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#P-ESTIMATES OF HOLOMORPHIC DIVISION FORMULAS

MATS ANDERSSON AND HASSE CARLSSON

We prove that an explicit formula, due to Berndtsson, for
representation of solutions of holomorphic division problems
in a strictly pseudoconvex domain admit ifp-estimates and
provides a solution to the following problem: Given bounded
holomorphic functions Gi,...,Gm such that Σ | G j | 2 > £2, and
φ e Hp, find Uj e Hp such that ΣGjUj = φ. The estimates
are based on careful estimates of Hefer functions and a Γl-
theorem for Carleson measures, due to Christ and Journe.

1. Introduction.

Let Gι,G2i.,Gm be holomorphic functions in some pseudoconvex domain
D in C 1 without common zeros. For any holomorphic φ one can then find
holomorphic ixχ,..., um such that

(1.1) ΣGjUj = φ.

Formulas for explicit solutions of such division problems were introduced in
[Bl]. These formulas have been used by several authors to obtain estimates
in various situations and norms, see e.g. [B2] and the references given there.
Our main purpose in this note is to show that appropriate such formulas
admit Hp estimates in strictly pseudoconvex domains. More precisely we
have

Theorem 1.1. Let D be a strictly pseudoconvex domain with C3 -boundary
and let Gι,...,Gm G H°° be given such that

for some δ > 0. Then there are explicit integral operators Ti,...,Tm which
are bounded onHv,l<p< oo7 take H°° into H°° BMO and satisfy

A function / is in H°° BMO if it is holomorphic and its boundary values
can be written as a finite sum Σ,a,jbj where a,j E H°° and bj G BMO.
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Thus, in strictly pseudoconvex domains, we have solved, for 1 < p < *,
what we call the iϊp-corona problem:
Given Gu - , Gm € H°° such that (1.2) holds, find to each φ € Hp solutions
Uj of (1.1) in Hp, if p < oo. If p = * it means that, for each φ £ H°°, one
has to find a solution in H°° BMO.

Of course, the true corona problem is to find bounded solutions Uj when
φ is bounded.

For 0 < p < 2 this problem was solved by L2-methods in quite general
pseudoconvex domains with C2-boundary in [Anl], [An2], for an arbitrary
(even infinite) m. The proof was based on a modification of a technique due
to Skoda, see [Sk], where L2-estimates of solutions of division problems are
obtained.

Another way to deal with division problems is to use the Koszul complex
to reduce it to (systems of) d-equations. When m = 2 (or n = 1) this is
particularity simple as one just ends up with a finite number of equations
du = / where / is a (0,l)-form. In this method, as well as in the method
exploited in this paper, one starts with a smooth solution jj to Σ Gjjj =
1. On can make such a choice so that djj are Carleson measures, and
then one can apply any popular weighted solution formula for 5 and get a
solution of the iϊp-corona problem in a strictly pseudoconvex domain for
1 < p < *, see e.g. Varopoulos [VI]. However, the simplest choice jj =
Gjl\G\2 requires a Wolff-type estimate of the corresponding d-problem. This
approach was carried out for the ball in [Am] and in [AnC2] in the general
strictly pseudoconvex case.

When the number of generators exceeds two, the situation is more com-
plicated. In this case the Koszul complex provides a scheme for solving the
division problem by iteratively solving equations du = / for various (0, q)-
forms q. In §7 we indicate how one can use integral formulas to solve the
9-equations and obtain iϊp-estimates for the division problem.

However, our main purpose is to prove Theorem 1.1, i.e. solve the Hp-
problem with Berndtsson's explicit formulas. Also this method is consider-
ably simpler when m = 2. The main ingredients in the proof are careful
estimates of certain Hefer functions of a bounded function, see §4, and the
Tl-theorem for Carleson mesures from [ChJ].

The plan of this paper is the following. First we recall some preliminary
facts about integral formulas and harmonic analysis in strictly pseudoconvex
domains (§2) and then in §3 we give the proof of our main result, relying on
a some propositions which are proved in the succeeding paragraphs, §4-§7.
Finally in §8 we briefly discuss the Koszul complex approach.
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2. Preliminaries.

We start by recalling some facts about harmonic analysis and integral repre-
sentation in a strictly pseudoconvex domain D = {p < 0} with C 3 boundary
(although C2 is enough at several instances) where p is strictly plurisubhar-
monic in a neighborhood of D and dp φ 0 on dD. For more details see e.g.
[CoW], [AnCl] and the references given there.

A vector v at p G dD is complex tangential if v is a tangent vector, i.e.
dp\pv = 0, and dcp\pv = 0. Here dc is the real operator i(d — d). A K-
basis (K =Koranyi) at p G dD is a basis of neighborhoods Bt(p) C dD,
t > 0, at p such that Bt(p) has length ~ \/t in all complex tangential
directions and ~ £ in the last one. Then clearly |i?t(p)| ~ £n. Sometimes we
consider neighborhoods Qt(p) C ϊ) which have also extension ~ £ into D, so
that |Qί(p)| ~ t n + 1 . Any two if-bases 5 t(p) and 5^(p) are equivalent, i.e.
Bct C i^ C Bt/C, t > 0, for some constant c > 0. For instance, it x25 •••Ĵ 2n
are local coordintes at jp G cλD such that x(p) = 0 and rfx2|p and dc/9|p are
colinear, then Bt(p) = {x; |x2 | + Σx) < *} is a ϋΓ-basis at p.

If now Bt(p) is any continuous choice of a if-basis at each p G 5JD one can
put σ(p,z) = inf{£; 2r G #*(/>)} and d(z,w) = |(σ(2f,κ;) +σ(tί;, 2r)). Then

Since also

is a homogeneous space, so a lot of tools of harmonic analysis are avail-
able. By replacing Bt(p) by Qt(p), d(ζ,z) extends to D x dD.

For p > 0 we put

= (/ 6 O(I>); sup / \f\*dσ < oo
( 6>0 a ^ e

J

where De = {p < —e} and dσ is (some) surface measure. It is well-known
that any / G Hp has admissible (i.e. "non-tangential" with respect to the
balls Bt(p)) boundary values /* a.e. [dσ] and that / is the Poisson integral
(or the Bergman-Poisson dito) of /* if p > 1.

An / G L\oc{dD) is in BMO if

s u ps u p i n / M

t>0,p€dD \Bt(p)\

where Uβt(p) is the mean value of u over Bt(p). We also put BMOA =
BMOΠO(D).
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Since dD is a homogeneous space there is also an atomic Ή1 -space on dD

whose dual is BMO.

A measure μ in D is a Carleson measure if

\μ(Qt{p))\ < Ctn, tedD, t>0,

and for such measures the Carleson-Hόrmander inequality holds;

J\g\pdμ<Cp\\g\\Ή» 9eH", p>0.
D

If / G i P , p < oo, then

(2.i) / ( - P\dfγ + \dP Λ
D

and if / e BMOA, then

(2.2) -p\dff +

is a Carleson measure with Carleson norm bounded by

For smooth functions / and g we put

(2.3) (f,g)=Jfgdσ.
dD

Let H% = {/ e H1; /(0) = 0} (0 is any point in D). Via the pairing (2.3),

BMOA is the dual space of HQ.

If υ(ζ, z) :D x I> ->• C" satisfies

2Rew > -p(C) - p{z) + δ\ζ - z\2

and

dζϋ\ζ=z = -dzυ\ζ=z = -dp(ζ).

then Qtip) = {ζ E D; \υ(p, ζ)\ < t) is a ϋf-basis at p (take local coordinates
Xi = —p, x2 = Imu and x3,...,x2n arbitrary). In particular, |υ(C z)| is
compatible with d(ζ,z), and we have the well-known estimates

(2 4) ί dσ{w) * da

dσ{w)
JD\V(W,Z)\»+°

ΐ 1 \ a

{-P(Z)) '
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and

to 7) ί (-pWy-'dλW ( l γ
K ] JD \υ(w,z)\»+"+β ~\-p{z)) '

if a and β are positive. Furthermore, see [AnCl, Lemma 5.2], if α, β < n

<
d(w,z)°d(w,ζ)0 ~ φ ,

if a + β > n and the integral is bounded if α 4- β < n.

We also need the simple estimate

(2.9) \v(w,z)-v(w,ζ)\

see [AnCl, formula (6.1)].

One can choose such a v that is holomorphic in z for fixed ζ G D, and for

the rest of this paper υ denote such a choice. Then we have the representation

formula

where q = Σ Qjdζji Σ Qj(zj ~ (j) ~ v(ζ,z) a n d q(ζ,z) is holomorphic in z.

Moreover, q(ζ,z) = dp(ζ)+O(\ζ-z\) and Bq = ddp+O(\ζ-z\). Clearly, Hu

is holomorphic in D if w G Lι(dD) and, by the Cauchy-Fantappie formula,

iϊί/ = ?i if u is (the boundary values of) a holomorphic function. In fact, Hu

has admissible boundary values a.e. if u G Lp(dD), p > 1, and this operator

maps Lp(dD) into Hp, BMO into BMOA, and Uι boundedly into Lλ(dD).

When z G dD, we let Hu(z) denote the boundary values of Hu. This

operator is closely related to a singular integral operator on dD. Let

<7Λ "

and
Hpvu = lim Hδu.

Then,

Hu = -u + Hpvu.

In particular, if G is holomorphic, then HpυG = | G . Furthermore, if H*u =
suP<5>o l^tf^l a n d Λ^ is the Hardy-Littlewood maximal operator on dD (w.r.t.
the balls Bt(p)), then by Cotlar's inequality, see e.g. [J],

H*u <Mu + MHpvu.
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Thus

(2.11) Ld(ζ,z)>δ V(ζ,z)n
<C\\G\\H~,

with C independent of δ.

Finally we also recall the weighted representation formulas

3au(z) = ca I
JD

for holomorphic functions u and a > 0. In fact, if a —> 0 one obtains (2.10).

3. The division formulas.

Suppose that Gι^.^Gm are given holomorphic functions without common
zeros, so that \G\2 — Σ \Gj\2 > 0? a n d let Hlj(ζ,z) be Hefer functions to Gj.
This means that they are holomorphic solutions of

1=1

We also define the (l,0)-forms,

(3.1) h
έ=l

and

(3.2)

If p is a strictly plurisubharmonic C3 defining function for D and v(£, ̂ ) and
the (1,0)-form q = X) Q^O a r e as in §2, then (for a > 0) we can define the
operators, cf. [Bl],

|=* hKl Λ ... Λ hKkΛgKι Λ

v(ζ,z) n+α-A:

Here
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If φ is holomorphic and the integrals converge in some reasonable way
then, see [Bl],

so Tφ provides a solution to the division problem. Hence Theorem 1.1 is a
direct consequence of the next theorem.

Theorem 3.1. Let D be a strictly pseudoconvex domain with C3-boundary
and Gi,..., Gm bounded holomorphic functions in D such that

m

(3.4)

for some δ > 0. Then for a > min(n,ra — l)/2 each operator Tj defined
above can be written as a sum £ G£T£, where each G£ is a product of some
of the functions Gj and the operators T£ take Hp into Lp(dD) , 1 < p < oo;

and H°° into BMO.

Remark 3.1. Since

0 = dl =

9ii—i9m a r e linearly dependent and hence the terms for k > m vanish in
the sum (3.3). In particular, if m = 2 then only terms with one factor hj
occur; this simplifies the argument in §6.

Remark 3.2. The formula (3.3) provides a solution to the division problem
if G/\G\2 is replaced by any smooth solution 7̂  to J2 GjΎj = 1. In particular,
one can choose jj such that such that §j = djj are Carleson measures
(see [Ca] for n = 1 and [V2] for the multidimensional case). Then still
Theorem 3.1 holds and, as for the Kozsul complex method cf. §7, this choice
considerably simplifies the estimation of the, though less explicit, solutions.
However, even in this case the estimates of the Hefer functions in Proposition
3.2. are required.

We now state some results (mainly) about the Hefer functions, Proposi-
tions 3.2 and 3.3, from which we can conclude the proof of Theorem 3.1,
whereas the proofs of these propositions are left to later paragraphs.

Proposition 3.2. IfGi,..., Gm are bounded holomorphic functions and the
forms gj are defined by (3.2), then

(3-5)
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and

(3.6)

where \G\ = JΣ™ \Gj\2. Moreover, there are "good" Hefer functions H^
corresponding to the Gj, such that for z € dD the Hefer forms hj defined by
(3.1) satisfy

(3.7) \h1Λ...Λhk\<
\ ) l i k]~

and

(3.8)
d(ζ,z)1.

The estimates (3.5) and (3.6) are simple and well known whereas the
estimates of the Hefer functions are more delicate. We postpone the proof
to §4 where also our exact choice of the Hefer functions is described.

R e m a r k 3.3. Using Proposition 3.2 and that

k-0p|<IC-*l<

we get (if a is large enough) the rough estimate

(3.9) (ΓMsfψm.
JD "(so £j

Unfortunately this integral is infinite if z G dD but if we for some reason can
gain just an e in the exponent in the denominator, then the Lp(<9jD)-norm
of the integral is less than a constant times ||</>||#p In fact, if φ is in BMOA
or even in Hp for a sufficiently large p, then the integral is bounded. On the
other hand, if φ is in H1 then by (2.6), the L1 (dD)-noτm is

ID

By this observation we may diregard various error term.

We will also need

Propos i t ion 3.3. If C is a smooth (l,0)-field, then the forms gj from
Proposition 3.2 satisfy the following additional estimates,

(3.10)
{-PY
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and

(3.11) |a,

To decompose Tj we first put each factor G£(z) of Gjis occurring from the

factors I —r^—— I in (3.3) outside the integrals (they will be incorper-

ated in the factors Gι(z) in Theorem 3.1), and for simplicity we just denote
the remaining factor by Q. Thus Q is just a product of a certain number of
factors Gj/\G\2.

First consider the terms corresponding to k > 1. In view of Remark 3.3
the factors dq can be replaced by Bdp (modulo negligable terms) and to
simplify notation we omit them in the sequel. They play no other role then
to achieve full bidegree in the dζ. Any remaining integral from (3.3) is then
either

TκΦ(z) = ί {-P^GQK, Λ ...ΛgKkΛMκ(ζ,z)φ(ζ),
JζeD

where

(3.12) i « t (C,,) . (-^ > * ( ( '

or

T'κΦ(z) = / (-p)*-1gdpΛgKιΛ...ΛgKhΛM'κ(ζ,z)φ(ζ),

where

(3.13, MίK,,)~(-pTtiAh"^^K \

In view of (3.7) and (3.8) (and assuming that Gj and φ are smooth up to
the boundary) Tκφ(z) and T'κφ(z) has meaning even for z G dD. However,,
in order to be able to estimate them we are forced to decompose the kernels
Mκ(C, z) and M'κ(ζ, z) further. We say that a locally integrable function b in

D is a Carleson function if ||6||^ = the Carleson norm of — p|6|2-f sup(—p\b\)2

is finite.
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Proposition 3.4. Any kernel MK or M'κ can be written as a sum
Y^Gι(z)Mί{ζ^z), where each Gι{z) is a product of some of the Gj and such
that the dual operators Λi} satisfy the following estimates.

a)

(3-14) IIΛί^lU- < (

If dτ is a Carleson measure, then

(3-15) JD\M*eψ\pdτ<\\ψ\\lP(9D)

for ψ in Lp(dD), 1 < p < oo, and

(3.16) / \MW\dτ< \\tl>\\w.
JD

b) Moreover, if C is a smooth (l,0)-field then

\\M*Mc <

(3.17) //
D

and if b is a Carleson function then

(3-18) I {-
JD

This proposition gives rise to the decomposition GιTι of each Tκ and T'κ
and hence of the proposed decomposition of T in Theorem 3.1 and is the
key point in the proof.

To estimate the boundary values of each Tέφ(z) we shall use duality, and
hence we integrate against some locally integrable function φ on dD. Then
by Pubini's theorem,

/ (Tiφ)(z)φ(z)dσ(z) = I {-p)^ggKi Λ ... ΛgκhM*eψ(OΦ(O,
JdD JCGDidD JζeD

or

/ (Tέφ)(z)φ(z)dσ(z) = f (-p^-'GdpΛgK, Λ ... ΛgκhMW(ζ)φ(ζ).
JdD JζeD

Now we apply the Wolff trick that allow us to increase the power of — p with
one unit at the cost of the action of a certain smooth (1,0)-vector field C
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on the rest of the integrand. In the ball C can be chosen as Σζj-£τ- Then,
modulo negligable terms e.g.,

(Ί*φ)(z)ψ(z)dσ(z) ~ / (-p)+C[ggKl A ... Λ 9κh]M*tψ{ζ)φ{ζ)
ΘD JζeD

and analogously for the other type of terms.

In view of Propositions 3.2 and 3.3 we get the estimate

ί (-p)ψG9Kl Λ ...ΛgKkC(M*eψ)(ζ)φ(ζ)
JζSD

ί {-
JCGD

(3.19)
dD

+

Ttφ{z)φ{z)dσ{z) (-p)\dG\2\M}φ\\φ\

I {-p)\dG\\CM*MΦ\+ t {-p)\dG\\M*tψ\\dΦ\,
JD JD

or

(3.20)

\f (T£φ)φ(z)dσ(z) < ί y/
\JdD JD

I V:rp\dpAdG\\CM*£<ψ\\φ\+ I yf=
JD JD+

We want the estimates

(3.21)

(3.22) \\Φ\\L*VD)\\Φ\\H*

and

(3.23) \\Ψ\\L~{dD)\\Φ\\m

for each term in (3.19) and (3.20). These together imply Theorem 3.1.

The first terms in any of (3.19) and (3.20) are handled by Holder's in-
equality, (3.14)-(3.16) and the Carleson Hormander inequality, as (—p)\dG\2

and y/^ldGWdp Λ dG\ both are Carleson measures, see §2.

The third term in (3.19) is by (3.15) and (3.16) estimated by
IMIL~(0£>)IMIHI and H^ll^ll^lk-, but the last estimate, cf. §2, can be
sharpened to H^II^II^IIBMOA? and hence we can interpolate and get the in-
termediate estimates (3.22). The third term in (3.20) is handled similarily.
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For the second term in (3.19) we notice that

\dG\\φ\<\d(Gφ)\

(and similarity for the second one in (3.20)) so it is enough to get the desired
estimates for the term

/ (-p)\dφ\\£M*έφ\,
JD

(letting φ play the role of both φ and Gφ) and this is accomplished as for
the third term(s), using (3.17) and and that CλΛ*tφ is a Carleson function
Ίΐφ is inL°°.

Finally we consider the term corresponding to k — 0 in (3.3),

G [(-p)» + n(-p)-ι8p Λq]Λ ( t y ) « - i - ^ j p L - = £ GιTιφ

where Tιφ are nothing but the weighted Bergman-type operator Ba acting
on the function Qφ, and the necessary estimate follows from

Proposition 3.5. Let Ba, a > 0, and Q be as before. Then

Tι:φ^ Ba(Qφ)

maps Hp -»• H", 1 < p < oo and H°° ->• BMOA.

Proof. We may assume that Q and φ are smooth up to the boundary. Then
Ba{QΦ) has continuous boundary values defined by the formula

Ba(GΦ)(z) = / B(ζ,z)(g(ζ)φ(ζ)-g(z)φ(z))dX(ζ)+g(z)φ(z),
JD

since Bal = 1. It is clearly enough to estimate the integral, and to this end
we integrate against some φ on the boundary and get by Fubini's theorem
modulo innocent terms

) -

Let

Pψ\Q = / \-p) -η-r-
JdD ^{Q,:

By the Wolff trick / is comparable to

/ QdφPφ
JD
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since v(ζ,z) is anti-holomorphic in ζ to the first order. It can also occur
derivatives of Q but as above these terms can be reduced to the case when
the derivatives occur on φ.

Now we can apply the Wolff trick again but with the vector field C instead.
We then get the terms like

/ (~p)dGdφPψ + ί {-
D JD

and both of these admit the estimates (3.21) to (3.23) by means of Proposi-

tion 7.1. This concludes the proof. D

4. The Hefer functions and proof of Propositions 3.2 and 3.3.

In this section we define our Hefer functions and prove Propositions 3.2 and

3.3.

First notice that the Cauchy-Fantappie representation formula (2.10) for

a holomorphic function G can be written

(w, z)G(w)dσ(w)G(z) = ί
Jd

}

dD v(w,z)n '

where A(w, z) is of class C1 (since p is assumed to be C3) and holomorphic

in z. Now

G(z) - G(ζ) = ί (ψ4n - π TJdD\v(w,z)n υ(w,ζ)n

A(w,z)-A{w,ζ)

Jai

A

, x G(w)dσ{w)

A(w, ζ)(v(w, ζ) — v(w,z))G(w)dσ(w)

v(w,z)kv(w,ζ)n+1-k

We can write

n

A(w,z) - A(w,ζ) = Σ/Aj(w,z,ζ)(zj - ζ , ),
1

for some C1-functions Aj (they are still C1 since A is holomorphic in z),

which in addition are holomorphic in ζ and z. Moreover, as v(w, z) =

Q(w, z) - (z — w), we have

(4.1)

v(w, ζ) - v(w, z) = -Q(w, ζ)-(z-ζ) + (Q(w, ζ) - Q(w, z)) -(z-w)

= (-Q(w, 0 + O(\z -w\))-(z-O = U°(z, C, w) • (z - C)
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and similarity

(4.2)

υ(w,ζ) -v(w,z) = (-Q(w,z)+O(\ζ-w\)) • (z - ζ) = U\z,ζ,w) • (z - ζ).

If we now let o = Σ Ajdζj, un = Σ Ufdζj and uk = Σ U]dζά Ίik < n we
can define the Hefer form of the function G as

A f A(w,ζ)uk(w,ζ,z)G(w)dσ(w) _^

The reason for having different definitions of uk when k is n and less than

n is merely technical. Then un = — q(z, ζ) + O(\z — w\) (with the obvious

definition of q(z, ζ)) so that the term corresponding to the error O is not

singular.

Proof of Proposition 3.2. The statements concerning the Qj are well known
and quite simple. First observe that if G is any bounded holomorphic func-
tion in Z), then

This follows e.g. from the representation formula (2.10), noting that

dzv{w, z) = -dp + O(\w - z\). Thus

(4.4) dG{z) = a(z)dp(z) + b(z),

where \a\ < l/(—p) and |6| < l/y/^^p. Next notice that

(4.5) gά = Σ

where ωjk are bounded. The estimates (3.5) and (3.6) now follow from (4.4)

and (4.5).

The corresponding estimates for the Hefer forms, (3.7) and (3.8), are more
involved. It is enough to prove that
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The term h°(ζ,z) is bounded. To see this, first observe that

, . v A(w,z) +O(\w - z\), t . x „„ ι x xa(w, C, z) = V \ Ha{z, C, z) + O{\w - z\))
Ά\Z, Z)

Hence

The estimate for the terms hk when 2 < k < n — 1 are also simple. By
(4.3), uk{w,ζ,z) = -q(ζ,z) + O(\ζ - w\), and hence by (2.8),

hk(ζ,z)

The terms /i1 and /ιn are harder as they involve singular integrals. We
first consider hn. As above it is easy to see that the contribution from the

O-term in (4.1) is bounded by O I . I. It remains to consider

f G(w)A(w,z)dσ(w)
q[Z^Ί υ{w,z)»v{w,ζ)

[ v{w,z)» U K O V(Z,C) \

Clearly the first term is O{l/d{z,ζ)). As the kernel in the second one is
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integrable, we may assume that z € dD. Write

G(w)A(w,z)

G{w)A{w,z) ( 1 _ 1 \

/" G(tt;)A(^,^)d()

Jd(w,z)>cd(z,Q v(w, z)nv(w,

1 /" GHA
v(^C) Jd(wtz)>cd(z,o υ(w,z)n

By (2.11), III is O(l/d(z,ζ)). When d(w,z) > Cd(z,ζ), then d(w,z)
d(w,ζ) and

| Π |

Finally, since d(w, ζ) < d(z, ζ) in I we have by (2.9) that

1 1

υ(z,ζ)
»,z)(d(w,ζ)+d(z,ζ))

d(w,ζ)d(z,ζ)

Thus by (2.8)

Summing up we have

By symmetry we get the same estimate for the term h1 (ζ,z), at least when
ζ,z G dD. But then the estimate follows for ζ G D from the maximum
principle, since d(z, ζ) ~ \v(z, ζ)\ and v(z, ζ) is holomorphic in ζ. D

Proof of Proposition 3.3. Just notice that the ω^ in (4.5) satisfy

Cώjk = O(dG).

Then

so the proposition follows from (3.5) and (3.6). D
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5. Decomposition of the Hefer forms, proof of Proposition 3.4 a).

To make the arguments as comprehensive as possible, we mostly restrict
ourselves to the ball. The general case is handled along the same lines, but
with a myriad of various error terms.

We first describe the decomposition of each Mκ(ζ,z) into the sum
Σ Gί{z)Mί((i, z). For this we need a lemma which we prove in a moment.

Lemma 5.1. Let D be the unit ball. The Hefer form h = Σ Hjdζj of some
bounded function G, as defined in §4, can be decomposed as

G(z)d(z-ζ) -
h = — \-h,

Φ0where h satisfies the same estimates as h, i.e.
1

(5.1)

but, in addition, also

(5.2)

h(ζ,z)-

~d(ζ,z)'
dp Ah

if d(z,z') < cd(ζ,z). Here d denotes the Koranyί distance, cf §2.

The lemma says that h is the sum of one term, Λ, which satisfies a certain
Holder condition in the z- variable (intuitively it is different iable a 1/4 time),
and one term that certainly does not, but which instead is quite simple. In
the one-variable case,

and here of course h is G(ζ)/(z — ζ). Notice that h is no longer holomorphic.

We are now prepared to make the decomposition of the kernels Mκ(ζ > z)
and Mf

κ(ζ,z) stated in Proposition 3.4. Recall that, cf. (3.12),

If we successively replace hKj with hKj, we get

(5.3)

M (c z) = Y(- )<*-^ hκi fc' *) Λ - Λ Gκ' ^d^ ' -^λ- ' Λ ^ ( C ^ )
i

+ (-

' v{ζ,zY+"-H{z,ζ)

]a-*=i hKl (ζ,z)A...A hKk (C, z)
' v(ζ,z)n+a~k
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which defines the desired decomposition Mκ(ζ,z)ψ = Y^,Gί(z)Mί(ζ,z). In
the same way we get from (3.13),

(5.4)

^α-#g Λ &*i(Ci*) A »• Λ GKj(z)d(z • C) Λ . . . Λ hKh(ζ,z)

t , λ α _ k qΛhKl(ζ,z) Λ...Λ hKk {

^~p' 2 'vTΓ

which defines the decomposition M'κ(ζ,z) =

Thus in the ball we get exactly k + 1 terms, involving respectively Gκx ?
....,Gκfc and 1. However, in the general case, products G£ with several factors
may occur.

Proof of Proposition 3.4a). Let M(ζ,z) denote one of the kernels Me from

(5.3) or (5.4). Using Proposition 3.2 one readily verifies that

(5-5) \M(ζ,z)\<

By (2.6), (3.14) immediately follows and also (3.15) is quite easily verified.
To prove (3.16), we must use the additional property

if d(z,z') < cd(ζ,z). This follows by iterated use of (5.2).
Now one can get (3.16) either by first applying the kernel to an atom, and

then use the atomic decomposition of Ή1, or use the duality with BMO. In
the latter case one has to show that the dual kernel takes Carleson measures
into BMO. Such a calculation is done e.g. in in §6 in [AnCl]. One just has
to check that essentially only the properties (5.5) and (5.6) are used. D

Proof of Lemma 5.1. By (3.7) and (3.8), (5.1) is obvious. Notice that, in the
ball,

υ)dσ(w)
\n+l-k'

where v(w, z) = 1 — w z. We claim that all the terms in this sum, but the
one corresponding to k = n satisfy (5.2). The problem with this term is that
it already is a singular integral when z G dD, and hence it does not admit
the estimate (5.2) (unless G(z) is Holder continuous on dD).
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To handle this term we first replace d(w ζ) by d(z ζ) and then the factor
υ(w,ζ) by v{z,ζ). Then we get the Cauchy integral

d(z ζ)G{w)dσ{w) _ G{z)d{z QCJ
Γ d(z ζ)G{w)dσ

JdD υ(w,z)nv(z, ~ υ(z,ζ)

plus the error terms

d((z - w) ζ)G(w)dσ(w)

Jd

(5.8) + c [
Jd

dD υ(w,z)nv(w,ζ)

d(z ζ)(υ(z, C) - v{w, ζ))G(w)dσ(w)

dD υ(w,z)nv(w,ζ)υ(z,ζ)

We have to verify that these two terms and the ones in the sum (5.7) for
k < n satisfy the estimate (5.2).

The estimate is based on (2.8) but we have to be careful only to apply it
when a and β are less than n. This is hardest for the terms in (5.8), and we
only consider them.

Let ho(ζ,z) be the last term in (5.8). Note that d(z,zf) < cd(z,ζ) for c
small enough, implies that d(z, ζ) « d(z',ζ). Also

Let

Δ = A(z z' ζw) = d^-0(v^0-v^0) _ d(z'.ζ)(υ(z',ζ)-υ(w,ζ))
υ(w,z)nv{z,ζ) v(w,zf)nυ(z',ζ)

Thus

ho(ζ,z)-ho(ζ,z')= / Δ(z,z',ζ,w) — — — .
JdD HWiζ)

To estimate this integral we split the range of integration into two parts.
First we consider w E A = {w; d(w,z) < Cd(z,z')}. In this part of the
integral we estimate the two terms in Δ separately. Note that when w E -A,
we have d(w,z) < cCd(ζ,z) and hence (if cC is small enough), \v(wX)\ «
d(w,ζ) « d(z,ζ), and by (2.9), \υ(z,ζ)-υ(w,ζ)\ < ( φ , t ι ; ) φ , C ) ) 1 / 2 Thus
the contribution from the first term is d(z ζ) times a factor that is bounded

by
dσ(w) d(z.

Jd(

Since dp Λ d(^ C) = 0 ( φ , C ) 1 / 2 ) the estimate follows.
As A C {w; d(w,z') < Cd(z,z')}, the second term can be estimated in

the same way.
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When w fi A, we use that Δ is smaller than the individual terms. By
successively replacing z by z1 in each of the factors we obtain four terms of
which

d(z-ζ)(v(z,ζ)-v(w,ζ))
Z\o = -Λ LJ)

v(w,z)n υ(w,z')nJv(z,ζ)

is the hardest. When w £ A, \v(w,zf)\ « |v(w, z)| « d(w, z). Thus by (2.9),

and

v(w,z)n υ(w,zt)n d(w, z)n+l

By (2.8) we obtain that JdD\A Δ o y),£c) ιs ^ z ' ̂  ^ ί m e s

C d(z z'Ϋ^idίz C) + d(w C))1^2

Jd(w,z)>cd(z,z') d(w, z)nd(z, ζ)d(w, ζ) W

as desired. (Of course 1/4 can be replaced with any e,0 < e < 1/2.)
For the first term in (5.8) we get the estimate

(but without the factor d(z ζ)). This follows by the same argument as
above. D

6. The Tl-theorem, proof of Proposition 3.4 b).

The proof of Proposition 3.4 b) relies on the Tl-theorem for Carleson mea-
sures, due to Christ and Journe, see [CJ]. Here we formulate it in the setting
of a strictly pseudoconvex domain. The proof is a straight forward modifi-
cation of the proof in the euclidean case.

Let T(ζ,z) be a kernel o n f l x dD. We say that T is a CJ-kernel if for
some e > 0,

d(ζ,z)r
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and

if d(z,z') <cd(ζ,z).

Let T denote the corresponding operator,

Tφ(ζ)= ί T(ζ,z)φ(z)dσ(z).
JdD

Theorem 6.1. Let D = {p < 0} be a strictly pseudoconvex domain with
C3-boundary, dp ^ 0 on dD and let T be a CJ-kernel. If T is L2-bounded,
i.e.

(6.1) f(-p)\Tψ\2<[ \φ\2dσ,
JD JdD

then T maps L°° into (the space of) Carles on functions. Moreover, ifTl is
a Carleson function, then (6.3) holds, i.eT is L2-bounded.

Of course it is the last statement which is of most interest.

To obtain (3.18) we need the following simple additional result.

Proposition 6.2. If T is an L2 -bounded CJ-operator as in Theorem 6.1,
ψ is in Ή} and b is a Carleson function, then

The proof of this proposition is standard, and we omit the argument.

We also need a complement to Lemma 5.1.

Lemma 6.3. With the same notation as in Lemma 5.1 we have

(6.4)

(6.5)

and

Ch <
(-p)\d(ζ.z)\'

dpΛCh <

C(h(ζ,z)-h(ζ,z'
d(z,z')')i

(6.6)
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ifd(z,z')<cd(Cz).

Proof. Prom Lemma 5.1 it follows that h(ζ,z)v(z,ζ) is a bounded holomor-

phic function i ζ. Hence

-p

and since Cv(z, ζ) is bounded, we get the first part of (6.4). The second part

follows in the same way, noting that dp A Ch = O(\ζ — z\)Ch + £(d(z -ζ) Ah)

and that y/υ(z,ζ)d(z C) A h(ζ,z) is bounded and holomorphic in ζ. The

estimates (6.5) and (6.6) follow in the same way. D

Proof of Proposition 3.4 b). Put Tι(ζ,z) = CM£(ζ,z) (for the definition of

Mι see §5, in particular (5.3) and (5.4)). The corresponding operator Tt

then satisfies Tιψ = CM$ψ.

There are two kinds of Tι = CM1 from (5.3),

(6.7)

T KΓλ — Γ ( ( \a-^d(z ζ) Ah2(ζ,z) A . . . Ahk(ζ,z)ψ(z)

JdD ^IΛ)^/ ^V^'ζ/

and

(6.8)

v«-^fti(C,*)Λ...ΛMC,*Mg)
dD υ(ζ,z)n+a-k

We first consider the term (6.7) with k = 1. It is

= c , , ^aψ(z)d(z-ζ)dσ(z)

which is an instance of a differentiated Poisson type integral, and the desired

estimate follows from Proposition 7.1 below.

If k > 1 in (6.7), Lemmas 5.1 and 6.3 imply that Te is a CJ-kernel (with

e = 1/4). In view of the Γl-theorem (Theorem 6.1) and Proposition 6.2, it

is enough to show that 7̂ 1 is a Carleson function.

First note that h2 can be replaced by h2 due to the presence of the factor

d(z ζ). If we then use the definition (5.7) (of/ι2), and apply Fubini's theorem,

we (formally) get

0 Λ d(tt • 0 A MC,») A -Me, z) G2{w)dσ{w).
v(ζ,z)n+a-kv(z,ζ)υ(w,z)i
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This computation is legitimate since the kernel is

\ \υ(w,z)\n ) ~

and hence integrable over dD x dD.
The resulting integral may be viewed as an operator acting on G2.

Claim. The corresponding kernel K(ζ,w) is a CJ-kernel.

Taking this claim for granted, to see that (6.7) is a Carleson function,
again by Theorem 6.1 it is enough to do this when G2 is replaced by 1. But
then the integral even vanishes because of

Lemma 6.4. In the ball the Hefer form (4.3) to the function 1 is identically
zero.

Proof. If G = 1, then the integrand in (5.7) is antiholomorphic and hence
the integrals vanish by the mean value property. •

In the general strictly pseudoconvex case the corresponding Hefer form is
~ dpO \1/Λ/\V\J + (9(1) which is also good enough.

To see that 711 from (6.8) is a Carleson function, we notice (cf. (5.3))
that it is the sum of operators of the type (6.7) acting on certain Gj (which
hence are Carleson functions by Theorem 6.1), plus the integral

£ / {-PT"^ l ' /> \'ή+α-fc — '
JdD V(Q,Z)n+a k

which by the mean value property is

and this is a Carleson function if a > k/2. Hence Proposition 3.4 is proved.

Proof of the claim. The kernel is

K(C w)- £ V (-P)a~^ f d(z-QAd(w-ζ)Λh3(ζ,z)Λ..Mζ,z)

f^v(w,On+1-J Jz€dD v(ζ,z)"+"-kv(z,ζ)v(w,Zy

Cancelling a suitable power of -p/\υ\, we obtain by (2.8)

\Klζv,)\<Y {-p)~1+lβ ί
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and hence it satisfies (6.1) with e = 1/4. Moreover, since the exponent of
d(w, z) is at most n — 1/2 in the integral, it also satisfy (6.2) with e = 1/4,
by the same argument as for Lemma 5.1. D

The terms occurring from (5.4) are handled in the same way. This con-
cludes the proof of Proposition 3.4 b).

7. Poisson-type integrals.

Let p(ζ) and v(ζ,z) be as before and put

Pψ(ζ) =

where ak(ζyz) is C1 and O(\ζ — z\k). Then we say that Pψ(ζ) is a Poisson-
type integral. For instance, the Poisson-Szegό integral in the ball is of this
type. Another example is the dual of the approximate solution kernels for
the dd-equation from [AnCl]. However, the interesting example in this
paper is the integrals in the proof of Proposition 3.5 and in (6.7) for k = 1.

Our main result is that a Poisson-type integral satisfies the same estimates
as the integrals M}ψ in Proposition 3.4. For the reader's convenience we
reformulate it.

Proposition 7.1. Let P be a Poisson-type integral
a) If dτ is a Carleson measure, then

(7.1) / \Pφ\pdτ < \\ψ\\LndD)

JD

for ψ in Lp(dD), 1 < p < oo,

\Pφ\dr < \\φ\\w
ID

and

II^IU- < IMU-(eD).

b) Moreover, if b is a Carleson function, then

j {-p)\CPφ\\b\<\\φ\WA\b\\c.
JD

JD(-p)\cpψ\2<\\ψ\\l2(dD),
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and —p\CPψ\2 is a Carleson measure (i.e. CPψ is a Carleson function) if
<ψeL°°(dD).

Proof. The proof of part α) is similar to the corresponding one for M/. It

just depends on the estimates

<

and

To prove part £>), first notice that

and

if d(z,z') < cd(ζ,z). In view of the Tl-theorem, it remains to show that
CP1 is a Carleson function.

Choose local coordinates on D at some point p G 91?, C — {l/iχ2i •• j^2n)5

such that y — —p. lϊ z — (0, t 2 , ...,£ 2 n),

v(C> ̂ ) = y + *« ' (* ~ x )

where a\ζ=z = dcρ\ζ and Re^/3j f c(^ — Xj)(tu ~ χk) ^ ί |ί *~ ̂ |2? for some
ί > 0, cf. §2. Moreover,

where β"k satisfy the same relation as β'-k. To simplify notation, in the sequel

we denote any of them by

y±ia-(t- x) + ̂ βjk{tj ~ X3)^k ~ χk)

Then for ζ = (y, x) near p, modulo negligable terms we have

y<O((\χ-t\+yy)χ(t)dt
( 7 2 ) Pl(vx)=f y
V " ' KU' ' Jt(y± ia -(t-(y± ia -(t-x) + Σβjk(tj - Xj)(tk -
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where χ(t) is a cut-off function.

To begin with, we assume that C only involves derivatives of # 2, •• >#2n
After a translation in the integral in (7.2), we get

and hence

Pl(y,x)= [
Jt

,x) =
Jt(y±iά

y<O{{\t\+yf)χ{t + x)

| + 1

and thus it is a Carleson function.

If £ = ~ , we can fix x — 0, and assume that

v = y± iat2 +

We put t' = (ί3, ...,t2n) an we may assume that O(\ζ — z\k) is ί?(|^|fe) since
O((y + \t2\)k) gives rise to a less singular integral. Then

y<O(\tf)χ(t)dt

t (y ± iat2 + Σj,k>3 βjktjtk)n+e*2

We now make a change of variables, by putting t2 = ys2 and tj = i/ys^ for
j = 3,..., 2n. Then we get

Pl(y,0)= ί
JS

O(\s'\k)χds

ί 1 ± iδίs2 + Σj k>3 βjkSji

where a = α(y, j/52, v/y^s, •••, y/ys2n)-» so that

—α - 1 + s2 + y—j ,

and analogously for βjk, χ and O. Thus,

s i m i lar
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O{\s'\k)(O{s2) + O(\sf)) ίθ(l) + O(s2) + O Oφi) xds

/ / I \ n+e-f J+l
± ιas2 + 2^7 A ; >31

which after substituting back, yields the estimate

The latter integral is bounded if e < 1/2 and ~ y1/2 e for 6 > 1/2, and again

it follows that j - .P l is a Carleson function. D

8. The Koszul complex approach.

We conclude this paper with a brief discussion of the Koszul complex method

for solving division problems of our kind. The case with two generators is

already studied in [AnC2]. It just amounts to solving one single 5-equation

du = w for a certain (0,l)-form w. Even in this case, the solution could be

simplified by using Proposition 7.1 above. In this case the equation to be

solved is du = to, where

w = ojφ = Gιdφ2 — G2dψιφ,

where we have used the notation from §3 (so that ψj are a smooth solution

to ΣGjψj — 1). Boundary values of a solution to du — w is given by a

formula of type

K w { z ) = ί (~p)aw A 0(1) + {-Py-ιw A dp A 0(K - z\)

where the functions O are C1. To estimate the solution we integrate against

ψ(z), and get

/ Kw(z)φ{z)dσ(z) = / w ATw+ I -==w A dp A T'φ,
JdD JD JD V ~ P

where

(-p)°O(l)ψ(z)dσ(z)
Tψ(ζ) = J σdD——

and

^ - z\)φ(z)dσ(z)
T'x

IdD~Jei
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If we use the simple choice φj = Gj/\G\2 we have to apply the Wolff trick
again, and (modulo error terms) we arrive at

/ Kw(z)φ(z)dσ(z) = [ (-ρ)Cw A Tw + / (-ρ)w A CTw
JdD J D JO

+ ί —7=w A dp A T'φ + [ y/^pCw A dp A T'φ
JD V~P JD

+ ί V^φw A dp A CT'φ,
JD

and arguing as in §3, and using Proposition 7.1 (and Propositions 3.2 and
3.4) one get the estimates (3.21) to (3.23) of JdDKw(z)φ(z)dσ(z), which
solves the iϊ^-corona problem for 1 < p < * for two generators.

Now suppose that we have an arbitrary but finite number m of genera-
tors. Let K denote (good, apropriately weighted) homotopy operators for 9,
cousins to the operator K above; thus mapping (0, q + l)-forms into (0, q)-
forms, such that ΘK + Kd = identity. Then the Koszul complex, see e.g.
[G], furnishes a holomorphic solution to the division problem that can be
written as a sum of terms of the type

(8.1) (GK)kφKo A BφKl A ... Λ dψKhφ,

where \K\ = k + 1, k ranges from 0 to min(n,m — 1), and

{GK)k = GKGK...GK,

where GK means the operator K followed by multiplication with one of the

generators Gj.

If now \dφj\ H—•== \BpAdφj\ are Carleson measures, \dφj\ < l/(—p)
~P

and \dp A dφό\ < I/Λ/11^, then

(-P)^ \Ψκ0 A BφKl A ... Λ BφKkφ\

and

(-p)^ \dp A φKo A BφKl A ... Λ BφKkφ\

are Carleson measures, and then a size estimate of the integrals in (8.1) gives
a desired estimate for the solution. The necessary estimates for the kernel
of {GK)k follow from Lemma 5.2 in [AnCl].

The explicit choice of starting solution φ = G/\G\2 offer additional tech-
niqual problems that we do not pursue here.
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