y1,Yya, ..., Ym € Mi(A) with
sp(y;) contained in a straight line segment in X and a normal element z €
M1 (A) with finite spectrum sp(z) C X such that

@y @y @ - Dym — 2| <e.
Proof. We will apply Lemma 3.1 repeatedly. Let ¢; and 7, be two positive

numbers. For € = ¢; and n = n;, let 6 = §; > 0 be the number in Lemma
3.1. We will use the notation in Lemma 3.1. Set

z1 = iq(z Dihy)g—1/4], and 2z =1i[(1 —q)(z ®thy)(1 —q)+1/4].
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We have
llzjz; — 2} || < 2€, + 61,
[Rezl| <1/2 and |[Imzll < 1/4+mn,

j =1,2. Let €, and 7, be positive numbers. If ¢;,7, and 4; are small enough,
by applying Lemma 3.1 again, there are projections ¢, g2, p1,p2 such that

01<¢,%<(1-9),p=9g—¢q and p, = (1 —q) — g3, and
llg;(2; @ ilmz;) — (2; @ 1Im 25)g;]| < €2,
sp[Re(g;(z; ® 1Im z;)q;)] C [-m2, 1/2 + ],
sp[Re(p;(z; @ iIm z;)p;)] C [-1/2 — 02, m2],
sp{Im(q;(z; ® iIm z;)g;)] C [~1/4 — ma,1/4 + na],
Sp(Im(p](zJ @ ZIsz)pJ)] - [ 1/4—n,,1/4+ 772]a

= 1,2. Denote z; = (1/i)g;(z; ® iImz;)g; + (—-1)**71/4,j = 1,2 and
:1:2+, = (1/i)p;(z; ® iIm 2;)p; + (=1)'*71/4, j = 1,2. Then

z @ thy ®1Im[(1/7)2z; + 1/4] @ iIm[(1/3)2z, — 1/4] — 24::1:,c

k=1

< 261 + 262.

Notice that there are complex number o; = (1/2)(1/2)/2€U"/4) such that
llz; — ajgsll <2(1/4 + 1)
and

lZ21; — ca4pill < 2(1/4 + n2).

By continuing to apply 3.1, one sees that for any € > 0, there is an integer
k and § > 0, if
lz*z — zz*|| < 6,

there are mutually orthogonal normal elements y;,ys, ..., ¥m € Mi(A) with
sp(y;) contained in a straight line segment in X and mutually orthogonal
projections ey, ez, ..., €x+1 € Mi41(A) and complex numbers Ay, Ag, ..., Ak, 1 €

X such that
k+1

x@yleayz@---@ym—z)\jej

i=1

<eE.

Corollary 3.4. Let
X ={X:|Re)| <1/2,|Im)| <1/2}.
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For any € > 0, there exist 6 > 0 and an integer k, for any unital C*-algebra
A of real rank zero and an element x € A with

|Rez|| <1/2 and | Imz| <1/2,
of
l|lz*z — zz*|| < 4,

there are normal element y € M (A) and normal element z € My, ,(A) with
finite spectra sp(y),sp(z) C X and

lzdy—z|| <e.

Proof. Since A has real rank zero and a normal element with spectrum con-
tained in a line segment has the form aa+ 3, where a is a selfadjoint element
in A and a, B are complex numbers, the y;s in Lemma 3.3 are approximated
(in norm) by normal elements in M;(A) with finite spectra. O

Lemma 3.5. Let X be a compact subset of the plane which is homeomorphic
to the unit disk. For any € > 0, there exist 6 > 0 and an integer k, if
z 15 a normal element with sp(z) C X in a C*-algebra B and if p is a
nonzero projection in a C*-subalgebra A of B with real rank zero, such that

pf(z), f(z)p € A for any f € C(sp(z)),

llpz — zp|| < 6 and sp(pzp) C X,

then there are normal elements y € My (pAp) and z € My, (pAp) with finite
spectra sp(y),sp(z) C X such that

lz®y — 2| <e.

Proof. Set
S={A:|Re)| <1/2,|Im )| < 1/2}.

For any € > 0, let X, be a region such that
X CX, X.C{€:dist(¢X) <e/2}

and there is a conformal mapping f from X, onto S. There is n > 0 such
that
f(X) c{¢:|Re(§)| <1/2—n, |Im(§) <1/2 —n}.

Choose § > 0 such that
llpf (z)p — f(pzp)|l < n/4
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(see 2.8). Since Re(pf(x)p) = pRe(f(z))p, we may also assume that
| Re(f (pzp)) — pRe(f(x))pll < n/4.

Since z is normal, we have

I Re(f (pzp))|| < llpRe(f(2))pll +n/4 < [|Re(f (@)l + 71 < | Re(f)llx + 7.

Similarly, we have

I tm (7 (pzp)) || < || To(f)llx +n/4-

By 3.4, for any o > 0, if § is small enough, there exist an integer k£ (which does
not depend on A, B or z but does depend on X and €), and normal elements
y1 € Mi(pAp) and 2, € M,y (pAp) with finite spectra sp(y;), sp(z1) C S
such that

1 (pzp) @ 91 — 2] < o

By 2.8, if o is small enough,

lpzp & 7 (y1) — f 7 (20) || < €/2.

Since sp(f~'(y1)) sp(f~'(z1)) € X., by changing the spectrum of f~!(y;)
and f~!(z;) slightly (within €/2), there are normal elements y and z as
required. O

The following lemma is inspired by [Ph2].

Lemma 3.6. For any € > 0 there ezist § > 0 and d > 0, for any unital
C*-algebra A and ¢ € A with the polar decomposition x = uh such that
0<a<h<1(sou is a unitary), if

lluh — hu|| < 6,
then exists y € My(A) with
sp(y) C{re?:a<r<1, —m+d/2<0 <7 —d/2}

such that
lz®z" —y| <e

Proof. Let

u(a) = u0 cosa sina | fu*0) [cosa —sina
“\01) \—sinacosa)\ 01) \sina cosa |’
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If |a| < 7/2, by [Ph2, 5], —1 ¢ sp(u(a)). Let @ be the largest number in
[0, 7] such that e® € sp(u(a)) and let d = 7 — 6. It is easy to see that

lu(a)(h ® h) —z & z*|| <e,

if a is close to 7/2.
One can verify that

lu(a)(h @® h) — (h & h)u(a)|| < 24.
Let A = re*, where 8 & [—7 + d/2,m — d/2], then
(A —u(a)(h @ B)"[A — u(c)(h @ h)]
=72+ (h®h)? —re®(h @ h)u(a)* — re Pu(a)h(dh)
>7r2+ (h@h)? —r(h @ h)*(ePu(a)* + e Pu(a))(h & h)'/% - 2rd;
>r2 4+ (h®h)? —2r(h @ h)cos(d/2) — 2ré,
> 2r(h @ h)[1 — cos(d/2)] + [r — (h @ h)]* — 2rd,
> 2ra[l — cos(d/2)] — 2ré,,
where 6; = ||(h® h)/?u(a) —u(ca)(h @ h)*/?||. Therefore if J is small enough,
A —u(a)"(h & h)]|[A — u(a)(h @ h)]
is invertible. Similarly,
[A — w(a)(h & h)][A — u(a)(h & h)]*
(

is invertible. Hence A ¢ sp((a)(h & h)). It is clear that if |A\| > 1, then
A & sp(u(a)(h @ h)). Note u(a) is a unitary. Since h @ h > a, if |A| < q,
A & sp(u(a)(h & h)). O

Corollary 3.7. Let z be a normal element in a (unital) C*-algebra B with
polar decomposition © = uh such that 0 < a < h < b for some positive
numbers a and b (so u is a unitary). For any € > 0, there existd > 0 and a
normal element y € My(B) with

sp(y) C {re? :a<r <b—m+d/2<0<7m—d/2}
such that
lz&z" -yl <e

Furthermore, for any n > 0, there exists § > 0 such that if there is a nonzero
projection p € A with

lpz — zpl| <6, pf(=z), f(z)p € 4,
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where A is a C*-subalgebra of B containing the identity of B, then
le@p)y—ylp@p)ll<n and (p@p)9(y), 9(y)(p ®p) € M2(A)

for any g € C(sp(y)).

Proof. Note that in Lemma 3.6, if = is normal, u(co) commutes with A& h for
every « and every u(c) is untary. So the element y = u(a)(h @ h) is normal.
Note that h = (z*z)*/? and u = zh™!. So h = f,(z),u = fa(z) for some
fi, fo € C(sp(z)). Hence, pu,up,ph,hp € A. A direct computation shows

that (p ® p)f(y), f(y)(p ® p) € M2(A) for any f € C(sp(y)). Furthermore,
for any 7, since z is normal, there is § > 0 such that if

lpz — zp|| <6,
then
lpu —upll <n/2 and |jph— hp|| <n/2.
So
(p @ p)u(e) —ula)(p ®p)|| <n/2
and
lp@®p)(h®h) — (h®h)(p®p)l <n/2
We may take
y =u(a)(h @ h)
for some «. O

Lemma 3.8. Let
X:{rei9:0<a§r§1,——7r§0§7r}.

For any € > 0, there exist § > 0 and an integer k, for any unital C*-algebra
B, any C*-subalgebra A of B with real rank zero containing the identity of
B, and a normal element x € B with the polar decomposition x = uh such
that 0 < a < h < ||z|| (so u is a unitary), if p € A is a projection such that

lpz — zp|| < 4, sp(pzp) C X and pf(x) f(z)p € A

for any f € C(sp(z)), then there are normal elements y € My(pAp) and
z € My 2(pAp) with finite spectra contained in X such that

lpzp @ pz*p @y — 2| <e.
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Proof. For any € > 0 and n > 0, by 3.7, if ¢ is small enough, there exist d > 0
and a normal element y; € M,(B) with
sp(y1) C {re’ :a<r<b—m+d/2<0<7+d/2}
such that
lz @z —ull <e/3, p@P)yr —wrlp@®P)l <7

and p ® pf(y1), f(v1)(p ® p) € M(A).
Set ¢ = p ® p and set

Y={re’:a—¢/3<r<b+¢/3 and —7w+d/4<0<m—d/4}.
Then, if 7 is small enough (so § has to be small enough),

sp(qy1q) C Y.

Notice that Y is homeomorphic to the unit disk. By Lemma 3.7 and Lemma
3.5, if n is small enough, there are normal elements y' € M;(qAq) and
z' € My,1(gAq) with finite spectra sp(y),sp(z) C Y such that

layig@y -2l <€/3
for some positive integer k. Therefore
lpzp ® pz*p ® y' — 2'|| < 2¢/3.
By changing the spectrum of 3’ and 2’ slightly (within €/3), we have
lpzp ©@ pz'p @y — 2|l <¥¢,
where sp(y),sp(z) C X, y € M;(pAp) and z € My, (pAp). ]

The idea of using a path of unitaries in the following proof is taken from
[Ph2].

Lemma 3.9. For any € > 0, there ezist § > 0 and an integer k, for any
unital C*-algebra B, any C*-subalgebra A of B with real rank zero containing
the identity of B and a normal element x € B with the polar decomposition
(in B) £ = uh, where 0 < a < h <1 (a and b are positive numbers) and u
is a unitary, and if p is a projection in A such that

lpz — zp|| < 6, pzp € Invo(pAp) and pf(z), f(z)p € A
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for any f € C(sp(z)), and
sp(prp) C X = {re?? :a<r<1,-w <0 < 7},

then there are normal elements y € My (pAp) and z € My, (pAp) with finite
spectra contained in X such that

lpzp @y — 2|l <e.

Proof. Let € be a positive number. For €¢/16, let 6 and k be the numbers in
Lemma 3.6. Notice that § and k does not depend on z or the C*-algebra A.
We may assume that § < /8. Set

Y={z:a—€¢/4<|z| <1+¢€/4}.
Let £ = uh be the polar decomposition. If
llpz — zp|| < b0 < 6,
then
lpu —up|| and |ph — hp||
are small. We assume that

|puplpup| ™ — pup|| < €/4,
lpul(1 = t)h + t] — u[(1 — t)h + t]p|| < 6.

Furthermore, by Lemma 3 in [Lin6], we may assume that sp(pz;p) C Y
(notice that (1 —t)a+t < (1—t)h+t), where 0 <t < 1,z; = u[(1 —t)h +1].
Notice that d, can be chosen such that it does not depend on z or the
C*-algebra A (but depends on €, a and b). Notice also that, if dy is small
enough, v = pup|pup|™! € Uy(pAp). Suppose that {v(t), 0 < ¢t < 1} is a
path of unitaries in pAp such that v(0) = v and v(1) = 1. Set

_Jull-thr+t] f0<t<1
w(t)—{z(t—l) ifl<t<2’

So z(0) = z and z(2) = 1. For any € > 0, let o = z and z; = z(t;), i =
1,2,...,m+1suchthat 0<¢; <1, 1=1,2,...,n,1<¢;, <2, i=n+1,n+
21 ey M, tm+1 = 17

lz; — zia|| <e€/4, 1=1,2,.,n and i=n+2,..m+1

and
IpZp — PTat1pll < €/4.
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From pf(u), f(u)p, pg(h), g(h)p € A for any f € sp(sp(u)) and g € C(sp(h)),
it is easy to see that pf(z;), f(z;)p € A for any f € C(sp(z;)). Notice that
from [Lin5], cer(4) < 1+ €. Therefore, the parth {v(t)} can be chosen such
that the integer m depends on ¢ only. Set
Y= Z @.pzip Z @2, pz;p-

By 3.8, there are normal elements y, € My, (pAp) and z; € M41)m(pAp)
with finite spectra contained in Y such that

v ® y2 — 21|l < e/4.
Let

Yo=prp®y &p, and Yy =) OTpTp® Y O,pT;p.
Then
llvo — woll < /4.

By 3.8 again, there are normal elements y; € Mj(mi1)(pAp) and 2, €
M (r+1)(m+1) (PAp) with finite spectra contained in Y such that

llvo ® ys — 2|l < e/4.

Then it is easy to see that there is a unitary U € My (k41)(m+2) (PAP) such
that
ly®p® 2z @ys — U (y2 ® 2)U|| < 3e/4.

By changing the spectrum of y,,ys, 2; and 2z, slightly (within €/4), we may
assume that sp(y2),sp(ys),sp(z1),sp(z2) C X. O

3.10. For the convenience, we will consider a special compact subset of the
plane which is a square with finitely many holes. Let

X' ={z:0<Rez<1,|Imz| <b}\U_ {z:](25 —1)/2k — 2| < T},

1=

0 < r < min(b,1/4k), and X = {z —1/2:z € X'}. So X is a square with k
holes. Let d = [b% + (1/2k)?]'/? < 3/4(1/k — 2r) and

Y' = Ut {z:7/2 < |(25 — 1)/2k — 2| < 4/3d}.

Define Y = {z—1/2: 2 € Y'}. Y is a union of finitely many annuli but holes
are disjoint. There is a retraction f:Y — X.

Lemma 3.11. Let Q be a compact subset of the plane which is homeomor-
phic to the subset X described in 3.10. For any € > 0, there ezist 6 > 0 and
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an integer L with the property that, for any normal element z in a unital
C*-algebra B, if sp(xz) C Q and p is a projection in a C*-subalgebra A of B
with real rank zero containing the identity of B such that

lpz — zpl| <4, pf(z), fz)pe A
for any f € C(sp(z)), and
Ap — pzp € Invy(pAp)

for X & X, then there are normal elements y € My (pAp) and z € My, (pAp)
with finite spectrum sp(y),sp(z) C Q such that

lpzp @y — 2|l <e

Proof. We first claim that it suffices to show the case that {2 = X.
There is a homeomorphism f : 2 — X. For any o > 0, if § is small enough,

Ipf(z) - f(z)pll <o

Suppose that 3.11 holds for 2 = X. Then, for any n > 0, if o is small enough,
we have y and 2 as in the conclusion of the lemma but with inequality

Ilpf(z)p®y— 2| <n.

There exists a continuous function f : D — C such that D is a disk with
the center at the origin containing X and f |x = f~!. By 2.11, there is a
polynomial P (or rather a linear combination of 2"(2*)™) of z and z*, such
that

[pi(s@)p ~ Poi@p)| < /4,

if o is small enough. We may further assume that
”f— PHD < €/4.

Hence

|fw) - Pw)| <e/4 and |7(2) - P)| < /4.
Note also that f(f(z)) = z. Thus, by 2.10, if o is small enough, we have
| P(pzp) ® P(y) — P(2)|| < €/4.
Therefore

||p-'vp69 fy) - ”
< ||P(pzp) eBP( )= P(2)|| + /4 +e/d+e/d<e.
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Note sp (f(y)) , Sp (f(z)) C Q and f,f and P depend only on Q and X.
This completes the proof of the claim.
For the rest of the proof, we assume that X and Y are as in 3.10.
Set
t;=-1/2+1i/k,i=0,1,2,...,k.

For any r/4 > n > 0, applying 3.2 (if |jpz — zp|| < 4), we obtain normal
elements y;, Y, ..., Y1 € Mor-1_;(pAp) with

sp(y;) C {t; +is: —b< s < b},

mutually orthognal projections p;,pa,...,pr € Mak-1(pAp) and normal ele-
ments Z,Zs,...,Tx € Max-1(B) such that p;f(z;), f(z;)p; € Max-1(A) for
any f € C(sp(z;)),

sp(z;) C X, llpjz; — zip;ll <n/f4

sp(p;z;p;) C X, N R;,sp(Re(p;z;p;)) C {A:tj_1 —n/4 <Red <t; +n/4}

and
lpzp ® 41 & - ® Yr—1 — P1T1PL O - - - © Pzl < 1/16,

where
X, = {X:dist(\, X) < n/4}

and
Ri={A:tj-1 —n/4<ReX<t;+n/4,—-b—n/4 <ImI < b+n/4}.

Since A has real rank zero, we may assume that each y; has finite spectrum.
Furthermore, by Lemma 3 in [Lin6], we also have

I(Ap; — pszsps) 7 I < 1/ dist(X, Xy).
If 6 < n/16, from Lemma 3 in [Lin6] and 2.7,
Ag — p1Z1p1 © P2Tap2 @ - - - ® PrTip, € Invo(Mae-1(pAp)),
where A € X,, and q is the identity of My«-1(pAp). Let
zj = piz;p; — [(25 — 1)/2k — 1/2]p;.
Then, if 7 is small enough, ||2;|| < (4/3)d. Set

Y;={X:r/2< A= [(25 — 1)/2k - 1/2]| < (4/3)d}.
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By 2.6, if i # j and

Ae A= (25 — 1)/2k — 1/2| < (4/3)d},

then
Ap; — pizip; € Invo(p; Myr—1 (pAp)p:).
Since
Ag = p1T1p1 @ - ® PrTip; € Invo(Max-1(pAp)),
by 2.3,
Ap; — p;jz;p; € Invo(p;Ap;),
if A €Y. Set
Yo = {A:1/2 <A < (4/3)d}.
Then

Apj — zj € Invo(Mae-1(pAp)),

if X ¢ Yo. Denote by P; the spectral projection of z; = z; —[(2j—1)/2k—1/2]
(in B**) corresponding to the subset Y;. By 3.2, we have P; > p;. So Pz} is a
normal element in B** with sp(P;z}) C Y, and 2; = p; Pjz’;p;. Furthermore,
pif (Py}) = piPif(5}) = pif (&) € Mayuns (A), £(z)p; € Myns(A) for all
continuous functions f € C(Y;). We are now ready to apply Lemma 3.9. If
¢ is small enough, there are normal elements y; € My (p;My+-1(A)p;) and
normal elements y; € My 1(p;Mar-1(A)p;) with finite spectra contained in
Y; such that
llpjzip; @ y; — yill < n/4,

for some integer L (p;z;p; = z; + [(2j — 1)/2k — 1/2]p;). This implies that
lpep @S- @iy @ Y eitly — > ek wj|| < e/2.
Finally, set
y=> &y ® Y &[5y
and

2= @5y

Clearly, sp(y),sp(z), X C Y. There is also an integer L (which depends only
on €) such that y € My (pAp) and z € M, (pAp). Moreover,

lpzp & y — 2|| < n.
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There is a retraction R: Y — X. Let R’ : D — C be a continuous function
such that D is a disk with center at the origin containing ¥ and R'|y = R
There is a polynomial P of t, t* (or rather a linear combination of t"(¢*)™,
see 2.10) such that

|IP — R'||p < €/4.
By 2.10, if n is small enough,
|P(pzp) ® P(y) — P(2)]| <¢€/4.
By 2.11, if § is small enough,
| P(pzp) — pR'(z)p| < €/4.
Note R'(z) = z. Therefore we have

lpzp ® R'(y) — R'(2)]| < e.
Since R'|y = R, sp(R'(y)), sp(R'(z)) C X. -

Lemma 3.12. Let Q) be a compact subset of the plane. For any e > 0, there
exist § > 0 and an integer L such that for any (unital) C*-algebra A of real
rank zero and a normal element x in a C*-algebra B D A with sp(z) C Q, if
p € A is a projection and if pf(z), f(z)p € A for any f € C(sp(z)),

lpz — zp|| <& and Ap — pzp € Inve(pAp)

for X\ & 2, then there are normal elements y € M (pAp) and z € M ,(pAp)
with finite spectrum sp(y),sp(z) C Q such that

lpzp @y — 2|| <e.

Proof. For any € > 0, there are finitely many closed balls B;, B, ..., B, with
centers in  and diameters less than €/2 such that

Q C UL, B;.

i=1

We may write that UL, B; = UJL, X;, where each X; is a connected com-
ponent of U2, B;. So we may write z = E;":l z;, where each z; is normal
and sp(z;) (in a corner of B) is a subset of X;. Since each X is a union of
some B]s, X; is homeomorphic to the subset X described in 3.10. We may
assume that

diSt(Xj’Xj') > 6/27 J 75 j,a
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by taking smaller 4. Let p;,ps, ..., pn be m mutually orthogonal projections
such that

m
Y ;=1 and piz; =ap; =255 =1,2,...,m.
i=1

For any n > 0, by taking a small 4, we may assume that

lpp; — pipll < 7.

Note there is g; € C(sp(z)) such that p; = g;(z). Thus p;pp; € A. If  is small
enough, there is f; € C(sp(p;pp;)) such that ¢; = f;(p;pp;) is a projection
in A (cf. [Eff, A8]). Furthermore, g;p;pp; = p;pp;q; is invertible in g; Ag;.
Since p;pp; f(z), f(z)p;pp; € A for any f € C(sp(z)), ¢;f(z), f(z)g; € A.
Let ¢ =", g;. Then gf(z), f(z)q € A.

For any 1 > o > 0, if n is small enough,

llg —pll <o.
There is a unitary w € A such that
lw—1|| <20 and w*qw=p.

We claim that it suffices to show the case that ¢ = p.
Suppose that we have

lgzg @y — 2| < o,

where y € M (gAq) and z € M1 ,,(gAq). Let W, = diag(w, w, - -+ ,w) (there
are L copies of w) and W, = diag(w,w--- ,w,w) (there are L + 1 copies of
w). We have

lw*(qgzq)w & WiyW: — Wy zWe|| <o and |w*gzqw — pzp|| < 20.

Thus
lpzp ® Wi yW, — Wy 2W,|| < 30.

Note that W;yW; € ML(pAp), WyzW, € Mr1(pAp), and sp(WyW;) =
sp(y), sp(W52Ws;) = sp(z). This proves the claim.

So, without loss of generality, we may assume that p = Z;’;l g; with
g; < p;- Next we show that if dist(\, ) > 24,

Ag; — g;zg; € Invo(g; Ag;).
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If X is in the unbounded component of C \ sp(z;), then Ag; — gjzq; €
Invo(ijpj). Set

X5 = {¢: dist(¢, X;) < 6/2}, 5 =1,2,..m.

If X is in the bounded component of C\ X}, then A is in the unbounded
component of C \ sp(zy) for k # j. So Apx — przpi € Inve(prApy) for k #
j- It follows from 2.3 that Ap; — p;zp; € Invo(p;Ap;). We note that X
is homeomorphic to the subset X in 3.10. We then apply 3.11 to each
zj. O

Theorem 3.13. Let A be a C*-algebra of real rank zero and let = be a
normal element in A. If I'(z) = 0, then for any € > 0, there is an integer
k, and there are normal elements y € My(A) and z € Myy1(A) with finite
spectra contained in sp(z) such that

lzdy—z|| <e.

(The integer k depends only on € and sp(z).) Moreover, the converse is also
true.

Proof. When A is unital, this follows from 3.12 immediately. Now we assume
that A is not unital. Then 0 € sp(z). As in the proof of Theorem A in [Lin6],
for any € > 0, there is a projection e € A and a normal element z' € eAe
such that

llz" — z|| < €/3.

Set
X, = {\:dist(\, X) < ¢/3}.

It follows from 2.7 that Ae — ' € Invy(ede), if A € X.. By applying the
theorem for the unital case, we obtain normal elements =’ € Mj(eAe) and
z € My, (eAe) with finite spectrum contained in X, such that

lz' ®y — 2| < €/3.
Therefore
lz®y— 2| <2¢/3.

By changing spectra of y and z slightly (within €¢/3), we may assume that

sp(y), sp(z) € X.
Now for the converse, suppose that there are normal elements y € M (A)

and z € M, ,(A) with finite spectra contained in sp(z). such that

lzdy—z|| <e.
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For any fixed A € C\ sp(z), set
d = dist(A, sp(z)).

Then
[(A=—z@®y)| <1/d

Ife <1/d, by 2.7,
A —z@y] =[X— 2] € Inv(My4.(A))/ Inve(Mi41(A4)).
Since A — z has finite spectrum, A — z € Invy(Mj4,(A)). This implies that
A—z @y € Invg(My4;(A)).

Since A — y has finite spectrum, A — y € Invo(M(A)). It follows from 2.3
that A — z € Invy(A). So by 2.4, I'(z) = 0. O

4. C*-Algebras with (FN) and Weak (FN).

We start with the following definition.

Definition 4.1. (cf [Bl1]). We say a C*-algebra A has the property (FN)
if every normal element can be approximated by normal elements with finite
spectra.

It is clear that all W*-algebras and AW *-algebras have the property (FN).
Some examples of separable C*-algebras which have the property (FN) can
be found in [Phl]. It is also clear that every commutative AF-algebra
have the property (FN). But it is not known that all AF-algebras have the
property (FN) (see [Lin6]). From 3.13 we see that if U(A)/Uy(A) # 0, then
A can not have (FN), even though A has real rank zero. This, of course,
is also clear from [Ph1], since not every C*-algebra with real rank zero has
(FU). As we stated in Section 1, related to question Q, we give the following
definition:

Definition 4.2. A simple C*-algebra A is said to have the property weak
(FN) if every normal element z € A can be approximated by normal elements
with finite spectra in A if and only if I'(z) = 0.

This terminology is certainly borrowed from N. C. Phillips’s weak (FU)
([Ph1]). We are grateful to Terry Loring who pointed to us that the defi-
nition of weak (FN) for general C*-algebras will be more complicated. We
will discuss this issue elsewhere.

Recall that a simple C*-algebra is said to be purely infinite if every pro-
jection in the algebra is infinite (one may use other definitions in [LZ] which
do not mention projections).
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Lemma 4.3. ([Lin6, Lemma 1]). Let A be a unital C*-algebra and z € A
be a normal element. Then for any € > 0, if

(1) A1, A2y An € 8p(2) and |A; — Aj| > €1 # 5;

(2) Sk is an open subset of {\: |\ — A\¢| < €} containing Ay;

(3) g« is the spectral projection of = in A** corresponding to the open set Si;
(4) pr is a projection in Her(gqy);

(8) y=(1- XL p)z(1 - X5, pi), then

T — (y+§:)\kpk) < 2¢
k=1
and
“ (1 - Zpi) T—z (1 — Zpi) < 2e.
i=1 i=1

Theorem 4.4. Let A be a purely infinite simple C*-algebra and let x be a
normal element in A. Then x can be approximated by normal elements with
finite spectra if and only if I'(z) = 0.

In other words, every purely infinite simple C*-algebra has the property
weak (FN).

Proof. By [Zh2], A has real rank zero. So, every hereditary C*-subalgebra
has real rank zero. It follows from 4.3 that for any n > 0 and § > 0, there
are mutually orthogonal projections p;,ps,...,pn € A and complex numbers
A1, Az, ey An € sp(z) such that

En:)\ipi + (1 = p)z(1 - p) — z|| <n/8,

i=1

where p = 37, p;,
lpz — zp|| < &

and for any A € sp(z), there is 7 such that
dis(), \;) < n/4.

Set y = (1 — p)z(1 — p). Combine 2.4 with 2.6 and 2.7, if § is small enough,
sp(y) C X, = {X: dist(\,sp(z)) < n/4} and

A1 —p) —y € Invo((1 — p)A(1 —p))
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if A € X,,. By 3.12, if § is small enough, there are normal elements y; €
M ((1 — p)A(l — p)) and y» € Mi1((1 — p)A(1 — p)) with finite spectra
contained in X, such that

ly ® y1 — u2ll <n/4

for some integer k. By changing the spectrum of y; and the spectrum of y,
slightly, we may assume that

ly ® y1 — w2l <n/2

and sp(y1) sp(y2) C sp(z).
Without loss of generality, we may further assume that y; = >, \ig;,

where ¢; are mutually orthogonal projections in (1 — p)A(1 — p) such that
i1 = the identity of My ((1 — p)A(1 — p)). Since A is purely infinite
simple C*-algebra, there is a partial isometry

veE@P®(1-p)®..0 1 -p)Min(A)pd(1-p)d..8(1—-p))

(there are k copies of 1 — p) such that v*q;v <p;, i =1,2,...,n
vy = ZU*qiv and vw'=(1-pd(1l-p)®...0(1-p)

(there are k copies of 1 — p).
Set u = (1 — p) ® v. Notice that uu* =10 (1 —p)®--- ® (1 — p) (there are
k copies of (1 — p)). We have

wydylu=> \p,®y

i=1

and u*y,u is normal and has finite spectrum, where p; = v*g;v. So

D DY — Z)‘ pz —uy2u <€/2

Therefore

z — Z)\i(pi —p)) —u'ysul < e
i=1
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Corollary 4.5. The Cuntz algebra O,, has (FN), i.e. every normal elements
in O, can be approzimated by normal elements in O, with finite spectra.

Proof. It is known ([Cu]) that O, is purely infinite simple and K,(0,) =
0. O

One crucial result in BDF-theory is that the Calkin algebra B(H)/K has
weak (FN). The following is a generalization of this fact. The question when
corona algebras are simple is discussed in [Lin1] and [Lin7].

Corollary 4.6. Let A be a o-unital simple C*-algebra of real rank zero. If
the corona algebra M(A)/A is simple, then M(A)/A has weak (FN).

Proof. 1t follows from [Zh6, 1.3] that M(A)/A is a purely infinite simple
C*-algebra. So the corollary follows immediately from 4.4. O

Definition and Remark 4.7. Let A be a separable simple unital C*-
algebra with real rank zero, stable rank one and with weakly unperforated
Ko(A) (see [BI3, 6.7.1]). Then G = Ky(A)/Ko(A)sor is a simple ordered
group. By [Zh5, 1.3] and [EHS], G is a simple dimension group. Fix a
nonzero projection e € A. Let

A={reS:7(e) =1},

where S is the set of positive homomorphisms from G into R (see [Eff],
Chapter 4). With weak*-topology, A is a compact convex set. Let p € A be
another nonzero projection and let

A'={reS:7(p) =1}.

If A has countably many extreme points, then A’ has also countably many
extreme points (see (G2, 6.17]). It is known that A is a Choquet simplex.
By [Al, 1.4.9], every point in A is a barycenter of a measure concentrated
on its extreme points. So, if A has countably many extreme points {7,},
then for any 7 € A, there is a sequence of nonnegative numbers {a,} such

that > o> a, =1 and
(o o]
T=) anTn
n=1

Furthermore, every 7 € A defines a quasitrace on A (see [BI3, 6.9.1]). We
will say that K,(A) has countable rank if A has countably many extreme
points.

The map:
0:G — Afi(A)
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determines the order on G in the sense that
Gy ={g9€G:0(9) >>0}u{0},

where Aff(A) is the set of all (real) affine continuous functions on A. As in
[Eff, 4], if G # Z, 0(G) is order isomorphic to a dense subgroup of Aff(A),
provided with the relative strict order. Moreover, g < f in Ky(A) if and
only if ¢(g) < ¢(f), where ¢ is the composition map:

Ko(A) = Ko(A)/Ko(A)ser — 0(G).

By [Bl, 6.9.3], [p] < [q] in K (A) if and only if 7(p) < 7(q) for all quasitraces
in A. Furthermore, for any two projections p,q € A, 7(p) < 7(q) for all
quasitraces in A if and only if there is a partial isometry v € A such that
v*'v =p,vv* < q.

Lemma 4.8. (cf. [Lin6é, Lemma 2]). Let A be a separable simple unital
C*-algebra of real rank zero, stable rank one and with weakly unperforated
K, (A) of countable rank and let = be a normal element in A. For any € > 0
and integer K > 0, there are open subsets O, Oy, ..., 0, of sp(z) such that

Oi N Oj = @, [Ug':]Oi]_ = Sp(iE),

i € O;, and there are projections p; € Her(q;), where q; are spectral projec-
tions of x in A** corresponding to the open subsets O;, such that

(s $00)

=1

<,

where y = (1 = Y0 p))z(1 = 30, pi),
l (1—ipi)w—w<l—zn:pi>
[pk] > K [1 - ipz]

i=1
and for any \ € sp(z), there is \; such that

dis(\, \;) < €.

Proof. We set A = {r € §:7(1) =1} (see 4.7).
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Without loss of generality, we may assume that ||z|| < 1. Denote by B the
C*-subalgebra generated by = and 1. Then B = C(X), where X = sp(z). Let
T € A. So 7 is a quasitrace defined on A (see 4.7). Since B is commutative,
the restriction of 7 on B is linear. Hence the restriction of 7 on B gives a state
on B. By the Riesz representation theorem, the state defines a normalized
Borel measure p, on X. Let D denote the unit disk. For any open subset
O C D, let q, be the spectral projection of z in A** corresponding to the
open subset O N X. The projection g, is an open projection in A**. Suppose
that h € B(= C(X)) such that 1 > h > 0for allt € ONX and h(t) =0 for
allt € X N O. Then {h*/"} forms an approximate identity for Her(g,). It is

clear that
p(ONX) = lim 7(h/").

Let {e2} be an approximate identity for Her(qg,) consisting of projections.
Then
(0N X) = sup{r(eq)}-

In fact, we have (7 is a quasitrace on A)

T(h/*e2) = r(hY/*e2h/?*) < r(hV*) < p, (0N X)

r(h/*eg) = T(eahe3) < (ef)

for all k and n. Since h'/*e2 — €2, if k — oo, and h'/*e% — h'/*, if n — oo,
from above equalities and inequalities, we conclude that

pr(0 N X) = sup{r(e;)}.

Let A, denote the countable subset {7,}. For the simplicity, we use the

notation p; for the measure y.,.
For any € > 0, there is a finite subsets {{;,{z2,...,{m} of D such that for
any ¢ € D, there is an integer ¢ such that

¢ — ¢l < €/32
and for any i, there is j # 4 such that
IC,; — CJ| < 6/16

For each i set
D; = {(:¢/32 < |( — (| < €/16}.
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Fix 4, for each €/32 < r < ¢/16, set
S, ={¢:[(—-¢l=r}

Since p(D;) <1and S, NS, =0, if r # 7', there are only countably many
r in (e/32, €/16) such that
/.l,k(S,-) > 0.

Since the union of countably many countable sets is still countable, we con-
clude that for each 4, there is ; € (¢/32,€/16) such that

/‘l’k(Sﬂ') =0

for all k.
Now D \ US,, is a disjoint union of finitely many open sets O;, O,,...,Onx
such that the diameter of each O; is < €¢/4 and

l‘l’k(USTi) =0

for all k.

Let {e’} be an approximate identity for Bo,, where Bo, is the heredi-
tary C*-subalgebra corresponding to the spectral projection gop, of z in A*™*
corresponding to the open subset O;. (Notice that Bp, has real rank zero,
whence such an approximate identity exists (see [BP])). Then

73(e$) /7 1i(0))

j=12,..andi=1,2,..,N. Since u; (D \ UX,0;) =0,
N o
Tj (Zeg)> /‘ 11
i=1
as n — 00, j = 1,.2,...,. Since every 7 € A has the form
[o <]
T = Zaﬂ'j,
Jj=1

where a; > 0 and }°72, ; = 1, we conclude that
N .
T (Z eg)) N1
=1

for all 7 € A, as n — oo. Since A is compact, by Dini’s theorem, the
continuous functions Y& | e()(7) defined on A converges to the constant
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function 1 uniformly on A, as n — oo. Hence we have projections p; € By,

such that
N
T(p;) > K7 (1 - Zp;)

i=1

for all 7 and 7 € A. So, by 4.7, we obtain

[px] >K[1—Zn:l7i] .

i=1
The rest of the proof follows from Lemma 4.3. O

Theorem 4.9. Let A be a separable simple C*-algebra with real rank zero
and stable rank one. If Ko(A) is weakly unperforated and of countable rank,
then A has weak (FN). In other words, a normal element x € A can be
approzimated by normal elements in A with finite spectra if and only if
I'(z) = 0.

Proof. Suppose that z € A is a normal element with I'(z) = 0. Let € be a
positive number. For €¢/2, let § and k be as in 3.12. We may assume that
0 < €/4. By applying 4.8 , there are complex numbers A;, Ay, ..., A, € sp(z)
and mutually orthogonal projections p,,ps, ...,pn, € A such that

- Y Api —y|| <e€/2,

=1

where p =31, p; and y = (1 — p)z(1 — p),
(1 -p)z—=z(1-p)| <4,

D] >k[1-p], i =1,2,..,n

and for any A € sp(z), there is ¢ such that
dis(A, A;) < €/2.
As in the proof of 4.4, if § is small enough, by 3.12, there are normal elements
v1 € Mi((1-p)A(1—p)) and z€ M ((1-p)A(l-p))
with finite spectra contained in sp(z) such that

ly ® 3 — zl| <e/2.



APPROXIMATION BY NORMAL ELEMENTS 477

Without loss of generality, we may assume that y; = >, \;q;, where ¢; are
mutually orthogonal projections in M ((1 —p)A(1 —p)) such that >0, ¢; =
(1-p)®...® (1 —p), where the right side has k copies of (1 — p). Since

[p:] > k[1-p], 1=1,2,..,n
there is a partial isometry
vE(PO®(1-p)®...0(1-p)Mi(A)p®(1—p)®..® (1 —p))

such that
Vv <pi, 1=1,2,..,n

vt = Zn:p;, and w'=(1-p)®..d(1—-p)
(there are k copies of (1 — p)), where p; = v*g;v. Set
u=(1-p)dv.
Notice that

n
v (y®y)u = Z Aip; ®y

i=1

and u*zu is still normal and has finite spectrum. Now we have

D DY — Zx\ —pi) —u*zul| < €/2.

Therefore

T — Z)\i(pi —p;) —u'zu
i=1
W]

Corollary 4.10. All irrational rotation algebras Ay have the property weak

(FN).

Proof. 1t has recently been shown that all such C*-algebras have real rank
zero (see [BKR]). It is known that A, is simple and Ko(Ag) = Z + Z0 (see
[Rf]). By [Pt], A, has stable rank one. So 4.10 follows from 4.9. O

Now we consider the class of C*-algebras of real rank zero which are
inductive limits of finite direct sums of circle algebras classified recently by
G. A. Elliott ([Ell2]).
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Corollary 4.11. Let A be a C*-algebra of real rank zero which is an
inductive limit of finite direct sums of matriz algebras over C(S*). If A is
simple and Ky(A) has countable rank, then A has weak (FN).

Proof. All such algebras have stable rank one and (weakly) unperforated
Ky(A). a

Corollary 4.12. The Bunce-Deddens algebra has weak (FN).

Corollary 4.13. ([Lin6]). Let A be a simple AF-algebra. If Ko(A) is of
countable rank, then A has (FN). In particular, every matroid algebra has

(FN).

Proof. All AF-algebras have real rank zero, stable rank one and unperfo-
rated Ko(A). Since K;(A) = 0 for all AF-algebras, I'(z) = 0 for all normal
elements. O

Corollary 4.14. Let A = lim_,(A,,,¢,) be the C*-algebra inductive limit
of C*-algebras A, of the form C(X, M), where ¢, are unital homomor-
phisms and X is a finite CW complex. If A is simple and of real rank zero,
then A has weak (FN).

Proof. As in the proof of [GL, 3.3], A has stable rank one and Kj(A)
is weakly unperforated and of finite rank. So this corollary follows from
4.9. a

5. Normal Elements with One Dimensional Spectra.

Even though we can not give an affirmative answer to question Q for general
C*-algebras with real rank zero at present, we would like to show that for
normal elements with dim sp(z) < 1, the answer to Q is affirmative.

Lemma 5.1. For any € > 0 and integer n, there is § > 0 such that for any
(unital) C*-algebra A of real rank zero, selfadjoint elements z,,zs,...,z, € A
and a nonzero projection p € A, if

lpz; —zipl| <6 and z;z; =0,

1=1,2,...,n andi # j, then there are selfadjoint elements y1,ys, ..., yn € pAp
satisfying
lyi — pzipll <€ and yiy; =0,
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1=1,2..,n and 1 #£ J.
Proof. We first assume that z; > 0. Set 2; = pz;p. So z; > 0. Suppose that

lpz; — z:p|| < 6,

where ¢ is a positive number to be determined. We have

(&)

Notice that pAp has real rank zero (see [BP, 2.8]). It follows from [BP, 2.6]
that there is a nonzero projection q; € pAp such that

(%

Therefore ||q,z] < (2né)*/?, i =2,3,...,n. Set y; = ¢,21q;. Then
lys — 21l < ll(p — @)zl + 1z (p — a1)|| < 2(2n8)/2.

We also have

< 2né.

l(p — @)zl < (2n6)'*  and < (2n8)*/2.

I — @) z(p — 1) — 2l < 2(2n4)'/2,
i = 2,3,...,n. Notice that (p — q1)z:(p — ¢1) € (p — ¢1)A(p — ¢1). We can
then work in (p — ¢;)A(p — ¢1)- So, by induction (on n), the lemma follows

for the case that z; > 0. For general selfadjoint elements z;, we notice that
z; = (z;)+ — (z:)- and (z;)+(z;)- =0. 0

Lemma 5.2. Let X be a contractible compact subset of the plane which is
homeomorphic to a union of finitely many (compact) straight line segments.
For any € > 0, there ezits n > 0, for any (unital) C*-algebra A of real rank
zero and a normal element x € A, if p is a projection in A and

lpz — zpl| < 7,

then there is a normal element y € pAp with finite spectrum sp(y) C X and

lpzp — yl| < 2e.

Proof. We may assume that X = U, L;, where each L; is a compact line
segment and different L; lies in a different line. If n = 1, we may assume
that X C R. Therefore we may assume that z is self adjoint. If § is small
enough,

sp(pzp) C (X2 NR) U {0},
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where
Xy = {€ : dist(§, X) < €/2}.

Since A has real rank zero, there is a selfadjoint element z € pAp with finite
spectrum sp(z) C (X.2 NR) U {0} such that

e —yll <e/2.

Then we can replace z by a selfadjoint element y € pAp with finite spectrum
sp(y) C X such that
lz -yl <e

Now we assume that 5.2 holds for n < k.
We first show that for any o > 0, there are mutually orthogonal normal
elements z; € A with sp(z;) C L; (in the respective corner of A) such that

n
-3
i=1

We will prove this by induction on n. Assume that the assertion is true for
n < k. We will show it is true for n = k + 1.

Since X is contractible, there is at least one L;, such that L;, N (U;xi, L;)
has only one point, say &. We may also assume that i;, = 1. Set L{ =
L, \ {&}. Let p; be the spectral projection of z (in A**) corresponding to
L? and p| be the spectral projection of z (in A**) corresponding to (L%)',
where

<o0.

(L3)' = {€ € L3 : dist(¢, &) < 0/64).

By Brown’s interpolation lemma ([Bn2]), there is a projection ¢ € A such
that
pi<g<p:.

Note that
lp1z — (Piz + & (0 — p1))I| < 0/64.

It is then easy to see that
llgz — zq|| < o/32.
Let 7 : X — X \ L{ be a retraction. We have
(1 = q)r(z) —r(z)(1 - g)ll <0o/16

and

11 -gz(1-q) - (1-gr(z)(1-g)ll <o/8.
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By our ﬁrst inductive assumption, there is a normal elemet 4y, € gAq with
sp(y1) C (U2, L;) such that

(1~ q)r(z)(1 - q) — will < o/8.

Then, by our second inductive assumption, there are mutually orthogonal
normal elements z,, 23, ..., Ty in (1 — ¢)A(1 — ¢) with sp(z;) C L; (in the
respective corner), ¢ = 2,3, ...,k + 1 such that

H( q)r(z)(1 - Zzz <o/4.
So
“ (1-9)z(1- %x, < 30/8.

We can write p,z = ah + Bp;, where a and 8 are complex numbers and h is
a self adjoint element in A**. Since qzq € A, qhq € A. So qzq is normal. If
o is small enough, we may assume that sp(gzq) C L;. Set z; = qzq. Then

k+1

o
i=1

This proves the assertion.

Since A has real rank zero, there are mutually orthogonal projections
€1,€z, ..., €x41, selfadjoint elements h; € e;Ae;, i = 1,2,...,k + 1 and scalars
Q1,Qz, ...,y and By, o, ..., Bey1 such that z; = a;h; + ;. If 0 < §/2 and
n < 6/2, by Lemma 5.1, there are mutually orthogonal normal elements
Y1, Y2, -, Yn With spectrum sp(y;) C L; (in the respective corner of pAp)

such that
(Z w) p— Z Yi

i=1

Since each e;Ae; has real rank zero, there is a normal element y € A with
finite spectrum sp(y) C X such that

n

Zyi_‘y

=1

< €/2.

Therefore, if o is small enough, we have

lpzp — yl| < 2.
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O

Lemma 5.3. (cf. [Lin5, Lemma 3]). Let X be a compact subset of the
plane with dim X < 1. Suppose that F and Q are two proper closed subset of
X such that QNF = 0 and the closure of X \ Q is a compact subset described
in 5.2. Then for any € > 0, there is § > 0 satisfying the following: for any
unital C*-algebra A with real rank zero, a nonzero projection p € A and a
normal element x € pAp with sp(z) = X, if there exist normal elements
y € (1 — p)A(1 — p) with sp(y) C F (as an element in (1 — p)A(1 — p)) and
z € A with finite spectrum such that

H:z:eBy—z([ < 6,
then there is a normal element 2' € pAp with finite spectrum satisfying
|z —2'|| <e.
Proof. Let f and g be two continuous functions defined on X such that
0<f<Lf(Q)=0ifCeF f(()=1if¢CeQand0<g<1g() =1,
if¢eF, g(¢)=0,if ( € Qand fg = 0. For any § > 0, by 2.8 (1), there is

0 < n < 4 such that for any two normal elements z;, z, € A with spectra
contained in X if ||z, — z2|| < 7, then

I f(z1) — flz)ll < O

and

lg(z1) — g(z2)|| < 0.

Now we suppose that
lz®y—z2|| <n.

z = i Aipi’

=1
where {p;}?, is a set of mutually orthogonal projections in A and \; €
X,i=12,..,n. Set z1 = ¥5,cqAiPi» 22 = Lr,gaAiPi and T = 30, o D;.
Since r commutes with z and (1 — p) commutes with z @ y, we have

f@r=rf(z)=randglz®y)(1-p)=(1-pg(zdy)=(1-p).

Therefore

We assume that

(1 =p)ll = lIrf (2)g(z ® y)(1 - p)
<lrflz@y)g(z®y)(1-pl
+r(f(z) - fz@y)(1 -p)ll <6
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Consequently,
llr — prpl| < 26.
If 6 < 1/4, by [Eff, AS8], there is a projection ' < p such that

lIr' —r|| < 26
and there is a unitary u € A such that

lu—1|| <44, and w*ru=r'.

Thus
II'U,*ZIU -2 " < 84.
Then
lpzz — zop|| < P21 — 21p|| + Iz — 2pl|
< |lprzy — zirp|| + 26 < 2(6 + ).
Since

lu*zu — 2| < 86,
we obtain that
lp(u*2ou) — (u*zou)p|| < 2(6 +n) + 166 = 186 + 27.
Put p' = p — r'. Since
r'u*zou = u*zour' =0,

then
Ip' (u* zou) — (u*zou)p'|| < 328 + 2.

We notice that sp(u*z;u) is a subset of the closure of X \{2. It follows from 5.2
that, if both n and § are small enough, there is a normal element y € p’ Ap’

with finite spectrum sp(y) C (X \ ) such that
P’ (u” 22u)p" — yl| < €/2.
Therefore, if § and 7 are small enough,
lz — u*zu—y|| <e.
Notice that u*ziu = Y, o Ai(u*psu) and p’ = p — u*ru. a

Theorem 5.4. Let A be a C*-algebra of real rank zero and let x be a normal
element in A with dim sp(z) < 1. Then z can be approzimated by normat
elements in A with finite spectra if and only if I'(z) = 0.

Proof. As in 3.13, we may assume that A has unit. If dim sp(z) = 0, then
sp(z) is totally disconnected. The conclusion of 5.4 is trivial in this case.
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Now we assume that dim sp(z) = 1. It follows from [F, Satz 1; p. 229] that
C(sp(z)) = lim;, 0 (C(Xn, dnn+1)), where X, are one dimensional polyhe-
dra. For any 7 > 0, there exists n and y € ¢,,,0(C(X,)), where @,  is the
map from C(X,,) into C(X), such that

":B - ¢n,oo(y)” <.

Note that ¢,,(C(X,)) = C(Y,), where Y, is a compact subset of X,,.
Without loss of generality, we may assume that X,, is a union of finitely
many line segments in the plane. It is also clear that it suffices to show that
every element in ¢, .(C(X,)) can be approximated by normal elements with
finite spectrum. Thus, we reduce the general case to the case that sp(z) is
a union of finitely many line segments. By 3.13, for any § > 0, there are
normal elements y € M;(A) and z € M;,,(A) with finite spectra contained
in sp(z) such that
lz®y—z|| <é.

Since y has finite spectrum, we may write y = y; @ y, such that sp(y;) N
sp(yz) = 0 and sp(y;) C F, where both F and the closure of S\ F satisfy the
description of the contractible compact subset in 5.2. By applying 5.3, we
have a normal element 2’ with finite spectrum contained in sp(z) such that

lz®y — 2| <.

By applying 5.3 again, we finally obtain a normal element 2" € A with finite
spectrum contained in sp(z) such that

|z —2"|| <e.
a
Corollary 5.4. Every normal element x in an AF-algebra with dim sp(z) <
1 can be approrimated by normal elements with finite spectra.

6. Applications.

In [Ell2], George A. Elliott shows that C*-algebras of real rank zero which
are inductive limits of the form

> er,C(X:) ® My,

where X; is homeomorphic to the unit circle or unit interval, can be com-
pletely determined by their K,-groups. Conversely, if G is a countable un-
perforated graded ordered group with Riesz decomposition property, then
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there exists a C*-algebra A of real rank zero which is an inductive limit
of the above form such that (Ko(A), K;(A)) is isomorphic to G (see [Ell2]
for his definition of unperforated graded ordered group). These remarkable
results also provide the way to construct such C*-algebras with given K,-
groups. In particular, A is an AF-algebra if and only K;(A) = 0. Recently, it
was shown that all irrational rotation C*-algebras are in fact in this class of
C*-algebras of real rank zero (see [EE]). As indicated in Section 1, Elliott’s
algebras of real rank zero may well include all C*-algebras of real rank zero
which are inductive limits of the form

S eV C(X]) ® My,

where each X} is a compact subset of the plane. We show in this section
that at least it is true in some special cases.

Theorem 6.1. Let A = lim,(A,,¢,) be a simple C*-algebra of real rank
zero, where each A, has the form

Ay =) 0% ,C(X}) ® M,

where X© is a compact subset of the plane. Suppose that K(A) has countable
rank. Then A is an AF-algebra if and only if K,(A) = 0.

Proof. Since every AF-algebra A has trivial K;(A), we need only to show
the “if” part. From [DNNP], A has stable rank one. It follows from 4.9

that A has (FN).
We now assume that A is unital. For any € > 0, and z,,z,,...,Z, € A
there are an integer N and y1,¥2, -, Ym € Poo(An) such that

lle: — will <e/2.

We will show that there are a finite dimensional C*-subalgebra B C A and
2y, 22, ...y Zm € B such that

lyi — zll <e/2.
To save notation, (without loss of generality), we may assume that
AN = C(X) ® 1‘4'1‘:(g C(X’ Mk)):

where X is a compact subset of the plane. Since ¢, (A,) is isomorphic to a
C*-algebras with the form C(Y, M;), where Y is a compact subset of X, we
may simply assume that Ay = ¢ (AnN).
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Let {e;;} be a matrix unit for Mj. Set €;; = 1 ® e;;. We view ¢;; € A.
Notice that €;; Aye;; = C(X). Let y be a normal element in €;; Ay€;; with
sp(y) = X such that y is a generator for €);A,€;; = C(X). It is easy to see
that it is sufficient to show that for any n > 0, there is a normal element
Z € €13 A€y with finite spectrum such that

ly — =l <n.

Notice that €;; Ae;; is simple C*-algebra with real rank zero and, by [Bn1],
A= 611A€11 ® K. So K0(€11A€11) = Ko(A) and K1(611A611) = KI(A) =0.
By 4.9, such z exists. This proves the case that A is unital.

If A is not unital, then A has an approximate identity {e,} consisting
of projections (see [BP]). Fixed n. There are integers n(1),n(2),...,n(k), ...,
such that n(k) < n(k+ 1) and, for each k, there is a positive element a,) €
Ap) such that

”an(k) - en” < l/k

By [Eff, A}, there is a projection g,x) € An(x) such that
lgncey — enll < 2/k
and there is a unitary u € A such that
lu—-1|| <4/k and u'e,u = gn)-

Clearly, gn(k)An(k)qn(k) is isomorphic to a direct sum of finitely many C*-
algebra each of which is of the form

C(X)® M,

for some compact subset of the plane X and positive integer m. This implies
that e,Ae, is a unital simple C*-algebra satisfying the conditions of the
theorem. From what we have proved for the unital case, we know that
enAe, is an AF-algebra. Consequently, A is an AF-algebra. O

Corollary 6.2. Let A = lim_,(A,,$,) be a simple C*-algebra. Suppose
that each A, is isomorphic C(X,) ® My(n) for some integer m(n), where X,
is a contractive compact subset of the plane. Then A is an AF-algebra if and
only if A has real rank zero (or equivalently, the projections of A separate
the traces (see [BDR])).

Proof. 1t follows from 4.14 that A has week (FN). Since each X, is con-
tractive, K;(A,) = 0. Consequently, K;(A) = 0. Then Theorem 6.1 ap-
plies. O
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The following is due to H. Su. We present here as a simple application of
Theorem 5.3.

Corollary 6.3. ([Su]). Let A be a C*-algebra of real rank zero. Suppose
that A is an inductive limit of finite direct sums of matriz algebras over
one-dimensional spaces, then A is an AF-algebra if and only if K;(A) = 0.

Proof. By 5.4, every normal element z with sp(z) < 1 can be approximated
by normal elements with finite spectra, if I'(z) = 0. The proof is the same
as that of 6.1. O

Remark 6.4. Even if K;(A) # 0, both algebras in 6.1 and 6.3 are inductive
limits of finite direct sums of matrix algebras over circles. This can be done
by applying 4.9 and 5.4 more carefully. We will discuss these elsewhere.
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