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GROUP STRUCTURE AND MAXIMAL DIVISION FOR
CUBIC RECURSIONS WITH A DOUBLE ROOT

CHRISTIAN BALLOT

An equivalence relation is defined on the set of recurring
sequences with given cubic characteristic polynomial f(X) =
(X - 6:)%(X — 6,) € Z[X] so that sequences in a class share the
same maximal prime divisors. The set G(f) of equivalence
classes is shown to form a group structure by exhibiting an iso-
morphism ¢ between G(f) and the Laxton group G(f;), where
fi(X) = (X = 61)(X — 65) is the squarefree part of f(X). The
map ¢ has the additional property that the maximal prime
divisors of a i € G(f) are the prime divisors of p(U) € G(f1)-

§1. Introduction.

Laxton considered the set F(f) of linear recurring sequences with terms in
Z which have the same quadratic characteristic polynomial f(X) € Z[X] (see
[Lax]). If this polynomial is non-degenerate, that is, if the ratio of its two
roots is not a root of unity, then Laxton defines a product of two sequences in
F(f), which makes F(f) a semi-group with identity. The product is defined
in such a way that if a prime p divides two sequences U and V/, it also divides
the product sequence U - V. Here division by p of a sequence U = {u,},%
means that there exists an n such that p | u,, but p } un41. This type of
division is called proper division. Laxton then defines an equivalence relation
on the set F(f). In words, two sequences which are rational multiples of one
another or are merely shifts of each other are said to be equivalent. The
product - defined on F(f) is well-defined on the set G(f) of equivalence
classes. One can extend the notion of a prime p being a proper divisor of
a sequence to a class of sequences in G(f). The set G(f) together with the
binary operation - forms a group which preserves proper division by a prime
p. In fact, Laxton shows that the subset G(f,p) of classes that have p as a
proper divisor forms a subgroup of G(f).

In [Ba], all the results stated above are generalized to non-degenerate:
characteristic polynomials f(X) € Z[X] of arbitrary degree m > 2 where
proper division by a prime p becomes mazimal division by a prime p. A
prime p is a maximal divisor of an mt" order recurring sequence U if there
exist m consecutive terms of U such that the first m — 1 are divisible by p,
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but the m* one is not. The definition of maximal division was first proposed
by Ward [Wal].

Certain classes of sequences in G(f) have a set of maximal divisors having
a natural density. Using a result of Schinzel [Schi]|, Somer [So] showed that
the identity class in G(f), which is the class of the sequence starting with
m—1 zeros and a one, is the only class with density of maximal divisors equal
to 1. In [Ba)], results about the natural density of prime maximal divisors
of sequences that have order two (in the group G(f)) are demonstrated.

The work [Ba] quoted above only dealt with non-degenerate characteristic
polynomials. In this paper, we treat the simplest case of degeneracy, namely
polynomials of the type

(1) F(X) = (X - 61)%g(X),

when the squarefree part f,(X) = (X — 6;)g(X) is non-degenerate.
The motivation came from a remarkable property of the Cullen numbers,
which are the terms of the sequence

(2) {n2™+1}22,.

Cullen numbers have been studied because their terms have an unusually
large number of prime divisors (see [Cu & Wo] and [Ro]). Also, Hooley
proved that almost all Cullen numbers are composite (see [Hoo]). But
here we first observe that sequence (2) is a cubic recurring sequence with
degenerate characteristic polynomial

(3) F(X)=(X-23(X —1) = X3 —5X2 +8X — 4.

To us, the remarkable property of the Cullen numbers ¢, = n2" + 1 is that
every odd prime p is a maximal divisor of C. Indeed :

Cp2=(P—-2)2"24+1=-2""1+1=0 mod p,
(4) p1=pP-1)2""+1=-2"14+1=0 mod p,
but ¢ =p2!+1=1%#0 mod p.

This property implies that the density of prime maximal divisors of the
Cullen numbers is equal to 1. However, no Cullen number is equal to zero, so
that sequence (2) is not equivalent in the sense of Laxton (see (6) below) to
the identity sequence [0,0,1];. Hence, there are at least two non-equivalent
sequences whose density of divisors is equal to one. This is unlike the non-
degenerate cubic recursions, which we studied in [Ba, Chapter 4].

This observation prompted us to introduce an appropriate notion of equiv-
alence, called weak equivalence (see (12), Section 3), for sequences whose
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characteristic polynomial is of type (1). As in the non-degenerate case, we
are able to construct a group structure on the set G(f) of weak equivalence
classes, which preserves maximal division in the usual way. In fact, it then
remains true that only sequences in the class of the identity [0,0,1] have
a set of maximal divisors of density one. In particular, the Cullen number
sequence is weakly equivalent to the sequence [0, 0, 1].

Moreover, in Section 3, we describe an isomorphism ¢ between the groups
G(f) and G(f1), which has the property that the maximal divisors of the
class Cl(U) of a sequence U in F(f) correspond to the maximal divisors of
the image class ¢(CI(U)). This correspondence enables us to obtain density
results about sequences having degenerate characteristic polynomials f(X)
from the existing density results about sequences in F(f;). Some of these
results are given in Section 4.

Section 5 is devoted exclusively to the Law of Apparition of maximal prime
divisors in sequences which belong to the identity weak equivalence class.
Note that Ward [Wa2] wrote about the laws of apparition and repetition in
a cubic recurrence. However, his study was not confined to maximal division
and dealt with rules having distinct roots.

Throughout the paper, our theorems are proved in the particular case of
a cubic recursion f(X) = (X — 6,)*(X — 6;) € Z[X], but, in Section 6, we
briefly state more general results that apply to an arbitrary characteristic
polynomial f(X) = (X — 6,)%g(X) € Z[X].

This article is merely a beginning of this subject, since we have studied
only the simplest family of degenerate recursions, namely those with exactly
one double root.

§2. Preliminaries.

Let us introduce some notation and recall some facts that will be of use here.

If U = {u,}22, is a recurring sequence with characteristic polynomial (or
rule) in Z[X] of degree m > 2, then a prime p is said to be a mazimal divisor
of U at n (we will often write p | .U at n) if and only if

(5) p I Un+ti for 0 <i<m—2, but p*un+m—1-

In this article, we will only consider maximal prime divisors. Hence, saying
that p is a divisor of U will mean that it is a maximal divisor of U. The set
of divisors of a sequence U is denoted by P(U) (or sometimes by Py, (U)
to emphasize the fact that the divisors are maximal). The natural density
of this set, denoted by §(U), is defined to be

5(U) = Jlim_ {pe ng(?}})p < X}

, if it exists,
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where II(X) =|{p € P, p < X} ~ X/logX and P is the set of all
primes. Two sets of primes S and T are said to be essentially the same if
and only if their symmetric difference (S\T') U (T'\S) is finite. We denote
this by S = T. Note that if S = T, then their natural densities §(S) and
0(T) are the same.

Since a recurring sequence U belonging to a rule f(X) of degree m is
entirely determined by its first m terms ug, u;, - .., Uy,_1, we will sometimes
write

U = [ug,ts,. ., Um—1]5 = [Uo, U1, -+, Um—1])-

We now wish to be slightly more precise about the work of Laxton on
quadratic rules than we were in the introduction. So let us assume that
H(X) = (X -60,)(X -6, = X> - PX +Q € Z[X], where Q # 0 and
f1 is non-degenerate. A recurring sequence U with rule f; has the general
term u, = af} + (03, where o and [ are constants depending on u, and
u;. Laxton defined the set F(f;) to be the set of recurring sequences U with
rule f; and terms in Z such that if we write u, = a8} + 863, Vn > 0, then
af3 # 0. The nt* term u,, can also be written in the form

_ A67 — BOp

Un 91——__ 92 ) Vn € N,

where
{A = Uy — U,

B = (751 —erl.

This gives us another way of denoting the sequence U, namely U = (A, B),
which we call the standard notation for U.

Two sequences U and V in F(f,) are said to be equivalent (we write
U ~ V) if and only if

(6) I\, pEZ,Is€ZL,Vn € N: Aupy, = po,,

that is, U and V are rational multiples of each other, or subscript shifts of
one another. Laxton observed that the relation ~ is an equivalence relation.
The class of a sequence U = (A, B) = [uo, u;] is denoted by U, or Cl (A, B)
or Cl[ug,u,]. Laxton [Lax] showed that the set G(f;) of equivalence classes
forms a group. If U = (A}, B;) and V = (A,, By), then the group law is
defined by

Cl (Al,B1> . Cl (Ag,Bz) = Cl (AlAz, BIB2>.

Clearly, the identity class is Cl(1,1) = C1[0,1], which is the famous Lucas
sequence L(6,,0;)(n) = (67 —67)/(0, —02). Two equivalent sequences U and
U’ satisfy P(U) = P(U’). A prime p is said to be a divisor of the class U in
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G(f) if there exists a sequence U in the class U such that p is a divisor of U.
The set of divisors of a class U is denoted by P(U); in fact, for all sequences
U in U, we have P(U) = P(U) (see Remark 4.4.3 in [Ba]).

Remark 1. We may and will assume that Laxton’s set F(f,) includes
sequences with terms in Q rather than in Z. This will have no effect on
group or density results in G(f), if we agree that p | a/b, a,b € Z and
(a,b) = 1 when p | a, but p } b. Indeed, note that for every sequence [go, ¢1],
there exists a sequence (2o, 21}, where 2y, 2, € Z such that [z, z;] = N-[qo, 1],
where N € Z is the least common multiple of the denominators of gy, q;, and

80 (20, 21] ~ [qo, q1]-
§3. Cubic Recurrences with a Double Root : Group Structure.

Let
(7) F(X) = (X —6)*(X —0;) = X* = PX?+ QX — R € Z[X], R#0,

and note that reducibility necessarily implies that the roots 6,, 6, are inte-
gers. We suppose 0; # +0,. Thus, the associated characteristic polynomial
(or rule, to follow the terminology used in [Bal)

fi(X) = (X - 0,)(X - 6),

is non-degenerate.
Actually, for every rule of the type (7), there exists a recurring sequence
satisfying a property analogous to (4). To find this sequence, we set

u, = (an + o')0} + G673,
and solve the system of linear equations

Uup,—2 =0 mod p,
tup—1 =0 mod p,

for a, o' and B, and for an arbitrary prime p. A solution of this system, which
we will refer to as the generalized Cullen sequence, namely the sequence

( n 202 - 01 02
Cp =

&—@‘@—@Jﬂ+m—@ﬁ”

(8)

has the property that for all primes p } 6,6,(6, — 6,), we have

Cp2=C-1 =0 mod p, butc,=1%#0 mod p.



342 CHRISTIAN BALLOT

As mentioned in the introduction, we will show how to define a group
structure on the set G(f) of equivalence classes of sequences that share the
same cubic rule f. However, with the definition of equivalence that we will
set, the sequences {c,} and [0,0,1]; will turn out to be in the same class.
In fact, it will remain true that only sequences from the identity class have
a density of divisors equal to one.

If we compute the closed form of the n'* term of the sequence [0,0,1];,
we find that it is equal to

(R T P
6,6, —0;) (6. —6,)2) " (6. —65)%

Hence, we will say that a sequence U with rule f is in standard form when
it is written as

) ( An A B

— ot + —_—
01(6: —6:) (61 - 02)2) P06y

where the numbers A, A' and B depend on the initial values of U in the
following way

A 0102 —(01 + 02) 1 Ug
(10) Al = 02(201 - 02) —201 1 Uy
B 62 -26, 1] |ug

The matrix has determinant (6, — 6;). Since 6,,0, € Z it follows that
A,A',B €Q < ug,u,uy € Q.

For the sake of brevity we will write U = (A, A', B) instead of (9).

Definition. Let F(f) be the set of sequences U = (A4, A’, B) with A, A", B €
Q such that the product A - B # 0.

Theorem 2. Let U = (A, A', B) € F(f) and p be a prime.
Ifp | AB6,0,(6, — 6,), then we have

(11)  p is a mazimal divisor of U <= In € N: A0} = B6; mod p.
No prime divisor of AB6,0,(0, — 0,) divides U mazimally.

Proof. Assume Vn € N: u, = (on + )07 + $63. Hence, by (9) we have

that
A B

“Tae-m M P e-ar
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First we prove statement (11).
> )

D |mas U at n <= p| Un, Uny1, but not w4y,
- un91 —Upy1 = 0 mod D.

But, 4,0, —Uupy; =0 mod p < ab + 50, —6,)03 =0 mod p
= A 07 = B
6,—0, ' 0,—6,

< A6} =B6; mod p.

67 mod p,

<= ) Conversely, assume In € N: A0} = B mod p. Then we
have VA € Z

l=n+Ap-1 = A6 =B6#, mod p.

But, by the proof of = ), A#, = B, is equivalent to w;6; — u;4; =0
mod p. And so, to prove that p divides u; and v, it is sufficient to show
that p | u, = (al + /) 6, + 365,

Now, since p } 6, — 65,

ab,
0, — 6,

ab,
0, — 0,

AOF = BO? = or = Bor

= 6! = 6., for any I of the form n + A\(p — 1).

0
Hence, p |w <= p|(al +a)0] + ga 10 6,
1 — V2

(101

0, — 0,

<~ pl(ad+0d)+ , since p | 6;.

But p } A = p} o, so a has an inverse ™! modulo p. And with

y=ao + a6, mod p, the integer ! must satisfy
0, — 6,
Il=n mod (p-—1),
l=-ya™! mod p.

Since p and p — 1 are coprime, the Chinese Remainder Theorem gives the

existence of such an .
Hence, we have shown that 31 e N: p |, uyy.
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We have yet to prove that p f u;4,. Let us proceed by contradiction and
assume that p | ui4o. Then p | w41, 4o, which by the proof of =),
implies that Af{*' = B@;*'. But since A¢% = B0} and since p | AB6,6;, it
follows that 6; =6, mod p, contradicting p } 6, — 6s.

So now let us assume that p | AB6,6,(6; — 6-) and show that p cannot be
a maximal divisor of U.

Ifp| 6, then Vn >0, u, =v, mod p, where the terms v, = B3 /(6, —
6,)? form a geometric sequence. But p cannot divide two consecutive terms
of {v,} without dividing the third consecutive one.

If p | AB6,(6, — 6,), then Vn > 0, we have u, =v, mod p, where

B6D — A0 .
vy = o2 — L0 ifp| A,
0, ~ 0oy P |
n
= - or, ifp|Bo,,
’ (m@—@)(m—mJl p| BE:
A B-A

—8,).

n
= - or, ifp|(6
v (&@—@) 6oy iHrlG

In each of the three cases above, {v,} is a recurring sequence of order two
(with rule f;(X) in the first case, and rule (X —6;)? in the second and third
cases), so that if p divided two consecutive terms of {v,}, then it would also
divide all subsequent terms. This prevents p from being a maximal divisor
of U. a

Remark. We have actually proved more than what Theorem 2 states.
Indeed, if p lmaw U at n, then A0} = B} mod p (for the same n). For the
converse, we only have :

A6} = B0} = 3l =n+ A(p—1), for some X € Z such that p |mas U at L.

Let U = (A, A’, B) € F(f). As was shown when f is non-degenerate [Ba,
Remark 4.4.3 & Prop. 5.4.4], sequences which are shifts or rational multiples
of each other share essentially the same divisors. In fact, the same result
holds true when f is degenerate. But for f of type (7) and U = (4, A', B)
in F(f), Theorem 2 also shows that the value of the number A’ does not
affect the set of divisors. This suggests a modified definition of equivalence,
which not only allows shifting or multiplying by a rational scalar, but also
changing the value of A’'.

Definition. We will say that the sequences U = (4,A,B) and V =
(C,C", D) are weakly equivalent (and write U ~ V) if and only if

qA = C6;,

12 JqeQ Is€Z :
( ) 9 Q $€ {qB=D0§



CUBIC RECURSIONS WITH A DOUBLE ROOT 345

The relation ~ is an equivalence relation on F(f). The set of equivalence
classes is denoted by G(f). It is easy to check that the binary operation
defined on G(f) by :

U-V=Cl(A,A,B)-CL(C,C", D) = Cl{AC, A'C", BD),

is well-defined.

Definition 3. Let us introduce the projection map ¢ : G(f) — G(f1)
defined by ¢(Cl (A, A',B)) = CIl(A,B). First, observe that there exists
[wo,u1] = (A,B) € F(f;). Indeed, A and B are in Q, so that there exist
ug, u; € Q satisfying

{A = u; — upbs,

B = u; — uobh,

since the determinant of the above system is 8, — 8; # 0. Now, note that ¢
is a well-defined map, since a shift of (4, A’, B) is of the form (A6%, A", BO%)
for some A" € Q and (A6%, BO%) ~ (A, B) in F(f;). A rational multiple
of (A, A", B) is of the form (AA, XA, AB) for some X € Q, but (A4, AB) ~
(A, B) in F(f,). Finally, the value of A’ clearly does not affect the value of
the image.

Theorem 4. The projection map @ is an isomorphism from (G(f),-) onto
(G(f1),)-
Proof. Since Definition 3 shows welldefinedness of ¢, to show surjectivity,
given (A, B) in F(f;), pick any A" in Q and note that
#(CL(A, A', B)) = CL(A, B).
Secondly ¢ is injective. If (Cl (A, A’, B)) = ¢(Cl{A;, A}, B1)), then

A = AAlgf,
B = \B, 6%,

where A € Q and k¥ € Z. But by (12), this means that (A4,A’,B) ~
(A, A}, B;), which implies that Cl (A, A’, B) = Cl(A;, A}, By).

Finally, ¢ is a homomorphism, sinceif U = (4, A', B) and V = (A,, A}, B1),
then o(ClU - ClV) = ¢(Cl{AA,,A'A|,BB;)) = Cl(AA,,BB;) =
Cl(A,B) - Cl(A;,B;) = @(ClLU) - p(CLV). O

Corollary 5. (G(f),-) is an abelian group.

Proof. This follows from the fact that (G(f,),-) is an abelian group (the
Laxton group) and Theorem 4. O
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Lemma 6. Let V = (A, B) € F(f1) and p be a prime. Then

p is a mazimal divisor of V = p}'ABBleg(Gl —0,).

Proof. If p | AB6,6,(6, — 6,), then modulo p the sequence V with terms
v, = (A7 —B03)/(6,—0,) is a geometric sequence of the type {a8"},>0, and
hence we cannot have, for any n > 0, v, =0 and v,,4; Z0 mod p. O

Lemma 7. Let U = (A,A'",B) € F(f) and V = (A,B) € F(f,) and p be a
prime. Then

p is a mazimal divisor of U <= p is a mazimal divisor of V.

Proof. = ) If p € P(U), then, by Theorem 2, A6} = BO; mod p,
for some n, and p does not divide AB6,0,(6; — 6;). But A} = B6}
mod pandp} (6, —0;) = p|v,. Now if p also divided vn41, then the
second congruence A0} = BO3™ mod p would hold, which combined
with the first one would imply, since p } AB6:0, that 6; = 6, mod p, a
contradiction.

<= ) Use Lemma 6 and Theorem 2. O

As Laxton did for G(f;,p) (see Introduction above), we define G(f,p) to
be the set of weak equivalence classes having p as a divisor (i.e. the classes
which have a representative having p as a divisor).

Theorem 8. Let p be a prime. Then

o(G(f,p)) = G(f1,p),

where ¢ is the projection map between G(f) and G(f1).
Proof. Let U € G(f,p). We must show that
UeG(f,p) <= o) € G(f1,p)

But, Y € G(f,p) < p€ PU) < 33U =(A,A,B)elU: pe P),
which means that p is a maximal divisor of U. However, by Lemma 7, this
says that p is a maximal divisor of V = (A, B) € F(f,), i.e. p€ P(V) <
p € P(ClV) = P(p(ClLU)) = P(p(U)). But,

p € P(p(U)) <= oU) € G(f1,p). o
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Remark. It is remarkable that Theorem 8 holds without any exceptional
primes.

Corollary 9. Let p be a prime number. Then G(f,p) is a subgroup of G(f).

Proof. This follows immediately from the facts that ¢ is an isomorphism and
G(f1,p) a subgroup of G(f;). O

Corollary 10.
PU) = P(p(t)), YU € G(f).

Proof. This is a direct consequence of Lemma, 7. O

84. Application to Density Results.

Letting A(X) be the cubic rule (X —6,)(X —6,)?, where 6, is the double root
and not 6;, Theorem 4 says that G(h) is isomorphic to G(f;). Hence, G(f) ~
G(fi1) ~ G(h). In [Ba, Chap. 3, Theorem 3.1.3], the density of divisors of
the Companion Lucas sequence Cy(6;,6;) = {67 + 03}, was computed for
any non-degenerate rule f;(X) = (X — 6,)(X — 6,), where 6,, 6, € Z. For
instance, 6(3™ + 5") = 2/3. Now letting U = C(61,6:) = (A, B), we have
U ={3"+5"} =[2,8], so that

A=U1—U002:8—10=—2,
B:UI—U001=8—6=2.

Hence, in F(f), where f(X) = (X — 3)*(X — 5), the sequence (—2,0,2),
which is in the class of the pre-image of U, has the closed form

—-2n 2
n nl o {4 n—1 _ gn ltiplvi by — 2
{3(5—3)3 + (5_3)25 } {4n3 5"}, multiplying by ,

~ {4(n + 1)3™ — 5%} shifting once to the right,
~ {4n3™ — 5 - 5™}, changing the A’ coefficient.

Hence, {4n3™ — 5 - 5"} has a 2/3 density of maximal divisors. So does the
sequence (—2,0,2) in F(h), where h(X) = (X — 3)(X — 5)2. In closed form
this sequence is

—2n 2
n ny 2 n—1 n
{5(3_5)5 +(_2)23 } {2n5""1 + 3"}
~ {2(n +1)5" + 3"t} ~ {2n5" + 3 - 3"}.
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Hence,
(13) P ({3"+5"}) = Praz ({4n3" — 5™"'}) = Prge ({2n5™ + 3711} ;

these three sets of primes having a 2/3 natural density (we may not have
strict equalities in (13), since we took sequences that are equivalent to
(_2, 0) 2) ) .

In general, the sequence

(14) {(61 — 02)no7 — 677}

is in the class of the pre-image through the isomorphism ¢ of the class of
the Companion Lucas sequence {67 + 63} in F(f;). Thus, for rule (3), this
sequence is {n2" — 1} and it has a 17/24 density of maximal prime divisors,
since §(2" + 1) = 17/24 (see Lagarias’ paper [Lag], or [Ba, Theorem 3.1.3]).

Let us return to the Cullen numbers. The sequence {n 2" + 1} belongs to
the rule f(X) = (X — 2)?(X — 1), which in turn is related to the quadratic
rule fi(X) = (X —2)(X — 1). Since it is known that the only sequences in
F(f1), whose density of prime divisors is one, are in the class of the Lucas
sequence (the identity in G(f;)), Corollary 10 tells us that any sequence
with a density of maximal divisors equal to one in F(f) must be in the weak

equivalence class of the identity (1,1,1).

But we saw that every odd prime is a maximal divisor of {n2™ + 1}.
Hence, 6,05(n2™ + 1) = 1. Thus, we must have {n2™ + 1} ~ (1,1,1). This
fact can be verified directly :

— E _ n — _ n—1

1,1,1) = {(2 1) 2 +1} {(n-2)2"1 +1}
~ {(n — 1) 2™ + 1} shifting once to the right, i.e. replacingn — 1 by n
~ {n2" + 1} replacing A’ = 1 by 0.

§85. Law of Apparition of Prime Maximal Divisors.

Every odd prime is a maximal divisor of the Cullen numbers at p — 2. The
results of this Section will show that, in fact, for any sequence in the class
of the identity, one can compute the exact term numbers at which a prime
p appears as a maximal divisor.

But first, let us mention results about ranks and periods of division by a
prime p.

Recall that for the Lucas sequence L(6,,6;) = [0,1];, = {(6} — 63)/(6, —
)}, the first positive term number r for which a prime p divides L(6,, 6;)(r),
if it exists, is called the rank of p. This rank will be denoted by r = rky, (p).
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The next proposition due to Lucas expresses the fact that prime division in
L(6,,86,) is periodic of period r. Note that this proposition is valid whether
f1(X) € Z[X] has integral roots or not.

Proposition 11 (Lucas’ Law of Apparition). Ifp | 6.0,, then 3r € Z*
such that
p | L(61,6:)(n) < r | n.

Moreover if p J( 20,05, then r | p— (%), where (;) is the Legendre
symbol and A = (6; — 62)*.

Proof. See Lucas’ memoir [Lu], Sections 24 and 25, pp. 287-297. O

Remark. If a prime p } 6,6, is a divisor of some sequence U € F(f), then
the period with which it divides U is equal to its rank 7.

Definition. Let f be a cubic rule and p be a prime. The rank of mazimal
division p = rk;(p) of p is the least p > 0 such that p is a maximal divisor
of [0,0,1]; at p (if it exists).

Remark 12. IfV € F(f) and p is a maximal divisor of V not dividing the
product of the roots of f, then maximal division of V' by p occurs periodically
with period p = rk;(p). In particular, if V' =[0,0, 1], then

P | masV at n <= p|n.

In fact, if the roots of f are integral and distinct in absolute value, then,
using Theorem 4.4.1 of [Ba], we see that p is the least common multiple of
the ranks of p in the Lucas sequences L(0;,6,), L(6,,03) and L(6.,6s).

We proceed to establish a law of apparition for cubic rules of the type
F(X) = (X - 6)*(X — 6>) € Z[X].

Theorem 13 (Law of Apparition for cubic rules with a double root). Let
p be a prime. If p | 20,0,(6, — 6-), then

P | maz[0,0,1]; at n <= p=pr|n,
where T 1s the rank of p in L(61,6,) = [0,1]y,.

Proof. According to Remark 12 we only need to show that p, the rank of
maximal division of p, equals pr, i.e. k;(p) = p - Tk, (p).

By the Remark following Theorem 2, if p is a maximal divisor of U =
[0,0,1]; = (1,1,1) at n, then 67 = 67 mod p. But p } (8, — 6,) and
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67 =607 mod p => p| L(6y,6:)(n), which implies that r | n (note that
the rank r is well-defined since p } 6,6,). Hence, r | p. Now by (9)
(15)

p 1 63 P

— 0%+ =
27176, —6,)2 T 6:(6, - 6,)

U, = -9/=0 mod p,
”[m@—@)(&—%) ! P

since p being a multiple of r, we have 6 =65 mod p.

But p } 6,(6: — 6,), so that p=0 mod p. Hence, p | p.

Since p | 26,0, and 6;,0, € Z, we have by Proposition 11 2 < r < p — 1,
which implies (p,) = 1 and therefore pr | p.

It remains to see that p | Up,, Upr41, but not uy.,,. We already can check
that p | u,, by replacing p by pr in (15); the two other divisibility conditions
can be checked just as readily. O

Consequence. Let g be a prime. Then, Vp prime, p } 296,0,(6; — 6,), we
have
q|rki(p) <= q|rks(p)-

This is an immediate consequence of Theorem 13. It is of interest since
the density of primes whose rank is a multiple of a given prime ¢ is known
in the case of a quadratic rule with integer roots (see [Ba], Proposition 2.1.3
and Theorem 3.2.3). In particular, it is well known that the prime divisors of
the Companion Lucas sequence C;(0;, 6;) are essentially these primes whose
rank in [0,1];, is a multiple of two. Hence, sequence (14) has the property
that its divisors are the primes of even rank in [0,0,1];.

We prove an analogue of Theorem 13 for general sequences in the identity
class. But we first need a lemma.

Lemma 14. Let p be a prime 1(20102, with rank r in L(60,,60;) and po be an
integer satisfying 0 < po <p—1. Then

F>0:r|p+ip and po+ip <pr.

Proof. Consider the numbers py + ip, 0 < ¢ < r — 1. These r numbers form
a complete residue system modulo r, since

0,,0,€Z = A7 = (%)=1 = r}p, andso

i#j = (po+ip) —(po+jp)=(—j)p#0 mod r.

Hence, 3i, 0 < i < r — 1, such that r | po + ip.
But, pp+ip<p+ (r—1)p <rp. a
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Theorem 15. Let U = (A, A', A) € F(f) and p be a prime not dividing
2A9192(01 - 02). Then

plma:c<A7A’,A> atn <= n=ng+ Mpr, A >0,

where T is the rank of p in the Lucas sequence L(6,,0;) and ng is the smallest
non-negative integer divisible by r with

no =0,/(6, —6) - (A'—A)/A mod p.

Proof. Let py be an integer such that pp = 6,/(6; —6,) - (A’ — A)/A mod p
and 0 < pp < p—1. Then, by Lemma 14, we know that 3Iny = po +1ip, + > 0,
such that r | ng and ne < pr. Note that ng = po = 6:/(6; — 6,) - (A’ — A)/A
mod p.

We can directly check that p is a divisor of U at nyg, i.e. that

Upy = Ung+1 = 0 mod b,
Upgt2 = AO7° Z0 mod p.

We will only check here that u,, =0 mod p.
Thus,

u _ < Ano _ A' > 6710 " A
o 01(01 - 02) (91 - 02)2 ! (91 - 92)2

n
03°,

and since r | ng, we have 67° = 6;° mod p. Hence,

u :[( Ang _ A’ >+ A ]0”0 mod
= \00—0) (0-0,)2) " (6 —0)2] P

but ng = 6,/(0, — 0,) - (A' — A)/A mod p, so

u:( A 6 A-4 A 4
"= \0,0,—0,) 0—0, A (0 —05)° (6, —0,)°

A -4 A-A ng —
((91 —6,)? + (6, — 02)2) 07° =0 mod p.

) 07° mod p,

il

Now, since by Remark 12, division is periodic with period pr and the
number ng is less than pr, it follows that ng is the first term at which
maximal division occurs. Hence the theorem follows. O

The most general sequence V in the class of the identity (1,1,1) is of the
form V = (Ay, A}, By) = (A6%, A,, A0%), where k is some integer. That
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is V = {v, = upyx} is a shift of the sequence U = (A4, A’, A) by k places.
One can compute, by induction, the relationship between A} and A’, since
for k = 1 and k¥ = —1 we have respectively A} = A'0, + A(0; — 6;) and
A", = A'07" — A67%(0, — 6,), and obtain

(16) A;c = A’Of + kAOf"l(Oz - 91), Vk € Z

To find exactly where maximal division occurs in a given sequence in the
identity class, one may use the following theorem.

Theorem 16. Let V = (Ay, A}, By) = (A0%, A}, AG%) € F(f), where k € Z
and A}, = A'6* + kA0 (0, —6,). Let p be a prime not dividing 2A0,0,(6, —
0;). Then

D | mezV atn <= n=mng+pr, A >0,

where r is the rank of p in the Lucas sequence L(0y,6,) and ng is the smallest
non-negative integer such that ny + k is divisible by r and

ny=6:/(6: - 0,) - (A} — Av)/Ay mod p.

Proof. First observe that

L6 AL—AF 9, A" +kAGEI(6, — 6,)] — AB

=96,  A6F ~6,-6, A6
— 01 (A' — A)G{“ 0, — 91
=0.-0, Ak TF g
=ng—k mod p,

where ny is the smallest non-negative number divisible by r and congruent
to0 6,/(6, — 0;) - (A'— A)/A mod p.

Now, by (16) we know that V is a shift of U = (4, A’, A) by k places. So
we know by Theorem 15 that maximal division of U by p occurs at every
ng + Apr, XA > 0. Hence, maximal division of V by p must occur at every
(no — k) + Apr, so that ny must be the first non-negative subscript of the
form (no — k) + Apr, A € Z.

But since

ng =no—k mod p,

17 = — k)4 dpr =
A7) np=(no—k)+pr {r|ng+k,

the theorem follows. To see that (17) holds, note that the direct implication
= ) is clear and that if n) =no —k mod p, then nj = (no — k) + pp, for



CUBIC RECURSIONS WITH A DOUBLE ROOT 353

some integer u, i.e. ny 4+ k = ng + up. But,

T I No — I
T = r|p.
rnh+k P #
Hence, ny is of the form (ng — k) + Apr. W

Application. We use Theorem 16 to check maximal division of the gen-
eralized Cullen sequence at p — 2. Indeed, from (8) we have

c _( n —292—01)+ 0293
To\Oi -0 (60-6:)2) (61— 6.)*

so that C' = (6,,20, — 6,,6,) and k = 1. Now,

6 (20, —6,) -6

: — -2 mod p.
6, — 0, 0, e

1
Ty

Hence, maximal division occurs at the smallest ng of the form —2+pup, u >
1 such that ng + k = ng + 1 = pp — 1 is divisible by r. But if 4 = 1, then
ng + 1 = p — 1 which is a multiple of the rank r. Hence, n; =p — 2.

86. Generalizations.
The results of this paper readily generalize to the situation where
f(X) = (X - 61)*9(X) and f1(X) = (X — 61)g(X),
and f;(X) is a non-degenerate monic polynomial in Z[X] with roots
01,62, ...,0,.

We state some of the analogous results below without proof.
If the sequence [0,0,...,0,1]; has the closed form

(mn +71)07 + 7205 + ... + Ymb,
then one defines a standard form for a sequence U € F(f) as
(A171n + AIl'Yi)g? + A2720;l +...+ Am’Ymogr

We write U = (A;, A}, A2,..., An). Weak equivalence of two sequences is
defined via shifting of the subscript, multiplication by a rational scalar and
change of the number A]. The product of two sequences

U= (Al,All,Ag,...,Am> and V = (Bl,Bi,B%...,Bm)
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is defined to be the sequence
U . V = (AlBl,A;Bi,Asz, e ,AmBm)
Theorem 2 generalizes as follows.

Theorem 17. Let U = (A;, A}, Az, ..., Am) € F(f). Let p be a prime not
dividing 6* - [[i~) Ai0;, where § = [[,<;cj<m(0; — 6:). Then :

P E Proe(U) <= Ine€N: A6} = A4;0] mod (p), Vi,j € {1,2,...,m},
where (p) is the ideal generated by p in the root field Q(6,,...,0,,).
Defining the projection map ¢ : G(f) — G(f1) by
o(Cl(A;, A}, Azy...,Ap)) = Cl (A1, A,y ..., Ap),
we have a generalization of Theorem 4 in the following statement.

Theorem 18. The projection map ¢ is an isomorphism from (G(f),-) onto
the group (G(f:),-) which preserves mazimal division by any prime p.

Example. If f(X) = (X — 3)%(X — 2)(X — 1), then the identity sequence
[0,0,0,1]; = (1,1,1,1) is the sequence

(G-H et

In [Ba, Proposition 4.6.6] the sequence (—1,1,1) in F(f;) was shown to
have a density of maximal divisors equal to 65/224. But ¢~!(Cl(-1,1,1)) =
Cl(-1,0,1,1) and the sequence (—1,0,1,1) is weakly equivalent to

2’!1- n n+2 n n+3
(~4,0,4,4) = { - 78" +27 — 11 ~ 203" — 2" + 1),
(Multiplying by —1, shifting once to the right and putting A; = 0.)

Therefore, 6(2n3™ — 2"*3 + 1) = 65/224, i.e. about 29% of the primes

divide three consecutive terms of the sequence.
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